The shallow water magnetohydrodynamic system involves several families of physically relevant steady states. In this paper we design a well-balanced numerical scheme for the one-dimensional shallow water magnetohydrodynamic system with topography, that resolves exactly a large range of steady states. Two variants are proposed with slightly different families of preserved steady states. They are obtained by a generalized hydrostatic reconstruction algorithm involving the magnetic field and with a cutoff parameter to remove singularities. The solver is positive in height and semi-discrete entropy satisfying, which ensures the robustness of the method.

Return to personal page