Nous rappelons tout d'abord l'approche maintenant classique de renormalisation pour établir l'unicité des solutions faibles des équations de transport linéaires, en mentionnant les résultats récents qui s'y rattachent. Ensuite, nous montrons comment l'approche alternative introduite par Crippa et DeLellis estimant directement le flot lagrangien permet d'obtenir des résultats nouveaux. Nous établissons l'existence et l'unicité du flot associé à une équation de transport dont le coefficient a un gradient donné par l'intégrale singulière d'une fonction intégrable. L'application au système d'Euler bidimensionnel des fluides incompressibles et au système de Vlasov-Poisson permet d'obtenir des résultats nouveaux de convergence forte pour des suites de solutions.

Return to personal page