Partial Differential Equations

High frequency periodic solutions of semilinear equations

Geneviève Allaina, Anne Beaulieub

a Laboratoire d’analyse et de mathématiques appliquées, Université Paris-Est, UMR CNRS 8050, Faculté de sciences et technologie, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
b Laboratoire d’analyse et de mathématiques appliquées, Université Paris-Est, UMR CNRS 8050, 5, boulevard Descartes, 77454 Marne-la-Vallée cedex 2, France

Received 18 March 2007; accepted after revision 18 July 2007
Available online 20 September 2007
Presented by Haim Brezis

Abstract

We are interested with positive solutions of
\[-\varepsilon^2 \Delta u + f(u) = 0\] in
\(S^1 \times \mathbb{R}\), i.e. periodic solutions in the first coordinate \(x_1\). The model function for \(f\) is \(f(u) = u - u^p\), \(p > 1\). We prove that for \(\varepsilon\) large enough, any positive solution is a function of the second coordinate only.

Résumé

Solutions périodiques de haute fréquence d’équations semi-linéaires. On s’intéresse aux solutions positives de
\[-\varepsilon^2 \Delta u + f(u) = 0\] dans
\(S^1 \times \mathbb{R}\), c’est-à-dire aux solutions périodiques en \(x_1\), la première coordonnée. Le cas modèle est \(f(u) = u - u^p\), \(p > 1\). Nous prouvons que, pour \(\varepsilon\) suffisamment grand, toute solution positive est une fonction de \(x_2\) seulement.

I. Introduction

Let \(N \geq 2\). Under some conditions on \(f\), following Kwong and Zhang, [9], there exists a ground-state solution \(w_0\), that is a radial positive solution, of

\[-\Delta u + f(u) = 0\] in \(\mathbb{R}^{N-1}\).

(1)

Dancer, [5], studied the bifurcation of solutions, which are periodic in one variable, of

\[-\varepsilon^2 \Delta u + f(u) = 0\] in
\(S^1 \times \mathbb{R}^{N-1}\)

(2)

around \(w_x(x_1, x’) = w_0(\frac{x’}{\varepsilon})\), which is seen as a bounded solution in \(\mathbb{R}^N\), depending only on \(N - 1\) variables. There exists a sequence \((\varepsilon_j)\) of positive parameters, with \(\varepsilon_j = \varepsilon_0/(j + 1)\) for \(j \in \mathbb{N}\), such that there is a curve of positive solutions of (2) in \(L^\infty(\mathbb{R}^N)\) which are \(2\pi\)-periodic in \(x_1\), and decay to zero, uniformly in \(x_1\), as \(|x’| \to \infty\) and which...
bifurcate from \(w_{\varepsilon} \). We could ask whether \(w_{\varepsilon} \) is the only positive bounded periodic solution of (2) for \(\varepsilon > \varepsilon_0 \). In all what follows we suppose that \(N = 2 \) and we give a partial answer to this question in this case.

The model function for \(f \) is \(f(u) = u - u^p \), \(p > 1 \), but we give more general assumptions for a continuous function \(f \):

There exists \(s_0 > 0 \) such that \(f \) is non-decreasing in \([0, s_0]\). \(f(0) = 0 \) and \(f'(0) \) exists.

There exists \(p > 1 \) and \(K > 0 \) such that for any \(u > 0 \), \(-Ku^p \leq f(u) - f'(0)u < 0 \).

Theorem 1.1. Let \(f \) be a \(C^1 \) function in \(\mathbb{R}^+ \), that satisfies the hypotheses (3), (4) and (5), such that \(f' \) is decreasing in \(\mathbb{R}^+ \), \(f \) has a maximum for some \(c > 0 \) and \(f'' \) exists and is continuous, except in isolated points of \(\mathbb{R}^+ \). Then there exists \(\varepsilon > 0 \) such that for \(\varepsilon > \varepsilon \) any positive solution of (2) that tends to 0 as \(|x_2| \) tends to infinity, uniformly in \(x_1 \in S^1 \), can only be a function of the variable \(x_2 \).

Therefore, when \(f(u) = u - u^p \), \(p > 1 \), for \(\varepsilon > \varepsilon \), the solutions are the null solution and the functions \(w_0(\frac{\varepsilon^2}{\varepsilon}) \), and the functions obtained by translation from these. Since the conjecture of De Giorgi, (see [1]), several authors ([6,1,3], ...) have proved that the solution of some other semilinear elliptic equations on \(\mathbb{R}^N \) depends only on one variable.

2. Some properties of solutions

Theorem 2.1. Let \(f \) be a function that verifies (3) and (4). Let \((x_1, x_2) \mapsto u(x_1, x_2) \) be a positive solution of (2) that tends to 0 as \(x_2 \) tends to infinity, uniformly in \(x_1 \in S^1 \). Then there exists \(t_0 \in \mathbb{R} \) such that \(u(x_1, t_0 - x_2) = u(x_1, t_0 + x_2) \) for all \((x_1, x_2) \in S^1 \times \mathbb{R} \) and \(u \) decreases with respect to \(x_2 \) for \(x_2 \geq t_0 \).

The proof of this theorem is similar to [2]. It uses the moving plane method like [7,4].

Theorem 2.2. Let \(f \) be a function that verifies (3), (4) and (5). Then for all \(\varepsilon > 0 \), there exists \(C > 0 \), depending only on \(\varepsilon \), \(f'(0) \) and \(p \), and decreasing with respect \(\varepsilon \), such that if \(u \) is any positive solution of (2) that satisfies the hypotheses of Theorem 1.1 and that is even in \(x_2 \), we have

\[
\sup_{S^1 \times \mathbb{R}^+} u \leq C \left(\inf_{S^1 \times \{0\}} u + \frac{K}{\varepsilon^2} \inf_{S^1 \times \{0\}} u^p \right),
\]

Proof. The claim follows from the Harnack inequalities. First, we apply Theorem 8.17 of [8] with \(Lu = \Delta u \) and the equation \(Lu = \frac{1}{\varepsilon^2} f(u) \) and \(R = \pi \). We get for all \(n > 1 \) and all \(q > 2 \) a constant \(C \) that depends on \(n \) and \(q \), such that for all positive solution \(u \) and all \(\varepsilon > 0 \) we have

\[
\sup_{B_{2\varepsilon}(0)} u \leq C \left(R^{-\frac{2}{n}} \|u\|_{L^p(B_{2\varepsilon}(0))} + \frac{1}{\varepsilon^2} R^{-\frac{4}{q}} \left(\frac{1}{B_{2\varepsilon}(0)} \int (f'(0)u + Ku^p)^{\frac{q}{2}} \right)^{\frac{2}{q}} \right).
\]

that gives

\[
\sup_{B_{\varepsilon}(0)} u \leq C \left(R^{-\frac{2}{n}} \|u\|_{L^p(B_{\varepsilon}(0))} + \frac{1}{\varepsilon^2} R^{-\frac{4}{q}} \left(\|u\|_{L^q(B_{\varepsilon}(0))}^q + K \|u\|_{L^p(B_{\varepsilon}(0))}^p \right) \right)
\]

where \(C \) depends only on \(q \) and \(n \). Now we apply Theorem 8.18 of [8] for \(Lu = \varepsilon^2 \Delta u - f'(0)u \), the equation \(Lu \leq 0 \) and \(R = \pi \). We get a constant \(C > 0 \), that depends on \(n \) and on \(\frac{K}{\varepsilon^2} \) such that for all non-negative \(u \) satisfying \(Lu \leq 0 \) we have

\[
R^{-\frac{2}{n}} \|u\|_{L^p(B_{\varepsilon}(0))} \leq C \inf_{B_{\varepsilon}(0)} u.
\]
But the constant C is a decreasing function of ε. Indeed, if $\varepsilon_1 < \varepsilon_2$ and if $\varepsilon_2^2 \Delta u - f'(0) u \leq 0$, then $\varepsilon_1^2 \Delta u - f'(0) u \leq 0$. So, if $C(\varepsilon_1)$ and $C(\varepsilon_2)$ are the best constants in (9), respectively for ε_1 and ε_2, we have $C(\varepsilon_2) \leq C(\varepsilon_1)$. On the other hand we have $\sup_{B_R(0)} u = \sup_{S^1 \times \mathbb{R}^+} u$ and $\inf_{B_R(0)} u \leq \inf_{S^1 \times \mathbb{R}^+} u$. Combining (8) and (9), we get (6).

3. Proof of Theorem 1.1

We may suppose that u is even in x_2 and consequently that $\frac{\partial u}{\partial x_2}(x_1, 0) = 0$ for all $x_1 \in S^1$. Let us define $\Psi(x_2) = \frac{1}{2\pi} \int_0^{2\pi} u(x_1, x_2) \, dx_1$. Integrating (2) on $[0, 2\pi]$ we obtain

$$-\varepsilon^2 \Psi''(x_2) + \frac{1}{2\pi} \int_0^{2\pi} f(u) \, dx_1 = 0.$$

The hypotheses on f give $-\varepsilon^2 \Psi''(x_2) \geq -f(\Psi(x_2))$.

By the decaying property of u in x_2, we have that $\Psi'(x_2) < 0$. Multiplying by Ψ', integrating on $[0, +\infty[$ and using the Neumann condition on u we get

$$F(\Psi(0)) \geq 0,$$

where $F(u) = \int_0^u f(t) \, dt$. It follows from the assumptions on f that F tends to $-\infty$ when u tends to $+\infty$. Let C_* be such that $F(u)$ is non-positive for $u > C_*$. We have

$$\Psi(0) \leq C_*,$$

that leads to $\inf_{x_1 \in S^1} u(x_1, 0) \leq C_*$ and then, thanks to (6), for $\varepsilon \geq \varepsilon_1$, where $\varepsilon_1 > 0$ is given, we have

$$\sup_{S^1 \times \mathbb{R}^+} u \leq C,$$

where C depends on ε_1 and is valid for any solution u of (2). Now we multiply (2) by $\frac{\partial u}{\partial x_2}$ and we integrate on $S^1 \times \mathbb{R}^+$. We obtain

$$\frac{\varepsilon^2}{2} \int_0^{2\pi} \left(\frac{\partial u}{\partial x_1}(x_1, 0) \right)^2 \, dx_1 + \int_0^{2\pi} F(u(x_1, 0)) \, dx_1 = 0.$$ (13)

Using (10) we get

$$\frac{\varepsilon^2}{2} \int_0^{2\pi} \left(\frac{\partial u}{\partial x_1}(x_1, 0) \right)^2 \, dx_1 \leq \int_0^{2\pi} \left(-F(u(x_1, 0)) + F(\Psi(0)) \right) \, dx_1,$$

that leads to

$$\frac{\varepsilon^2}{2} \int_0^{2\pi} \left(\frac{\partial u}{\partial x_1}(x_1, 0) \right)^2 \, dx_1 \leq \int_0^{2\pi} \left(F(u(x_1, 0)) - F(\Psi(0)) - (u(x_1, 0) - \Psi(0)) f(\Psi(0)) \right) \, dx_1.$$ (14)

However, by (11) and (12), given $\varepsilon_1 > 0$, there exists $M > 0$ such that $|f'(v)| \leq M$ for all v between $\Psi(0)$ and $u(x_1, 0)$, $x_1 \in S^1$. Thus we have, for all $x_1 \in S^1$ and for all $\varepsilon > \varepsilon_1$,

$$\left| F(u(x_1, 0)) - F(\Psi(0)) - (u(x_1, 0) - \Psi(0)) f(\Psi(0)) \right| \leq M \left| u(x_1, 0) - \Psi(0) \right|^2.$$ (15)

On the other hand the Poincaré inequality gives

$$\int_0^{2\pi} \left(u(x_1, 0) - \Psi(0) \right)^2 \, dx_1 \leq 4\pi^2 \int_0^{2\pi} \left(\frac{\partial u}{\partial x_1} \right)^2 \, dx_1.$$ (16)
We deduce from (14)–(16) that there exists $C > 0$ such that for all $\varepsilon > \varepsilon_1$,
\[
\varepsilon^2 \frac{2}{2} \pi \int_0^{2\pi} (u(x_1, 0) - \Psi(0))^2 \, dx_1 \leq C \int_0^{2\pi} (u(x_1, 0) - \Psi(0))^2 \, dx_1.
\]
This inequality gives that there exists $\bar{\varepsilon} > 0$ such that for $\varepsilon > \bar{\varepsilon}$ any solution of (2) verifies $\frac{\partial u}{\partial x_1}(x_1, 0) = 0$, for all $x_1 \in [0, 2\pi]$. Let us prove that such a solution verifies in fact $\frac{\partial u}{\partial x_1}(x_1, 0) = 0$, for all $x_1 \in [0, 2\pi]$ and for all $x_2 \in [0, +\infty[$. As f is twice differentiable in $[0, +\infty[$, except at isolated points, we may argue as follows. By derivation of (2) we get
\[
-\varepsilon^2 \Delta \frac{\partial u}{\partial x_1} + f'(u) \frac{\partial u}{\partial x_1} = 0. \tag{17}
\]
Then we multiply this equation by $\frac{\partial^2 u}{\partial x_1 \partial x_2}$ and we integrate on $S^1 \times \mathbb{R}^+$. We obtain
\[
\int_0^{+\infty} \int_0^{2\pi} f''(u) \left(\frac{\partial u}{\partial x_2} \right)^2 \, dx_1 \, dx_2 = 0.
\]
However, f is concave and u decreases with respect to x_2, so we have $\frac{\partial u}{\partial x_1} = 0$ in $S^1 \times \mathbb{R}^+$.

Remark 1. For $N > 2$, the positive solutions of (2) are radially symmetric and decreasing in $r = |(x_2, \ldots, x_N)|$. But our above proof does not work for x_2 replaced by r. In this case we are unable to prove (10) because the equation for ψ is not the same one.

Acknowledgement

We thank Y. Ge for helpful discussions about this work.

References