Limiting spectral distribution of Gram matrices associated with functionals of β-mixing processes

Marwa Banna

Abstract

We give asymptotic spectral results for Gram matrices of the form $n^{-1}X_nX_n^T$ where the entries of X_n are dependent across both rows and columns. More precisely, they consist of short or long range dependent random variables having moments of second order and that are functionals of an absolutely regular sequence. We also give a concentration inequality of the Stieltjes transform and we prove that, under an arithmetical decay condition on the β-mixing coefficients, it is almost surely concentrated around its expectation. Applications to examples of positive recurrent Markov chains and dynamical systems are also given.

Key words: Random matrices, sample covariance matrices, Stieltjes transform, absolutely regular sequences, limiting spectral distribution, spectral density, Marčenko-Pastur distributions.

Mathematical Subject Classification (2010): 60F15, 60G10, 60G15, 62E20.

1 Introduction

For a random matrix $X_n \in \mathbb{R}^{N \times N}$, the study of the asymptotic behavior of the eigenvalues of the $N \times N$ Gram matrix $n^{-1}X_nX_n^T$ gained interest as it is employed in many applications in statistics, signal processing, quantum physics, finance, etc. In order to describe the distribution of the eigenvalues, it is convenient to introduce the empirical spectral measure defined by $\mu_n = n^{-1} \sum_{k=1}^{N} \delta_{\lambda_k}$, where $\lambda_1, \ldots, \lambda_N$ are the eigenvalues of $n^{-1}X_nX_n^T$. This type of study was actively developed after the pioneering work of Marčenko and Pastur [12], who proved that under the assumption $\lim_{n \to +\infty} N/n = c \in (0, +\infty)$, the empirical spectral distribution of large dimensional Gram matrices with i.i.d. centered entries having finite variance converges almost surely to a non-random distribution. The limiting spectral distribution (LSD) obtained, i.e. the Marčenko-Pastur distribution, is given explicitly in terms of c and depends on the distribution of the entries of X_n only through their common variance. The original Marčenko-Pastur theorem is stated for random variables having moment of fourth order; for the proof under second moment only, we refer to Yin [21].

Since then, a large amount of study has been done aiming to relax the independence structure between the entries of X_n. For example, Bai and Zhou [2] treated the case where the columns of X_n are independent with their coordinates having a very general dependence structure and moments of fourth order. Recently, Banna and Merlevède [3] extended along another direction the Marčenko-Pastur theorem to a large class of weakly dependent sequences of real random variables having moments of second order. Letting $(X_k)_{k \in \mathbb{Z}}$ be a stationary process of the form $X_k = g(\varepsilon_{k-1}, \varepsilon_k, \varepsilon_{k+1}, \ldots)$, where the ε_k’s are i.i.d. real valued random variables and $g: \mathbb{R}^2 \to \mathbb{R}$ is a measurable function, they consider the $N \times N$ sample covariance matrix $A_n = \frac{1}{n} \sum_{k=1}^{n} X_kX_k^T$ with the X_k’s being independent copies of the vector $X = (X_1, \ldots, X_N)^T$. Assuming only that X_0 has a moment of second order, then provided that $\lim_{n \to +\infty} N/n = c \in (0, +\infty)$, they prove, under a mild dependence condition, that almost surely, μ_{A_n} converges weakly to a non-random probability measure μ whose Stieltjes transform satisfies an integral equation that depends on c and on the spectral density of the underlying stationary process $(X_k)_{k \in \mathbb{Z}}$. In this paper, we relax the independence condition on the ε_k’s. For instance, assuming that

Université Paris Est, LAMA (UMR 8050), UPEMLV, CNRS, UPEC, 5 Boulevard Descartes, 77454 Marne La Vallée, France.
E-mail: marwa.banna@u-pem.fr

1
is an absolutely regular (β-mixing) sequence, we show that the study of the LSD can be reduced to that of a Gaussian matrix having the same covariance structure (see Theorem 2.6). Then, provided that the spectral density of the underlying process exists, we deduce the integral equation satisfied by the Stieltjes transform of the LSD \(\mu \).

In the above mentioned model, the random vector \(\mathbf{X} = (X_1, \ldots, X_N)^T \) can be viewed as an \(N \)-dimensional process repeated independently \(n \) times to obtain the \(\mathbf{X}_k \)'s. However, in practice it is not always possible to observe a high dimensional process several times. In the case where only one observation of length \(Nn \) can be recorded, it seems reasonable to partition it into \(n \) dependent observations of length \(N \), and to treat them as \(n \) dependent observations. Up to our knowledge this was first done by Pfaffel and Schlemm [14] who showed that this approach is valid and leads to the correct asymptotic eigenvalue distribution of the sample covariance matrix if the components of the underlying process are modeled as short memory linear filters of independent random variables. They consider Gram matrices having the same form as in (2.3) and associated with a stationary linear process \((X_k)_{k \in \mathbb{Z}} \) with independent innovations having finite fourth moments and such that the coefficients decay with an arithmetical rate, and they derive its LSD.

In this work, we study the same model of random matrices as in [14] but considering the case where the entries come from a non causal stationary process \((X_k)_{k \in \mathbb{Z}} \) of the form \(X_k = g(\cdots, \varepsilon_{k-1}, \varepsilon_k, \varepsilon_{k+1}, \cdots) \) where \((\varepsilon_k)_{k \in \mathbb{Z}} \) is an absolutely regular sequence and \(g : \mathbb{R}^\mathbb{Z} \rightarrow \mathbb{R} \) is a measurable function such that \(X_k \) is a proper centered random variable having finite moments of second order. Under an arithmetical decay condition on the β-mixing coefficients, we prove in Theorem 2.1 that the Stieltjes transform is concentrated almost surely around its expectation as \(n \) tends to infinity (see Theorem 2.1). Once this is done, it is enough to prove that the Expectation of the Stieltjes transform converges to that of a non-random probability measure. This can be achieved by approximating it by the expectation of the Stieltjes transform of a Gaussian matrix having a close covariance structure (see Theorem 2.2). Finally, provided that the spectral density of the underlying process exists, we deduce in Theorem 2.3 that almost surely, \(\mu_{\mathcal{B}_n} \) converges weakly to the same non-random limiting probability measure \(\mu \) obtained in the cases mentioned above.

We recall now that the absolutely regular (β-mixing) coefficient between two \(\sigma \)-algebras \(\mathcal{A} \) and \(\mathcal{B} \) is defined by

\[
\beta(\mathcal{A}, \mathcal{B}) = \frac{1}{2} \sup \left\{ \sum_{i \in I} \sum_{j \in J} \left| \mathbb{P}(A_i \cap B_j) - \mathbb{P}(A_i)\mathbb{P}(B_j) \right| \right\},
\]

where the supremum is taken over all finite partitions \((A_i)_{i \in I} \) and \((B_j)_{j \in J} \) that are respectively \(\mathcal{A} \) and \(\mathcal{B} \) measurable (see Rozanov and Volkonskii [19]). The coefficients \((\beta_n)_{n \geq 0} \) of a sequence \((\varepsilon_i)_{i \in \mathbb{Z}} \) are defined by

\[
\beta_0 = 1 \quad \text{and} \quad \beta_n = \sup_{k \in \mathbb{Z}} \beta(n(\varepsilon_\ell, \ell \leq k), (\varepsilon_{\ell+n}, \ell \geq k)) \quad \text{for} \quad n \geq 1.
\]

Moreover, \((\varepsilon_i)_{i \in \mathbb{Z}} \) is said to be absolutely regular or β-mixing if \(\beta_n \rightarrow 0 \) as \(n \rightarrow \infty \).

Outline. In Section 2, we specify the models studied and state the limiting results for the Gram matrices associated with the process defined in (2.1). The proofs shall be deferred to Section 4, whereas applications to examples of Markov chains and dynamical systems shall be introduced in Section 3.

Notation. For any real numbers \(x \) and \(y \), \(x \wedge y := \min(x, y) \) whereas \(x \vee y := \max(x, y) \). Moreover, the notation \([x]\) denotes the integer part of \(x \). For any non-negative integer \(q \), a null row vector of dimension \(q \) will be denoted by \(\mathbf{0}_q \). For a matrix \(A \), we denote by \(A^T \) its transpose matrix and by \(\text{Tr}(A) \) its trace. Finally, we shall use the notation \(\|X\|_r \) for the \(L^r \)-norm (\(r \geq 1 \)) of a real valued random variable \(X \).
For any square matrix A of order N having only real eigenvalues, its empirical spectral measure and distribution are respectively defined by

$$
\mu_A = \frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_k} \text{ and } F^A(x) = \frac{1}{N} \sum_{k=1}^{N} 1\{\lambda_k \leq x\},
$$

where $\lambda_1, \ldots, \lambda_N$ are the eigenvalues of A. The Stieltjes transform of μ_A is given by

$$
S_A(z) := S_{\mu_A}(z) = \int \frac{1}{x-z} \, d\mu_A(x) = \frac{1}{N} \text{Tr}(A-zI)^{-1},
$$

where $z = u + iv \in \mathbb{C}^+$ (the set of complex numbers with positive imaginary part), and I is the identity matrix of order N.

2 Results

We consider a non causal stationary process $(X_k)_{k \in \mathbb{Z}}$ defined as follows: let $(\varepsilon_i)_{i \in \mathbb{Z}}$ an absolutely regular process with β-mixing sequence $(\beta_k)_{k \geq 0}$ and let $g : \mathbb{R}^2 \to \mathbb{R}$ be a measurable function such that X_k, which is defined for any $k \in \mathbb{Z}$ by

$$
X_k = g(\xi_k) \quad \text{with} \quad \xi_k = (\ldots, \varepsilon_{k-1}, \varepsilon_k, \varepsilon_{k+1}, \ldots), \quad (2.1)
$$

is a proper centered random variable having finite moment of second order; that is, $\mathbb{E}(X_k) = 0$ and $\|X_k\|_2 < \infty$.

Now, let $N := N(n)$ be a sequence of positive integers and consider the $N \times n$ random matrix X_n defined by

$$
X_n = ((X_n)_{i,j}) = (X_{(j-1)N+i}) = \begin{pmatrix}
X_1 & X_{N+1} & \cdots & X_{(n-1)N+1} \\
X_2 & X_{N+2} & \cdots & X_{(n-1)N+2} \\
\vdots & \vdots & \ddots & \vdots \\
X_N & X_{2N} & \cdots & X_{nN}
\end{pmatrix} \in M_{N \times n}(\mathbb{R}) \quad (2.2)
$$

and note that its entries are dependent across both rows and columns. Let B_n be its corresponding Gram matrix given by

$$
B_n = \frac{1}{n} X_n X_n^T. \quad (2.3)
$$

In what follows, B_n will be referred to as the Gram matrix associated with $(X_k)_{k \in \mathbb{Z}}$. We note that it can be written as the sum of dependent rank one matrices. Namely, $B_n = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^T$, where for any $i = 1, \ldots, n$, $X_i = (X_{(i-1)N+1}, \ldots, X_{iN})^T$. Our purpose is to study the limiting distribution of the empirical spectral measure μ_{B_n} defined by

$$
\mu_{B_n}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_k},
$$

where $\lambda_1, \ldots, \lambda_N$ are the eigenvalues of B_n. We start by showing that if the β-mixing coefficients decay arithmetically then the Stieltjes transform of B_n concentrates almost surely around its expectation as n tends to infinity.

Theorem 2.1 Let B_n be the matrix defined in (2.3) and associated with $(X_k)_{k \in \mathbb{Z}}$ defined in (2.1). If $\lim_{n \to \infty} N/n = c \in (0, \infty)$ and

$$
\sum_{n \geq 1} \log(n) \log n^{-\frac{3}{2}} \beta_n < \infty \quad \text{for some } \alpha > 1, \quad (2.4)
$$

the following convergence holds: for any $z \in \mathbb{C}^+$,

$$
S_{B_n}(z) - \mathbb{E}(S_{B_n}(z)) \to 0 \text{ almost surely, as } n \to +\infty.
$$
As the X_i’s are dependent, classical arguments as those in Theorem 1 (ii) of [8] are not sufficient to prove the above convergence. In fact, we use maximal coupling for absolutely regular sequences in order to break the dependence structure between the columns. The proof of Theorem 2.1 shall be postponed to Section 4.

In the following Theorem, we shall approximate the Stieltjes transform of the LSD of B_n with that of a sample covariance matrix G_n which is the sum of i.i.d. rank one matrices associated with a Gaussian process $(Z_k)_{k \in \mathbb{Z}}$ having the same covariance structure as $(X_k)_{k \in \mathbb{Z}}$. Namely, for any $k, \ell \in \mathbb{Z}$,

$$\text{Cov}(Z_k, Z_\ell) = \text{Cov}(X_k, X_\ell).$$

(2.5)

Denoting, for $i = 1, \ldots, n$, by $(Z^{(i)}_k)_{k \in \mathbb{Z}}$ an independent copy of $(Z_k)_k$ that is also independent of $(X_k)_k$, we then define the $N \times N$ sample covariance matrix G_n by

$$G_n = \frac{1}{n} Z_n Z_n^T = \frac{1}{n} \sum_{k=1}^{n} Z_i Z_i^T,$$

(2.6)

where for any $i = 1, \ldots, n$, $Z_i = (Z^{(i)}_1, \ldots, Z^{(i)}_N)^T$ and Z_n is the matrix whose columns are the Z_i’s. Namely, $Z_n := (Z_n^u,v) = (Z^{(u)}_i)$.

Theorem 2.2 Let B_n and G_n be the matrices defined in (2.3) and (2.6) respectively. Provided that $\lim_{n \to \infty} N/n = c \in (0, \infty)$ and $\lim_{n \to \infty} \beta_n = 0$, then for any $z \in \mathbb{C}_+$,

$$\lim_{n \to \infty} |\mathbb{E}(S_{B_n}(z)) - \mathbb{E}(S_{G_n}(z))| = 0.$$

The above Theorem allows us to reduce the study of the expectation of the LSD of B_n to that of a Gram matrix, being the sum of independent rank-one matrices associated with a Gaussian process, without requiring any rate of convergence to zero of the correlation between the entries nor of the β-mixing coefficients.

Theorem 2.3 Let B_n and G_n be the matrices defined in (2.3) and (2.6) respectively. Provided that $\lim_{n \to \infty} N/n = c \in (0, \infty)$ and that (2.4) is satisfied, then for any $z \in \mathbb{C}_+$,

$$\lim_{n \to \infty} |S_{B_n}(z) - S_{G_n}(z)| = 0 \quad a.s.$$

(2.7)

Moreover, if $(X_k)_{k \in \mathbb{Z}}$ admits a spectral density f, then with probability one, μ_{B_n} converges weakly to a probability measure μ whose Stieltjes transform $S = S(z) (z \in \mathbb{C}^+)$ satisfies the equation

$$z = \frac{1}{S} + \frac{c}{2\pi} \int_0^{2\pi} \frac{1}{S + (2\pi f(\lambda))^{-1}} d\lambda,$$

(2.8)

where $S(z) := -(1 - c)/z + cS(z)$.

Remark 2.4 The spectral density function f of $(X_k)_{k \in \mathbb{Z}}$ is the discrete Fourier transform of the autocovariance function. If $\sum_{k \in \mathbb{Z}} |\text{Cov}(X_0, X_k)| < \infty$ then f exists, is continuous and bounded on $[0, 2\pi)$. It also follows from Proposition 1 in [20] that the LSD μ is compactly supported.

Remark 2.5 For a proof of Equation (2.8), we refer to Section 4.4 in [3] for the case of short memory dependent sequences and to Section 3.5 in [13] for the case of long memory dependent sequences adapted to the natural filtration. We also note that the convergence (2.7) is a consequence of Theorems 2.1 and 2.2 and therefore we omit the proof of Theorem 2.3.
Now, we shall consider the case where the Gram matrix is the sum of independent rank-one matrices whose entries are functionals of absolutely regular sequences. More precisely, we consider the sample covariance matrix

$$A_n := \frac{1}{n} \sum_{k=1}^{n} \tilde{X}_k \tilde{X}_k^T,$$

with the \tilde{X}_k's being independent copies of $(X_1, \ldots, X_N)^T$ and $(X_k)_{k \in \mathbb{Z}}$ the process defined in (2.1).

Theorem 2.6 Provided that $\lim_{n \to \infty} N/n = c \in (0, \infty)$ and $\lim_{n \to \infty} \beta_n = 0$, then for any $z \in \mathbb{C}$

$$\lim_{n \to \infty} |S_{A_n}(z) - S_{G_n}(z)| = 0 \quad a.s. \quad (2.10)$$

Moreover, if $(X_k)_{k \in \mathbb{Z}}$ admits a spectral density f, then, with probability one, μ_{A_n} converges weakly to a probability measure whose Stieltjes transform $S = S(z)$ ($z \in \mathbb{C}^+$) satisfies equation (2.8).

Remark 2.7 Since the \tilde{X}_k's are mutually independent, then, by Theorem 1 (ii) in [8] or the arguments on page 34 in [1], we can approximate directly $S_{A_n}(z)$ by its expectation and there is no need of any coupling arguments as in Theorem 2.1 and thus of the arithmetic decay condition (2.4) on the absolutely regular coefficients. So it suffices to prove that for any $z \in \mathbb{C}^+$,

$$\lim_{n \to \infty} |E(S_{A_n}(z)) - E(S_{G_n}(z))| = 0$$

which can be exactly done as in Theorem 2.2 after simple modifications of indices. For this reason, its proof shall be omitted.

3 Applications

In this section we shall apply the results of Section 2 to a Harris recurrent Markov chain and some uniformly expanding maps in dynamical systems.

Harris recurrent Markov chain

The following example is a symmetrized version of the Harris recurrent Markov chain defined by Doukhan et al. [7]. Let $(\varepsilon_n)_{n \in \mathbb{Z}}$ be a stationary Markov chain taking values in $E = [-1, 1]$ and let K be its Markov kernel defined by

$$K(x, \cdot) = (1 - |x|)\delta_x + |x|\nu,$$

with ν being a symmetric atomless law on E and δ_x denoting the Dirac measure at point x. Assume that $\theta = \int_E |x|^{-1}\nu(dx) < \infty$ then $(\varepsilon_n)_{n \in \mathbb{Z}}$ is positively recurrent and the unique invariant measure π is given by

$$\pi(dx) = \theta^{-1}|x|^{-1}\nu(dx).$$

We shall assume in what follows that ν satisfies for any $x \in [0, 1]$,

$$\frac{d\nu}{dx}(x) \leq c x^a \quad \text{for some } a, c > 0. \quad (3.11)$$

Now, let g be a measurable function defined on E such that

$$X_k = g(\varepsilon_k) \quad (3.12)$$

is a centered random variable having a finite second moment.
Corollary 3.1 Let \((X_k)_{k \in \mathbb{Z}}\) be defined in (3.12). Assume that \(\nu\) satisfies (3.11) and that for any \(x \in E\), \(g(-x) = -g(x)\) and \(|g(x)| \leq C|x|^{1/2}\) with \(C\) being a positive constant. Then, provided that \(N/n \to c \in (0, \infty)\), the conclusions of Theorems 2.2 and 2.6 hold and the LSD \(\mu\) has a compact support. In addition, if (3.11) holds with \(a > 1/2\) then Theorems 2.1 and 2.3 follow as well.

Proof. Doukhan et al. prove in Section 4 of [7] that if (3.11) is satisfied then \((\varepsilon_k)_{k \in \mathbb{Z}}\) is an absolutely regular sequence with \(\beta_n = O(n^{-a})\) as \(n \to \infty\). Thereby, Theorems 2.2 and 2.6 follow. Now, noting that \(g\) is an odd function we have

\[
\mathbb{E}(g(\varepsilon_k)|\varepsilon_0) = (1 - |\varepsilon_0|)^k g(\varepsilon_0) \quad \text{a.s.}
\]

Therefore, by the assumption on \(g\) and (3.11), we get for any \(k \geq 0\),

\[
\gamma_k := \mathbb{E}(X_0X_k) = \mathbb{E}(g(\varepsilon_0)\mathbb{E}(g(\varepsilon_k)|\varepsilon_0)) = \theta^{-1} \int_E g^2(x)(1 - |x|)k|x|^{-1}\nu(dx)
\leq c C^2 \theta^{-1} \int_E x^{a+1} (1 - |x|)^k dx.
\]

By the properties of the Beta and Gamma functions, \(|\gamma_k| = O\left(\frac{1}{\theta^n}\right)\) which implies \(\sum_k |\gamma_k| < \infty\) and thus the spectral density \(f\) is continuous and bounded over \([0, 2\pi]\) and the LSD \(\mu\) has a compact support (see Remark 2.4). However, if in addition \(a > 1/2\) then (2.4) is also satisfied and Theorems 2.1 and 2.3 follow as well.

Uniformly expanding maps

Functionals of absolutely regular sequences occur naturally as orbits of chaotic dynamical systems. For instance, for uniformly expanding maps \(T: [0, 1] \to [0, 1]\) with absolutely continuous invariant measure \(\nu\), one can write \(T^k = g(\varepsilon_k, \varepsilon_{k+1}, \ldots)\) for some measurable function \(g: \mathbb{R}^\mathbb{Z} \to \mathbb{R}\) where \((\varepsilon_k)_{k \geq 0}\) is an absolutely regular sequence. We refer to Section 2 of [10] for more details and for a precise definition of such maps (see also Example 1.4 in [6]). Hofbauer and Keller prove in Theorem 4 of [10] that the mixing rate of \((\varepsilon_k)_{k \geq 0}\) decreases exponentially, i.e.

\[
\beta_k \leq Ce^{-\lambda k}, \quad \text{for some } C, \lambda > 0,
\]

and thus (2.4) holds. Setting for any \(k \geq 0\),

\[
X_k = h \circ T^k - \nu(f),
\]

where \(h: [0, 1] \to \mathbb{R}\) is a continuous Hölder function, the Theorems in Section 2 hold for the associated matrices \(B_n\) and \(A_n\). Moreover, Hofbauer and Keller prove in Theorem 5 of [10] that \(\sum_k |\text{Cov}(X_0, X_k)| < \infty\) which implies that the spectral density \(f\) exists, is continuous and bounded on \([0, 2\pi]\) and that the LSD \(\mu\) is compactly supported.

4 Proof of Theorem 2.1

Let \(m\) be a positive integer (fixed for the moment) such that \(m \leq \sqrt{N}/2\) and let \((X_{k,m})_{k \in \mathbb{Z}}\) be the sequence defined for any \(k \in \mathbb{Z}\) by,

\[
X_{k,m} = \mathbb{E}(X_k|\varepsilon_{k-m}, \ldots, \varepsilon_{k+m}).
\]

Consider the \(N \times n\) matrix \(A_{n,m} = ((A_{n,m})_{i,j}) = (X_{(j-1)N+i,m})\) and finally set

\[
B_{n,m} = \frac{1}{n} A_{n,m} A_{n,m}^T.
\]
The proof will be done in two principal steps. First, we shall prove that
\[\lim_{m \to +\infty} \lim_{n \to +\infty} \left| S_{B_n} (z) - S_{B_{n,m}} (z) \right| = 0 \quad \text{a.s.} \]
(4.3)
and then
\[\lim_{n \to +\infty} \left| S_{B_{n,m}} (z) - E(S_{B_{n,m}} (z)) \right| = 0 \quad \text{a.s.} \]
(4.4)
We note that for any two \(N \times n \) random matrices \(A \) and \(B \), we have
\[|S_{AA}^T (z) - S_{BB}^T (z)| \leq \frac{\sqrt{2}}{\sqrt{Nv}} |\text{Tr}(AA^T + BB^T)|^{1/2} |\text{Tr}((A - B)(A - B)^T)|^{1/2}. \]
(4.5)
For a proof, the reader can check Inequalities (4.18) and (4.19) of [3]. Thus, we get, for any \(z = u + iv \in \mathbb{C}^+ \),
\[|S_{B_n} (z) - S_{B_{n,m}} (z)| \leq \frac{2}{\sqrt{N}} |\text{Tr}(B_n + B_{n,m})| \left(\frac{1}{N} \text{Tr}(X_n - X_{n,m}) (X_n - X_{n,m})^T \right). \]
(4.6)
Recall that mixing implies ergodicity and note that as \((\varepsilon_k)_{k \in \mathbb{Z}}\) is an ergodic sequence of real-valued random variables then \((X_k)_{k \in \mathbb{Z}}\) is also so. Therefore, by the ergodic theorem,
\[\lim_{n \to +\infty} \frac{1}{N} \text{Tr}(B_n) = \lim_{n \to +\infty} \frac{1}{N} \sum_{k=1}^{Nn} X_k^2 = E(X_0^2) \quad \text{a.s.} \]
(4.7)
Similarly,
\[\lim_{n \to +\infty} \frac{1}{N} \text{Tr}(B_{n,m}) = E(X_{0,m}^2) \quad \text{a.s.} \]
(4.8)
Starting from (4.6) and noticing that \(E(X_{0,m}^2) \leq E(X_0^2) \), it follows that (4.3) holds if we prove
\[\lim_{m \to +\infty} \lim_{n \to +\infty} \sup_{z} \left| \frac{1}{N} \text{Tr}(X_n - X_{n,m}) (X_n - X_{n,m})^T \right| = 0 \quad \text{a.s.} \]
(4.9)
By the construction of \(X_n \) and \(X_{n,m} \) and again the ergodic theorem, we get
\[\lim_{n \to +\infty} \frac{1}{N} \text{Tr}(X_n - X_{n,m}) (X_n - X_{n,m})^T = \lim_{n \to +\infty} \frac{1}{N} \sum_{k=1}^{Nn} (X_k - X_{k,m})^2 = E(X_0 - X_{0,m})^2 \quad \text{a.s.} \]
(4.9)
follows by applying the usual martingale convergence theorem in \(L^2 \), from which we infer that \(\lim_{m \to +\infty} ||X_0 - E(X_0|\varepsilon_m, \ldots, \varepsilon_m)||_2 = 0 \) (see Corollary 2.2 in Hall and Heyde [9]).

We turn now to the proof of (4.4). With this aim, we shall prove that for any \(z = u + iv \) and \(x > 0 \),
\[\mathbb{P}(|S_{B_{n,m}} (z) - E(S_{B_{n,m}} (z)) | > 4x) \leq 4 \exp \left\{ -\frac{x^2 v^2 N^2 (\log n)^\alpha}{256 n^2} \right\} + \frac{32 n^2 (\log n)^\alpha}{x^2 v^2 N^2} \beta \left[\frac{n}{\log n} \right]^\alpha \]
(4.10)
for some \(\alpha > 1 \). Noting that
\[\sum_{n^2 \beta^2} (\log n)^\alpha \beta \left[\frac{n}{\log n} \right]^\alpha < +\infty \]
is equivalent to (2.4)
and applying Borel-Cantelli Lemma, (4.4) follows from (2.4) and the fact that \(\lim_{n \to +\infty} N/n = c \). Now, to prove (4.10), we start by noting that
\[\mathbb{P}(|S_{B_{n,m}} (z) - E(S_{B_{n,m}} (z)) | > 4x) \]
\[\leq \mathbb{P}(|\Re(S_{B_{n,m}} (z)) - E\Re(S_{B_{n,m}} (z)) | > 2x) + \mathbb{P}(|\Im(S_{B_{n,m}} (z)) - E\Im(S_{B_{n,m}} (z)) | > 2x) \]
For a row vector $\mathbf{x} \in \mathbb{R}^{Nn}$, we partition it into n elements of dimension N and write $\mathbf{x} = (x_1, \ldots, x_n)$ where x_1, \ldots, x_n are row vectors of \mathbb{R}^N. Now, let $A(\mathbf{x})$ and $B(\mathbf{x})$ be respectively the $N \times n$ and $N \times N$ matrices defined by

$$A(\mathbf{x}) = (x_1^T | \ldots | x_n^T) \quad \text{and} \quad B(\mathbf{x}) = \frac{1}{n} A(\mathbf{x})A(\mathbf{x})^T. \quad (4.11)$$

Also, let $h_1 := h_{1,z}$ and $h_2 := h_{2,z}$ be the functions defined from \mathbb{R}^{Nn} into \mathbb{R} by

$$h_1(\mathbf{x}) = \int f_{1,z} d\mu_{B(\mathbf{x})} \quad \text{and} \quad h_2(\mathbf{x}) = \int f_{2,z} d\mu_{B(\mathbf{x})},$$

where $f_{1,z}(\lambda) = \frac{\lambda^{n-1}}{(\lambda-a)^{2+n}}$ and $f_{2,z}(\lambda) = \frac{\lambda^{n-1}}{(\lambda-a)^{2+n}}$ and note that $S_{B(\mathbf{x})}(z) = h_1(\mathbf{x}) + ih_2(\mathbf{x})$.

Now, denoting by $\mathbf{X}_{1,m}^T, \ldots, \mathbf{X}_{n,m}^T$ the columns of $\mathbf{X}_{n,m}$ and setting \mathbf{A} to be the row random vector of \mathbb{R}^{Nn} given by

$$\mathbf{A} = (\mathbf{X}_{1,m}, \ldots, \mathbf{X}_{n,m}),$$

we note that $B(\mathbf{A}) = B_{n,m}$ and $h_1(\mathbf{A}) = \Re(S_{B_{n,m}}(z))$. Moreover, letting q be a positive integer less than n, we set $F_i = \sigma(\varepsilon_k, k \leq iN + m)$ for $1 \leq i \leq \lfloor n/q \rfloor$ with the convention that $F_0 = \{\emptyset, \Omega\}$ and that $F_s = F_n$ for any $s \in \{q, \ldots, n\}$. Noting that $\mathbf{X}_{1,m}, \ldots, \mathbf{X}_{i,m}$ are F_i-measurable, we write the following decomposition:

$$\Re(S_{B_{n,m}}(z)) - \mathbb{E}\Re(S_{B_{n,m}}(z)) = h_1(\mathbf{X}_{1,m}, \ldots, \mathbf{X}_{n,m}) - \mathbb{E}h_1(\mathbf{X}_{1,m}, \ldots, \mathbf{X}_{n,m})$$

$$= \sum_{i=1}^{\lfloor n/q \rfloor} \left(\mathbb{E}(h_1(\mathbf{A})|F_{iq}) - \mathbb{E}(h_1(\mathbf{A})|F_{(i-1)q}) \right) . \quad (4.12)$$

Now, let $(\mathbf{A}_i)_i$ be a family of row random vectors of \mathbb{R}^{Nn} defined for any $i \in \{1, \ldots, \lfloor n/q \rfloor - 1\}$ by

$$\mathbf{A}_i = (\mathbf{X}_{1,m}, \ldots, \mathbf{X}_{(i-1)q,m}, 0_N, \ldots, 0_N, \mathbf{X}_{(i+1)q+1,m}, \ldots, \mathbf{X}_{n,m}),$$

and for $i = \lfloor n/q \rfloor$ by

$$\mathbf{A}_{\lfloor n/q \rfloor} = (\mathbf{X}_{1,m}, \ldots, \mathbf{X}_{(\lfloor n/q \rfloor - 1)q,m}, 0_N, \ldots, 0_N).$$

Noting that $\mathbb{E}(h_1(\mathbf{A}_{[n/q]}|F_n)) = \mathbb{E}(h_1(\mathbf{A}_{[n/q]}|F_{\lfloor n/q \rfloor - 1}q))$, we write

$$\Re(S_{B_{n,m}}(z)) - \mathbb{E}\Re(S_{B_{n,m}}(z))$$

$$= \sum_{i=1}^{\lfloor n/q \rfloor} \left(\mathbb{E}(h_1(\mathbf{A}) - h_1(\mathbf{A}_i)|F_{iq}) - \mathbb{E}(h_1(\mathbf{A}) - h_1(\mathbf{A}_i)|F_{(i-1)q}) \right)$$

$$+ \sum_{i=1}^{\lfloor n/q \rfloor - 1} \left(\mathbb{E}(h_1(\mathbf{A}_i)|F_{iq}) - \mathbb{E}(h_1(\mathbf{A}_i)|F_{(i-1)q}) \right)$$

$$:= M_{\lfloor n/q \rfloor, q} + \sum_{i=1}^{\lfloor n/q \rfloor - 1} \left(\mathbb{E}(h_1(\mathbf{A}_i)|F_{iq}) - \mathbb{E}(h_1(\mathbf{A}_i)|F_{(i-1)q}) \right) . \quad (4.12)$$

Thus, we get

$$\mathbb{P}\left(\left|\Re(S_{B_{n,m}}(z)) - \mathbb{E}\Re(S_{B_{n,m}}(z))\right| > 2x\right)$$

$$\leq \mathbb{P}\left(|M_{\lfloor n/q \rfloor, q}| > x\right) + \mathbb{P}\left(\left|\sum_{i=1}^{\lfloor n/q \rfloor - 1} \left(\mathbb{E}(h_1(\mathbf{A}_i)|F_{iq}) - \mathbb{E}(h_1(\mathbf{A}_i)|F_{(i-1)q}) \right) \right| > x\right) . \quad (4.13)$$
Note that \((M_{k,q})_k\) is a centered martingale with respect to the filtration \((G_{k,q})_k\) defined by \(G_{k,q} = F_{kq}\). Moreover, for any \(k \in \{1, \ldots, [n/q]\}\),
\[
\|M_{k,q} - M_{k-1,q}\|_\infty = \|\mathbb{E}(h_1(A) - h_1(A_k)|F_{kq}) - \mathbb{E}(h_1(A) - h_1(A_k)|F_{(k-1)q})\|_\infty \\
\leq 2\|h_1(A) - h_1(A_k)\|_\infty
\]
Noting that \(\|f_{1,z}'\|_1 = 2/v\) then by integrating by parts, we get
\[
|h_1(A) - h_1(A_k)| = \left| \int f_{1,z}d\mu_B(A_i) - \int f_{1,z}d\mu_B(A_k) \right| \leq \|f_{1,z}'\|_1\|F^B(A_k) - F^B(A_i)\|_\infty \\
\leq \frac{2}{vN}\text{Rank}(A(A) - A(A_k)),
\]
where the second inequality follows from Theorem A.44 in [1]. As for any \(k \in \{1, \ldots, [n/q] - 1\}\), \(\text{Rank}(A(A) - A(A_k)) \leq 2q\) and \(\text{Rank}(A(A) - A(A_{[n/q]})) \leq q\), then overall we derive that almost surely
\[
\|M_{k,q} - M_{k-1,q}\|_\infty \leq \frac{8q}{vN}, \quad \text{and} \quad \|M_{[n/q],q} - M_{[n/q]-1,q}\|_\infty \leq \frac{4q}{vN}
\]
and hence applying the Azuma-Hoeffding inequality for martingales we get for any \(x > 0\),
\[
\mathbb{P}\left(|M_{[n/q],q} > x\right) \leq 2\exp\left(-\frac{x^2v^2N^2}{128q}\right).
\]
Now to control the second term of (4.12), we have, by Markov’s inequality and orthogonality, for any \(x > 0\),
\[
\mathbb{P}\left(\left| \sum_{i=1}^{[n/q]-1} \left(\mathbb{E}(h_1(A_i)|F_{iq}) - \mathbb{E}(h_1(A_i)|F_{(i-1)q})\right) \right| > x \right) \\
\leq \frac{1}{x^2} \sum_{i=1}^{[n/q]-1} \left\| \mathbb{E}(h_1(A_i)|F_{iq}) - \mathbb{E}(h_1(A_i)|F_{(i-1)q}) \right\|^2_2.
\]
Fixing \(i \in \{1, \ldots, [n/q] - 1\}\), one can construct by Berbee’s maximal coupling lemma [5], a sequence \((\varepsilon'_k)_{k \in \mathbb{Z}}\) distributed as \((\varepsilon_k)_{k \in \mathbb{Z}}\) and independent of \(F_{iq}\) such that for any \(j > iqN + m\),
\[
\mathbb{P}(\varepsilon'_k \neq \varepsilon_k, \text{ for some } k \geq j) = \beta_{j-iqN-m}.
\]
Let \((X'_{k,m})_{k \geq 1}\) be the sequence defined for any \(k \geq 1\) by \(X'_{k,m} = \mathbb{E}(X_k|\varepsilon'_{k-m}, \ldots, \varepsilon'_{k+m})\) and let \(X'_{i,m}\) be the row vector of \(\mathbb{R}^N\) defined by \(X'_{i,m} = (X'_{(i-1)+1,m}, \ldots, X'_{i,m})\). Finally, we define for any \(i \in \{1, \ldots, [n/q] - 1\}\) the row random vector \(A'_i\) of \(\mathbb{R}^{Nn}\) by
\[
A'_i = (X_{1,m}, \ldots, X_{(i-1),m}, 0_N, \ldots, 0_N, X'_{(i+1)+1,m}, \ldots, X'_{n,m}).
\]
As \(X'_{(i+1)+1,m}, \ldots, X'_{n,m}\) are independent of \(F_{iq}\) then \(\mathbb{E}(h_1(A'_i)|F_{iq}) = \mathbb{E}(h_1(A'_i)|F_{(i-1)q})\). Thus we write
\[
\mathbb{E}(h_1(A_i)|F_{iq}) - \mathbb{E}(h_1(A_i)|F_{(i-1)q}) = \mathbb{E}(h_1(A_i) - h_1(A'_i)|F_{iq}) - \mathbb{E}(h_1(A_i) - h_1(A'_i)|F_{(i-1)q}).
\]
and infer that
\[
\|\mathbb{E}(h_1(A_i)|F_{iq}) - \mathbb{E}(h_1(A_i)|F_{(i-1)q})\|_2 \\
\leq \|\mathbb{E}(h_1(A_i) - h_1(A'_i)|F_{iq})\|_2 + \|\mathbb{E}(h_1(A_i) - h_1(A'_i)|F_{(i-1)q})\|_2 \\
\leq 2\|h_1(A_i) - h_1(A'_i)\|_2
\]
Similarly as in (4.14), we have
\[
|h_1(A_i) - h_1(A_i')| \leq \frac{2}{v^N} \text{Rank}(A(A_i) - A(A_i')) \leq \frac{2}{v^N} \sum_{\ell=1}^{n} 1\{x_{\ell,m} \neq x_{\ell,m}'\}
\]
\[
\leq \frac{2n}{v^N} 1\{\varepsilon_k \neq \varepsilon_k', \text{ for some } k \geq (i+1)qN+1\}.
\]
Hence by (4.17), we infer that
\[
\|h_1(A_i) - h_1(A_i')\|_2^2 \leq \frac{4n^2}{v^2 N^2} \beta qN+1 - 2m \leq \frac{4n^2}{v^2 N^2} \beta (q-1)N,
\]
(4.19)
Starting from (4.16) together with (4.18) and (4.19), it follows that
\[
P\left(\sum_{i=1}^{[n/q]-1} (E(h_1(A_i)|F_iq) - E(h_1(A_i)|F_{(i-1)q})) > x \right) \leq \frac{16n^3}{v^2 v^2 q N^2} \beta (q-1)N.
\]
Therefore, considering (4.13) and gathering the upper bounds in (4.15) and (4.20), we get
\[
P(\text{Re}(S_{B_{n,m}}(z)) - E \text{ Re}(S_{B_{n,m}}(z)) > 2x) \leq 2 \exp \left\{-\frac{x^2 v^2 N^2}{128 q n} + \frac{16n^3}{v^2 v^2 q N^2} \beta (q-1)N \right\}.
\]
Finally, noting that \(P(\|3\text{Im}(S_{B_{n,m}}(z)) - E \text{ Im}(S_{B_{n,m}}(z))\| > 2x)\) also admits the same upper bound and choosing \(q = [n/(\log n)^n] + 1\), (4.10) follows. This ends the proof of Theorem 2.1.

5 Proof of Theorem 2.2

The proof, being technical, will be divided into three major steps (Sections 5.1 to 5.3).

5.1 A first approximation

Let \(m\) be a fixed positive integer and set \(p := p(m) = a_m m\) with \((a_m)_{m \geq 1}\) being a sequence of positive integers such that \(\lim_{n \to \infty} a_n = \infty\). Setting \(k_N = \left[\frac{N}{p + 3m}\right]\), we write the subset \(\{1, \ldots, Nn\}\) as a union of disjoint subsets of \(\mathbb{N}\) as follows:
\[
[1, Nn] \cap \mathbb{N} = \bigcup_{i=1}^{n} [(i-1)N+1, iN] \cap \mathbb{N} = \bigcup_{i=1}^{n} \bigcup_{\ell=1}^{k_N+1} J_{\ell}^i \cup J_{k_N+1}^i,
\]
where, for \(i \in \{1, \ldots, n\}\) and \(\ell \in \{1, \ldots, k_N\}\),
\[
J_{\ell}^i := [(i-1)N + (\ell-1)(p+3m)+1, (i-1)N + (\ell-1)(p+3m)+p] \cap \mathbb{N},
\]
\[
J_{k_N+1}^i := [(i-1)N + (\ell-1)(p+3m)+p+1, (i-1)N + \ell(p+3m)] \cap \mathbb{N},
\]
and, for \(\ell = k_N + 1\), \(J_{k_N+1}^i = \emptyset\) and
\[
J_{k_N+1}^i := [(i-1)N + k_N(p+3m)+1, iN] \cap \mathbb{N}.
\]
Note that for all \(i \in \{1, \ldots, n\}\), \(J_{k_N+1}^i = \emptyset\) if \(k_N(p+3m) = N\). Now, let \(M\) be a fixed positive number not depending on \((n,m)\) and let \(\varphi_M\) be the function defined by \(\varphi_M(x) = (x \land M) \lor (-M)\).

Setting
\[
B_{i,\ell} = (\varepsilon(i-1)N+(\ell-1)(p+3m)+1-m, \ldots, \varepsilon(i-1)N+(\ell-1)(p+3m)+p+m),
\]
(5.1)
we define the sequences \((\tilde{X}_{k,m})_{k \geq 1}\) and \((\bar{X}_{k,m})_{k \geq 1}\) as follows:

\[
\tilde{X}_{k,m} = \begin{cases}
\mathbb{E}(\varphi_M(X_k)|B_{i,\ell}) & \text{if } k \in I_i^\ell \\
0 & \text{otherwise,}
\end{cases}
\]

and

\[
\bar{X}_{k,m} = \tilde{X}_{k,m} - \mathbb{E}(\tilde{X}_{k,m}).
\]

(5.2)

To soothe the notations, we shall write \(X_{k,m}\) instead of \(\tilde{X}_{k,m}\) and \(X_{k,m}\) respectively. Note that for any \(k \geq 1\),

\[
||X_{k,m}||_2 \leq 2||\bar{X}_{k,m}||_2 = 2||\mathbb{E}(\varphi_M(X_k)|B_{i,\ell})||_2 \leq 2||\varphi_M(X_k)||_2 \leq 2\|X_k\|_2 = 2\|X_0\|_2.
\]

(5.3)

and

\[
||\bar{X}_{k,m}||_2 \leq 2\|\bar{X}_{k,m}\|_2 \leq 2M,
\]

(5.4)

where the last equality in (5.3) follows from the stationarity of \((X_k)\). As \(X_{k,m}\) is \(\sigma(B_{i,\ell})\)-measurable then it can be written as a measurable function \(h_k\) of \(B_{i,\ell}\), i.e.

\[
\bar{X}_{k,m} = h_k(B_{i,\ell}).
\]

(5.5)

Finally, let \(\tilde{X}_{n,m} = ((\tilde{X}_{n,m})_{i,j}) = (\bar{X}_{(j-1)N+i,m})\) and set

\[
B_{n,m} = \frac{1}{n}\tilde{X}_{n,m}T_{n,m}.
\]

(5.6)

We shall approximate \(B_n\) by \(B_{n,m}\) by applying the following proposition:

Proposition 5.1 Let \(B_n\) and \(B_{n,m}\) be the matrices defined in (2.3) and (5.6) respectively then if \(\lim_{n \to \infty} N/n = c \in (0, \infty)\), we have for any \(z \in \mathbb{C}^+\),

\[
\lim_{m \to \infty} \limsup_{M \to \infty} \limsup_{n \to \infty} \left| \mathbb{E}(S_{B_n}(z)) - \mathbb{E}(S_{B_{n,m}}(z)) \right| = 0.
\]

(5.7)

Proof. By (4.5) and Cauchy-Schwarz’s inequality, it follows that

\[
|\mathbb{E}(S_{B_n}(z)) - \mathbb{E}(S_{B_{n,m}}(z))| \leq \frac{\sqrt{2}}{\nu^2} \frac{1}{N} \mathbb{E}(|\text{Tr}(B_n + B_{n,m})|^2)^{1/2} \left\| \frac{1}{N} \mathbb{E}(|\text{Tr}(X_n - \tilde{X}_{n,m})(X_n - \tilde{X}_{n,m})^T|^2 \right\|^{1/2}.
\]

(5.8)

By the definition of \(B_n\), \(N^{-1}\mathbb{E}(|\text{Tr}(B_n)|) = \|X_0\|_2^2\). Similarly and due to the fact that \(pk_N \leq N\) and (5.3),

\[
\frac{1}{N} \mathbb{E}(|\text{Tr}(B_{n,m})|) = \frac{1}{N} \sum_{i=1}^n \sum_{\ell=1}^k \sum_{k \in I_i^\ell} \|X_{k,m}\|_2^2 \leq 4\|X_0\|_2^2.
\]

(5.9)

Moreover, by the construction of \(X_n\) and \(\tilde{X}_{n,m}\), we have

\[
\frac{1}{N} \mathbb{E}(|\text{Tr}(X_n - \tilde{X}_{n,m})(X_n - \tilde{X}_{n,m})^T|^2) = \frac{1}{N} \sum_{i=1}^n \sum_{\ell=1}^{kN} \sum_{k \in I_i^\ell} \|X_{k,m}\|_2^2 + \frac{1}{N} \sum_{i=1}^n \sum_{\ell=1}^{kN+1} \sum_{k \in I_i^\ell} \|X_{k,m}\|_2^2.
\]

Now, since \(X_k\) is centered, we write for \(k \in I_i^\ell\),

\[
||X_k - \tilde{X}_{k,m}||_2 \leq ||X_k - \tilde{X}_{k,m} - \mathbb{E}(X_k - \tilde{X}_{k,m})||_2 \leq 2||X_k - \tilde{X}_{k,m}||_2 \\
\leq 2||X_k - \mathbb{E}(X_k|B_{i,\ell})||_2 + 2||\tilde{X}_{k,m} - \mathbb{E}(X_k|B_{i,\ell})||_2.
\]

(5.10)
Analyzing the second term of the last inequality, we get
\[\| \tilde{X}_{k,m} - \mathbb{E}(X_k|B_{i,\ell}) \|_2 = \| \mathbb{E}(X_k - \varphi_M(X_k)|B_{i,\ell}) \|_2 \leq \| X_k - \varphi_M(X_k) \|_2 = \| (|X_0| - M) + \|_2. \] (5.11)
As \(X_0 \) belongs to \(L^2 \), then \(\lim_{M \to +\infty} \| (|X_0| - M) + \|_2 = 0 \). Now, we note that for \(k \in I_i^j \), \(\sigma(\varepsilon_{k-m}, \ldots, \varepsilon_{k+m}) \subset \sigma(B_{i,\ell}) \) which implies that
\[\| X_k - \mathbb{E}(X_k|B_{i,\ell}) \|_2 \leq \| X_k - \mathbb{E}(X_k|\varepsilon_{k-m}, \ldots, \varepsilon_{k+m}) \|_2 \]
\[= \| X_0 - \mathbb{E}(X_0|\varepsilon_{-m}, \ldots, \varepsilon_m) \|_2 = \| X_0 - X_{0,m} \|_2, \] (5.12)
where the first equality is due to the stationarity. Therefore, by (5.11), (5.12), the fact that \(pk_N \leq N \) and
\[\text{Card}(\bigcup_{i=1}^{n} \bigcup_{\ell=1}^{k_N+1} J_i^\ell) \leq Nn - npk_N, \]
we infer that
\[\frac{1}{Nn} \mathbb{E}(\text{Tr}(X_n - \tilde{X}_{n,m})(X_n - \tilde{X}_{n,m})^T) \leq 8 \| X_0 - X_{0,m} \|^2 + 8 \| (|X_0| - M) + \|^2 \]
\[+ (3(a_m + 3)^{-1} + a_m mN^{-1})\| X_0 \|^2. \] (5.13)
Thus starting from (5.8), considering the upper bounds (5.9) and (5.13), we derive that there exists a positive constant \(C \) not depending on \((n, m, M) \) such that
\[\limsup_{M \to \infty} \limsup_{n \to \infty} \mathbb{E}(S_{B_n}(z)) - \mathbb{E}(S_{B_{n,m}}(z)) \leq \frac{C}{v^2} \left(\| X_0 - X_{0,m} \|^2 + \frac{3}{a_m} \right)^{1/2}. \]
Taking the limit on \(m \), Proposition 5.1 follows by applying the martingale convergence theorem in \(L^2 \) and that fact that \(a_m \) converges to infinity. \(\square \)

5.2 Approximation by a Gram matrix with independent blocks

By Berbee’s classical coupling lemma [5], one can construct by induction a sequence of random variables \((\varepsilon_k^*)_{k \geq 1}\) such that:
- For any \(1 \leq i \leq n \) and \(1 \leq \ell \leq k_N \),
 \[B_{i,\ell}^* = (\varepsilon_{i(1)N+(\ell-1)(p+3m)+1-m}, \ldots, \varepsilon_{i(1)N+(\ell-1)(p+3m)+p+m}) \]
 has the same distribution as \(B_{i,\ell} \) defined in (5.1).
- The array \((B_{i,\ell}^*)_{1 \leq i \leq n, 1 \leq \ell \leq k_N}\) is i.i.d.
- For any \(1 \leq i \leq n \) and \(1 \leq \ell \leq k_N \), \(\mathbb{P}(B_{i,\ell} \neq B_{i,\ell}^*) \leq \beta_m \).

(see page 484 of [18] for more details concerning the construction of the array \((B_{i,\ell}^*)_{i,\ell \geq 1}\)). We define now the sequence \((\tilde{X}_{k,m}^*)_{k \geq 1}\) as follows:
\[\tilde{X}_{k,m}^* = h_k(B_{i,\ell}^*) \quad \text{if} \ k \in I_i^j, \] (5.14)
where the functions \(h_k \) are defined in (5.5).

We construct the \(N \times n \) random matrix \(\tilde{X}_{n,m}^* = ((\tilde{X}_{k,m}^*)_{i,j}) = (\tilde{X}_{j(1)N+i,m}) \). Note that the block of entries \((\tilde{X}_{k,m}^*, k \in I_i^j)\) is independent of \((\tilde{X}_{k,m}^*, k \in I_i^j)\) if \((i, \ell) \neq (i', \ell')\). Thus, \(\tilde{X}_{n,m}^* \) has independent blocks of dimension \(p \) separated by null blocks whose dimension is at least \(3m \). Setting
\[\tilde{B}_{n,m}^* := \frac{1}{n} \tilde{X}_{n,m}^* \tilde{X}_{n,m}^{*T}, \] (5.15)
we approximate \(\tilde{B}_{n,m} \) by the Gram matrix \(\tilde{B}_{n,m}^* \) as shown in the following proposition.
Proposition 5.2 Let $\mathcal{B}_{n,m}$ and $\mathcal{B}^*_{n,m}$ be defined in (5.6) and (5.15) respectively. Assuming that $\lim_{n \to +\infty} N/n = c \in (0, \infty)$ and $\lim_{n \to +\infty} \beta_n = 0$ then for any $z \in \mathbb{C}^+$,

$$\lim_{m \to +\infty} \limsup_{M \to +\infty} \limsup_{n \to +\infty} |\mathbb{E}(S_{\mathcal{B}_{n,m}}(z)) - \mathbb{E}(S_{\mathcal{B}^*_{n,m}}(z))| = 0. \quad (5.16)$$

Proof. By (4.5) and Cauchy-Schwarz’s inequality, it follows that

$$|\mathbb{E}(S_{\mathcal{B}_{n,m}}(z)) - \mathbb{E}(S_{\mathcal{B}^*_{n,m}}(z))| \leq \sqrt{2} \frac{1}{\nu^2} \left\| \frac{1}{N} \text{Tr}(\mathcal{B}_{n,m} + \mathcal{B}^*_{n,m}) \right\|_1^{1/2} \left\| \frac{1}{N} \text{Tr}(\bar{X}_{n,m} - \bar{X}^*_{n,m})(\bar{X}_{n,m} - \bar{X}^*_{n,m})^T \right\|_1^{1/2} \quad (5.17)$$

Notice that $\|\bar{X}^*_{k,m}\|_2 = \|h_k(B^*_{i,\ell})\|_2 = \|h_k(B_{i,\ell})\|_2 = \|X_{k,m}\|_2 < 2\|X_0\|_2$, where the second equality follows from the fact that $B^*_{i,\ell}$ is distributed as $B_{i,\ell}$ whereas the last inequality follows from (5.3). Thus, we get from the definition of $\mathcal{B}^*_{n,m}$ and the fact that $pk_N \leq N,

$$\frac{1}{N} \mathbb{E} \left| \text{Tr}(\mathcal{B}^*_{n,m}) \right| = \frac{1}{N} \sum_{n} \sum_{k} \sum_{i=1}^k \|\bar{X}^*_{k,m}\|_2^2 \leq 4\|X_0\|_2^2. \quad (5.18)$$

Considering (5.17), (5.9) and (5.18), we infer that Proposition 5.2 follows once we prove that

$$\lim_{m \to +\infty} \limsup_{M \to +\infty} \limsup_{n \to +\infty} \frac{1}{N} \mathbb{E} \left| \text{Tr}(\bar{X}_{n,m} - \bar{X}^*_{n,m})(\bar{X}_{n,m} - \bar{X}^*_{n,m})^T \right| = 0. \quad (5.19)$$

By the construction of $\bar{X}_{n,m}$ and $\bar{X}^*_{n,m}$, we write

$$\frac{1}{N} \mathbb{E} \left| \text{Tr}(\bar{X}_{n,m} - \bar{X}^*_{n,m})(\bar{X}_{n,m} - \bar{X}^*_{n,m})^T \right| = \frac{1}{N} \sum_{n} \sum_{k} \sum_{i} \sum_{k=1}^k \|X_{k,m} - X^*_{k,m}\|_2^2. \quad (5.20)$$

Now, let L be a fixed positive real number strictly less than M and not depending on (n,m,M). To control the term $\|X_{k,m} - X^*_{k,m}\|_2^2$, we write for $k \in I'_t$,

$$\|X_{k,m} - X^*_{k,m}\|_2^2 = \|(h_k(B_{i,\ell}) - h_k(B^*_{i,\ell}))1_{B_{i,\ell} \neq B^*_{i,\ell}}\|_2^2 \leq 4\|h_k(B_{i,\ell})1_{B_{i,\ell} \neq B^*_{i,\ell}}\|_2^2 = 4\|X_{k,m}1_{B_{i,\ell} \neq B^*_{i,\ell}}\|_2^2 \leq 12\|X_{k,m} - \mathbb{E}(X_k|B_{i,\ell})\|_2^2 + 12\|\mathbb{E}(X_k|B_{i,\ell}) - \mathbb{E}(\varphi_L(X_k)|B_{i,\ell})\|_2^2 + 12\|\mathbb{E}(\varphi_L(X_k)|B_{i,\ell})1_{B_{i,\ell} \neq B^*_{i,\ell}}\|_2^2.$$

Since $P(B_{i,\ell} \neq B^*_{i,\ell}) \leq \beta_m$ and $\varphi_L(X_k)$ is bounded by L, we get

$$\|\mathbb{E}(\varphi_L(X_k)|B_{i,\ell})1_{B_{i,\ell} \neq B^*_{i,\ell}}\|_2^2 \leq L^2 \beta_m.$$

Moreover, it follows from the fact that X_k is centered and (5.11) that

$$\|X_{k,m} - \mathbb{E}(X_k|B_{i,\ell})\|_2^2 \leq 4\|\tilde{X}_{k,m} - \mathbb{E}(X_k|B_{i,\ell})\|_2^2 \leq 4\|(|X_0| - M)_+\|_2^2$$

and

$$\|\mathbb{E}(X_k|B_{i,\ell}) - \mathbb{E}(\varphi_L(X_k)|B_{i,\ell})\|_2^2 \leq \|X_k - \varphi_L(X_k)\|_2^2 = \|(|X_0| - L)_+\|_2^2.$$

Hence gathering the above upper bounds we get

$$\|\tilde{X}_{k,m} - \bar{X}^*_{k,m}\|_2^2 \leq 48\|(|X_0| - M)_+\|_2^2 + 12\|(|X_0| - L)_+\|_2^2 + 12L^2 \beta_m. \quad (5.21)$$

As $pk_N \leq N$, the right-hand-side of (5.20) converges to zero by letting first M, then m and finally L tend to infinity. Therefore, (5.19) and thus the proposition follow.
5.3 Approximation with a Gaussian matrix

In order to complete the proof of the theorem, it suffices, in view of (5.7) and (5.16), to prove the following convergence: for any \(z \in \mathbb{C}^+ \),

\[
\lim_{m \to +\infty} \limsup_{n \to +\infty} \left| \mathbb{E}(S_{B_{n,m}}(z)) - \mathbb{E}(S_{G_n}(z)) \right| = 0. \tag{5.22}
\]

With this aim, we shall first consider a sequence \((Z_{k,m})_{k \in \mathbb{Z}}\) such that for any \(k, \ell \in \{1, \ldots, N\} \),

\[
\text{Cov}(Z_{k,m}, Z_{\ell,m}) = \text{Cov}(\bar{X}_{k,m}, \bar{X}_{\ell,m}) \tag{5.23}
\]

and let \((Z_{k,m}^{(i)})_k, i = 1, \ldots, n,\) be \(n \) independent copies of \((Z_{k,m})_k\). We then define the \(N \times n \) matrix \(Z_{n,m} = ((Z_{n,m})_{a,v}) = (Z_{a,m}^{(i)}) \) and finally set

\[
G_{n,m} = \frac{1}{n} Z_{n,m} Z_{n,m}^T. \tag{5.24}
\]

Now, we shall construct a matrix \(\tilde{Z}_{n,m} \) having the same block structure as the matrix \(\bar{X}_{n,m}^* \). With this aim, we let for \(\ell = 1, \ldots, k_N, \)

\[
I_\ell = \left\{ (\ell - 1)(p + 3m) + 1, \ldots, (\ell - 1)(p + 3m) + p \right\}
\]

and let \(\tilde{Z}_{k,m}^{(i)} \) be defined for any \(1 \leq i \leq n \) and \(1 \leq k \leq N \) by

\[
\tilde{Z}_{k,m}^{(i)} = \begin{cases} Z_{k,m}^{(i)} & \text{if } k \in I_\ell \text{ for some } \ell \in \{1, \ldots, k_N\} \\ 0 & \text{otherwise} \end{cases}.
\]

We define now the \(N \times n \) matrix \(\tilde{Z}_{n,m} = ((\tilde{Z}_{n,m})_{a,v}) = (\tilde{Z}_{a,m}^{(i)}) \) and we note that \(\tilde{Z}_{n,m} \), as \(\bar{X}_{n,m}^* \), consists of independent blocks of dimension \(p \) separated by null blocks whose dimension is at least \(3m \). We finally set

\[
\tilde{G}_{n,m} = \frac{1}{n} \tilde{Z}_{n,m} \tilde{Z}_{n,m}^T. \tag{5.25}
\]

Provided that \(\lim_{n \to +\infty} n/N = c \in (0, \infty) \), we have by Proposition 4.2 in [3] that for any \(z \in \mathbb{C}^+ \),

\[
\lim_{m \to +\infty} \limsup_{n \to +\infty} \left| \mathbb{E}(S_{G_{n,m}}(z)) - \mathbb{E}(S_{\tilde{G}_{n,m}}(z)) \right| = 0.
\]

In order to prove (5.22), we shall prove for any \(z \in \mathbb{C}^+ \),

\[
\lim_{n \to +\infty} \left| \mathbb{E}(S_{B_{n,m}}^*(z)) - \mathbb{E}(S_{\tilde{G}_{n,m}}(z)) \right| = 0
\]

and then

\[
\lim_{m \to +\infty} \limsup_{M \to +\infty} \limsup_{n \to +\infty} \left| \mathbb{E}(S_{G_n}(z)) - \mathbb{E}(S_{G_{n,m}}(z)) \right| = 0.
\]

The technique followed to prove the first convergence is based on Lindeberg’s method by blocks, whereas, for the second, it is based on the Gaussian interpolation technique.

Proposition 5.3 Provided that \(N/n \to c \in (0, \infty) \), then for any \(z = x + iy \in \mathbb{C}^+ \),

\[
\lim_{n \to +\infty} \left| \mathbb{E}(S_{B_{n,m}}^*(z)) - \mathbb{E}(S_{G_{n,m}}(z)) \right| = 0. \tag{5.26}
\]
We don’t give a full proof of this proposition because the computation involved has been almost exactly done in the proof of Proposition 4.3 of [3]. Indeed as $\mathcal{X}_{n,m}$, the matrix \mathcal{X}_n considered in [3] has independent blocks separated by blocks of zero entries. The main difference is that in our case even the Gaussian blocks are mutually independent and thus the terms of first and second order in the Taylor expansion vanish simplifying the proof even more. Therefore a careful analysis of the proof of Proposition 4.3 in [3] gives for any $z = x + iy \in \mathbb{C}_+$,

$$|\mathbb{E}(S^*_G_{n,m}(z)) - \mathbb{E}(S^*_G_{n,m}(z))| \leq \frac{Cp^2(1 + M^3)N^{1/2}}{y^3(1 + y)n}$$

which converges to 0 as n tends to infinity since $\lim_{n \to \infty} N/n = c \in (0, \infty)$.

To end the proof of Theorem 2.2, it remains to prove the following convergence.

Proposition 5.4 Provided that $\lim_{n \to \infty} N/n = c \in (0, \infty)$ and $\lim_{n \to \infty} \beta_n = 0$ then for any $z \in \mathbb{C}_+$,

$$\lim_{m \to \infty} \limsup_{M \to \infty} \limsup_{n \to \infty} |\mathbb{E}(S^*_G(z)) - \mathbb{E}(S^*_G_{n,m}(z))| = 0.$$

Proof. Let $n' = N + n$ and $G_{n'}$ the symmetric matrix of order n defined by

$$G_{n'} = \frac{1}{\sqrt{n}} \begin{pmatrix} 0 & Z_n^T \\ Z_n & 0 \end{pmatrix}.$$

It is well known that for any $z \in \mathbb{C}_+$,

$$S_{G_n}(z) = z^{-1/2} \frac{n}{2N} S_{G_{n'}}(z^{1/2}) + \frac{n - N}{2N z}$$

(See, for instance, page 549 in Rashidi Far et al [15] for arguments leading to the relation above). Since the same relation also holds for the symmetric matrix $G_{n',m}$ associated with $G_{n,m}$ and since $n'/N \to 1 + c^{-1}$, it is equivalent to prove for any $z \in \mathbb{C}_+$,

$$\lim_{m \to \infty} \limsup_{M \to \infty} \limsup_{n \to \infty} |\mathbb{E}(S^*_G(z)) - \mathbb{E}(S^*_G_{n',m}(z))| = 0.$$

This can be proved in the same way as the convergence (32) in [4]. Indeed, noting that $(G_{n'})_{k,\ell} = n^{-1/2} Z_{k-n}^{(\ell)} 1_{k \leq n}$ and $(G_{n',m})_{k,\ell} = n^{-1/2} Z_{k-n,m}^{(\ell)} 1_{k \leq n}$ if $1 \leq \ell \leq k \leq n'$ and keeping in mind the independence structure between the columns, we apply Lemma 16 in [4] and we get for any $z \in \mathbb{C}_+$,

$$\mathbb{E}(S^*_G(z)) - \mathbb{E}(S^*_G_{n',m}(z))$$

$$= \frac{n'}{2n} \sum_{j=1}^n \sum_{k,\ell = n+1}^{n+N} \int_0^1 \left(\mathbb{E}(Z_{k-n} Z_{\ell-n}) - \mathbb{E}(Z_{k-n,m} Z_{\ell-n,m}) \right) \mathbb{E}\left(\frac{\partial^2}{\partial x_{k,j} \partial x_{\ell,j}} f(g(t)) \right) dt$$

$$= \frac{N + n}{2n} \sum_{j=1}^n \sum_{k,\ell = n+1}^{n+N} \int_0^1 \left(\mathbb{E}(Z_k Z_{\ell}) - \mathbb{E}(Z_{k,m} Z_{\ell,m}) \right) \mathbb{E}\left(\frac{\partial^2}{\partial x_{k+n,j} \partial x_{\ell+n,j}} f(g(t)) \right) dt$$

where, for $t \in [0, 1]$, $g(t) = \sqrt{N + n} (\sqrt{t} (G_n)_{k,\ell} + \sqrt{1 - t} (G_{n',m})_{k,\ell}) 1_{1 \leq k \leq n}$ and f is the function that allows us to write the Stieltjes transform of a symmetric matrix in terms of its entries (for a precise definition, see (49) in [4]). Then, by using (2.5) and (5.23), we write the following decomposition

$$\mathbb{E}(Z_k Z_{\ell}) - \mathbb{E}(Z_{k,m} Z_{\ell,m}) = \mathbb{E}(X_k X_{\ell}) - \mathbb{E}(X^*_k X^*_\ell)$$

$$= \mathbb{E}(X_k (X_{\ell} - X^*_\ell)) + \mathbb{E}(X^*_\ell (X_k - X^*_k))$$

(5.28)
We shall decompose the left hand side of (5.27) into two sums according to the decomposition (5.28) and treat them separately. By Lemma 13 in [13], we get for any two sequences \((a_k)_k\) and \((b_k)_k\) of real numbers

\[
\sum_{j=1}^{n} \left| \sum_{k,t=1}^{N} a_k b_t \frac{\partial^2}{\partial x_{k+n,j} \partial x_{t+n,j}} f(g(t)) \right| \leq \frac{C}{N + n} \left(\sum_{k=1}^{N} a_k^2 \sum_{t=1}^{N} b_t^2 \right)^{1/2}, \tag{5.29}
\]

where \(C\) is a universal constant depending only on the imaginary part of \(z\) and might change from a line to another. Applying (5.29) with \(a_k = X_k\) and \(b_t = X_t - \bar{X}_{\ell,m}\) and another time with \(a_k = X_k - \bar{X}_{k,m}\) and \(b_t = \bar{X}_{\ell,m}\), we get for any \(z \in \mathbb{C}^+\),

\[
\left| \mathbb{E}(S_{G_n}(z)) - \mathbb{E}(S_{G_{n,m}}(z)) \right|^2 \leq \frac{C}{n^2} \sum_{k=1}^{N} (\|X_k\|^2 + \|\bar{X}_{k,m}\|^2) \sum_{\ell=1}^{N} \|X_\ell - \bar{X}_{\ell,m}\|^2. \tag{5.30}
\]

In view of (5.10), (5.11), (5.12) and (5.21), we get

\[
\|X_\ell - \bar{X}_{\ell,m}\|^2 \leq 2\|X_\ell - \bar{X}_{\ell,m}\|^2 + 2\|\bar{X}_{\ell,m} - \bar{X}_{\ell,m}\|^2
\leq 16\|X_0 - X_{0,m}\|^2 + 112\|(|X_0| - M)_+\|^2 + 24\|(|X_0| - L)_+\|^2 + 24L^2\beta_m,
\]

where \(L\) is a fixed positive real number strictly less than \(M\) and not depending on \((n,m,M)\). Taking into account the stationarity of \((X_k)_k\) and (5.3), we then infer that

\[
\left| \mathbb{E}(S_{G_n}(z)) - \mathbb{E}(S_{G_{n,m}}(z)) \right|^2 \leq \frac{CN^2}{n^2} \left(\|X_0 - X_{0,m}\|^2 + \|(|X_0| - M)_+\|^2 + \|(|X_0| - L)_+\|^2 + L^2\beta_m \right),
\]

which converges to zero by letting first \(n\), then \(M\) followed by \(m\) and finally \(L\) tend to infinity. This ends the proof of the proposition.

\[\square\]

Acknowledgments

I would like to thank the referee for carefully reading the manuscript and my thesis advisor Florence Merlevède who was generous with her time, knowledge and assistance. I would also like to thank my co-advisor Emmanuel Rio for valuable discussions.

References

