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Abstract. We introduce in this paper a vector-valued uncentered maximal

operator in the setting of one-dimensional Bessel-Kingman hypergoups and we
prove a maximal theorem for it.

1. Introduction

A hypergroup is a pair (K, ∗) where K is a locally compact space and ∗ is a
binary operation (usually called generalized convolution) which is defined on the
measure space on K and which satisfies certain properties. The reader is referred
to the monograph of W. Bloom and H. Heyer (see [5]) for a precise definition and
a thorough description of hypergroups.

An important class of hypergroups is the Chébli-Trimèche hypergroups, which
are one-dimensional hypergroups on R+ with a convolution structure related to the
second order differential operator

LA = − d2

dx2
− A′(x)

A(x)

d

dx
,

where A is a continuous function on R+, twice continuously differentiable on ]0; +∞[
and which satisfies the following properties (see [15, page 12])

(1) A(0) = 0 and for every x > 0, A(x) > 0,
(2) A is increasing and unbounded,

(3) A′(x)
A(x) = 2α+1

x +B(x) on a neighbourhood of 0, where α > − 1
2 and B is an

odd and smooth function on R,

(4) A′

A is a decreasing and smooth function on ]0; +∞[,

(5) ρ = 1
2 limx→+∞

(
A′(x)
A(x)

)
> 0 exists.

Harmonic analysis on these hypergroups has been recently developed by several
authors (see for instance [3, 4, 6, 7, 8, 9, 13]). In particular, a theory of scalar
maximal functions has been established (see [6, 9, 13]). The main aim of the paper
is to prove some vector-valued analogues which could be useful for a thorough study
of both singular integrals and Littlewood-Paley theory in this setting.

Therefore, we introduce a vector-valued uncentered maximal operator associated
with Bessel-Kingman hypergroups which correspond to the special case where the
function A is defined for every x ∈ R+ by A(x) = x2α+1 (with α > − 1

2 ), and we
prove a maximal theorem for it. We restrict ourselves to this case because Haar
measure satisfies doubling condition enjoyed by Euclidean spaces or homogeneous
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spaces; in other words, we do not consider a hypergroup of exponential growth (like
Jacobi hypergroup) for which a complete vector-valued maximal theorem seems to
be out of reach for the moment. To become more precise, we first define the scalar
uncentered maximal operator M by

Mf(x) = sup
ε>0, z∈I(x,ε)

1

A
(
]0, ε[

) ∫ ε

0

Tz|f |(y)A(y) dy, x ∈ R+,

where we denote by I(x, ε) the open interval ] max{0;x− ε}, x+ ε[, by A
(
]0, ε[

)
the

Haar measure of the interval ]0, ε[, with A the Haar measure on Bessel-Kingman
hypergroup and by Tx (for x ∈ R+) the generalized translation by x (see Section 2
for more details). We then define the vector-valued uncentered maximal operator
by

Mrf(·) =

(+∞∑
n=0

(
Mfn(·)

)r) 1
r

, 1 < r < +∞,

where f = (fn)n∈N is a sequence of measurable functions on R+. In order to state
the main result of the paper, let us introduce some notations.
For 1 < r < +∞, we use the following notation

|f(·)|r =

(+∞∑
n=0

|fn(·)|r
) 1
r

,

and we write |f(·)|r ∈ LpA (where we denote by LpA the space Lp(R+;A(x) dx)) if(∫
R+

(+∞∑
n=0

|fn(x)|r
) p
r

A(x) dx

) 1
p

< +∞.

We also use the notation ‖·‖A,p instead of ‖·‖LpA . With these notations in mind, we
can now state the theorem we will prove.

Theorem 1.1. Let f = (fn)n∈N be a sequence of measurable functions on R+ and
A be the function defined on R+ by A(x) = x2α+1, with α > − 1

2 . Let 1 < r < +∞.

(1) If |f(·)|r ∈ L1
A, then for every λ > 0 we have

A
(
Eλ
)
6
C

λ

∫
R+

|f(x)|rA(x) dx,

where Eλ =
{
x ∈ R+ : Mrf(x) > λ

}
and C = C(α, r) is a positive constant

independent of f and λ.
(2) If |f(·)|r ∈ LpA, with 1 < p < +∞, then Mrf ∈ LpA and

‖Mrf‖A,p 6 C‖f‖A,p,
where C = C(α, r, p) is a positive constant independent of f .

The proof for the classical vector-valued maximal operator (associated with the
Hardy-Littlewood maximal operator on Rd) is due to C. Fefferman and E.M. Stein
(see [11]). Their proof is mainly based on three tools: a Calderón-Zygmund decom-
position and a maximal theorem and a weighted inequality for the Hardy-Littlewood
maximal operator. However, we cannot apply this method in our setting because of
the generalized translation operator which prevents from using classical techniques
of real analysis. Thus, our aim is to construct a more convenient operatorM which
controls M in the sense that for every x ∈ R+ Mf(x) 6 CMf(x) (with C a posi-
tive constant independent of x and f) and to prove forM a maximal theorem and
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a decisive weighted inequality. Recently, similar techniques have been used in the
setting of Dunkl’s analysis (see [10]).

The paper is organized as follows. In the next section, we recall some definitions
and properties which are related to Bessel-Kingman hypergroups and which will be
relevant for the sequel. Section 3 is devoted to the proof of our main result.

Throughout this paper, C denotes a positive constant, which depends only on
fixed parameters, and whose value may vary from line to line.

2. Preliminaries

This section is concerned with the preliminaries and background. We consider
the Bessel-Kingman hypergroup (R+, ∗A) where the function A is given for x ∈ R+

by A(x) = x2α+1, with α > − 1
2 . The convolution structure is related to the second

order differential operator

L = LA = − d2

dx2
− 2α+ 1

x

d

dx
.

Let us clarify our statement. The solutions ϕλ, λ ∈ C, of the differential equation

(2.1) Lϕλ(x) = λ2ϕλ(x), ϕλ(0) = 1, ϕ′λ(0) = 0,

are multiplicative (and these solutions give all multiplicative functions on the hy-
pergroup) in the sense that ϕλ(x)ϕλ(y) =

∫
R+
ϕλ(z) d(εx ∗A εy)(z), where εt is the

unit point mass at t ∈ R+. Solutions of (2.1) are ϕλ(·) = jα(λ·), where we denote
by jα, for α > − 1

2 , the normalized Bessel function of the first kind and of order α,
that is

jα(x) = 2αΓ(α+ 1)
Jα(x)

xα
,

with Jα the usual Bessel function of the first kind and of order α given by

Jα(x) =
(x

2

)α +∞∑
n=0

(−1)nx2n

22nn!Γ(n+ α+ 1)
.

Then the well-known product formula for x > 0 and y > 0 (see [14, page 367] or
[2, page217])

jα(x)jα(y) =
Γ(α+ 1)

Γ
(
α+ 1

2

)
Γ
(
1
2

) ∫ π

0

jα

(√
x2 + y2 − 2xy cos θ

)
sin2α θ dθ

implies for x > 0 and y > 0 the following one

ϕλ(x)ϕλ(y) =

∫ +∞

0

ϕλ(z)Kα
x,y(z)A(z) dz,

with Kα
x,y the positive function given by

Kα
x,y(z) =

Γ(α+ 1)22α−3
((

(x+ y)2 − z2
)(
z2 − (x− y)2

))α− 1
2

Γ
(
α+ 1

2

)
Γ
(
1
2

)
(xyz)2α

χ[|x−y|,x+y](z),

where χX is the characteristic function of the set X. The convolution on the
measure space on R+ is then defined by d(εx ∗A εy)(z) = Kα

x,y(z)A(z) dz and we

have the following support property supp(εx∗Aεy) =
[
|x−y|, x+y

]
. It is well known

(see [15, especially Proposition 2.3, Corollary 2.4 and Theorem 4.5]) that (R+, ∗A)
is commutative with neutral element 0 and the identity mapping as the involution.
Haar measure A on (R+, ∗A) is absolutely continuous with respect to Lebesgue
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measure and can be chosen to have Lebesgue density A. We denote by A(]a, b[) the

Haar measure of the interval ]a, b[ for any 0 6 a < b, that is A(]a, b[) =
∫ b
a
A(x) dx.

The convolution of two functions f and g is defined by

f ∗A g(x) =

∫
R+

Txf(y)g(y)A(y) dy, x ∈ R+,

where Tx is the generalized (left) translation given by

Txf(y) =

∫
R+

f(z) d(εx ∗A εy)(z) =

∫
R+

f(z)Kα
x,y(z)A(z) dz, y ∈ R+.

The convolution is associative and commutative, and since Tx is for every x ∈ R+

a bounded operator on LpA (for 1 6 p 6 +∞), then the convolution satisfies the
usual Young’s inequalities (see in particular [1]). We conclude this section with a
sharp inequality which is due to W. Bloom and Z. Xu (see [6, Proposition 4.6 and
Lemma 5.1]).

Proposition 2.1. There exists a positive constant C such that for every x, y ∈ R+

and for every ε > 0 we have∣∣Tx(χ]0,ε[)(y)
∣∣ 6 C A

(
]0, ε[

)
A
(
I(x, ε)

) ,
where we denote by I(x, ε) the following set

I(x, ε) =
]
max{0;x− ε}, x+ ε

[
.

3. Proof of the main result

This section is devoted to the proof of Theorem 1.1. As we have already claimed,
we shall construct a more convenient operator M which controls M pointwise and
for which we can apply standard techniques. For the construction, the idea is to
use the inequality of Proposition 2.1 in order to bypass some difficulties related to
the translation operator. The following proposition gives us this new operator M.

Proposition 3.1. There exists a positive constant C such that for every locally
integrable (with respect to A) function f and every x ∈ R+ we have

Mf(x) 6 CMf(x),

where the operator M is given by

Mf(x) = sup
ε>0, z∈I(x,ε)

1

A
(
I(z, ε)

) ∫
I(z,ε)

|f(y)|A(y) dy.

Proof. Let ε > 0, x ∈ R+ and z ∈ I(x, ε). The commutativity of ∗A implies that∫ ε

0

Tz|f |(y)A(y) dy =

∫
R+

|f(y)|Tz(χ]0,ε[
)(y)A(y) dy.

Using the support property of the generalized translation, it follows at once that∫ ε

0

Tz|f |(y)A(y) dy =

∫
I(z,ε)

|f(y)|Tz(χ]0,ε[
)(y)A(y) dy.

According to Proposition 2.1, we get the existence of a positive constant C such
that ∫ ε

0

Tz|f |(y)A(y) dy 6 C
A
(
]0, ε[

)
A
(
I(z, ε)

) ∫
I(z,ε)

|f(y)|A(y) dy.
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Since this inequality is valid for every ε > 0 and z ∈ I(x, ε), we deduce that

Mf(x) 6 CMf(x),

which is precisely what we wanted to prove. �

As a trivial consequence of the above proposition, we have for 1 < r < +∞

Mrf(·) =

(+∞∑
n=0

(
Mfn(·)

)r) 1
r

6 C

(+∞∑
n=0

(
Mfn(·)

)r) 1
r

= CMrf(·).

Then, we are left with the task of establishing the following result in order to prove
Theorem 1.1.

Theorem 3.1. Let f = (fn)n∈N be a sequence of measurable functions on R+.
Let 1 < r < +∞.

(1) If |f(·)|r ∈ L1
A, then for every λ > 0 we have

A
(
Eλ
)
6
C

λ

∫
R+

|f(x)|rA(x) dx,

where Eλ =
{
x ∈ R+ :Mrf(x) > λ

}
and C = C(α, r) is a positive constant

independent of f and λ.
(2) If |f(·)|r ∈ LpA, with 1 < p < +∞, then Mrf ∈ LpA and

‖Mrf‖A,p 6 C‖f‖A,p,

where C = C(α, r, p) is a positive constant independent of f .

Following the proof given in [11], we claim that this theorem is proved if we
establish a maximal theorem and a weighted inequality for M. Indeed, the case
p = r is nothing more than a scalar case (that is we only use a maximal theorem);
the case p = 1 is based on a Calderón-Zygmund decomposition; the case 1 < p < r
is easily deduced from the two previous cases by the Marcinkiewicz interpolation
theorem; the case r < p < +∞ is based on a weighted inequality. Let us begin with
the following maximal theorem.

Theorem 3.2. Let f be a measurable function defined on R+.

(1) If f ∈ L1
A, then for every λ > 0 we have

A
(
Eλ
)
6
C

λ

∫
R+

|f(x)|A(x) dx,

where Eλ =
{
x ∈ R+ :Mf(x) > λ

}
and C = C(α, r) is a positive constant

independent of f and λ.
(2) If f ∈ LpA, with 1 < p 6 +∞, then Mf ∈ LpA and

‖Mf‖A,p 6 C‖f‖A,p,

where C = C(α, r, p) is a positive constant independent of f .

For the first inequality of the previous theorem, we need the following covering
lemma of Vitali type (the proof can be found in [12, page 9], see also [6, Lemma
4.21]).
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Lemma 3.1. Let E be a measurable (with respect to A) subset of R+. Suppose that
we have E ⊂ ∪j∈JIj with Ij = I(zj , rj) bounded for every j ∈ J (where zj ∈ R+

and rj > 0). Then, from this family, we can choose a sequence (which may be
finite) of disjoint sets I1, . . . , In, . . ., such that

A(E) 6 C
∑
n

A(In),

where C is a positive constant which depends only on α.

Remark 3.1. In the standard proof of this lemma (which uses the doubling property
of A), we notice that E ⊂

⋃
n I

5
n where for every integer k > 1, Ik(x, ε) = I(x, kε).

Thanks to this lemma, we can now turn to the proof of Theorem 3.2.

Proof. Let us begin with the first inequality.
Let f ∈ L1

A, λ > 0 and x ∈ E×λ = Eλ \ {0}. By definition, there exist εx > 0
and zx ∈ I(x, εx) such that

(3.1) λA
(
I(zx, εx)

)
<

∫
I(zx,εx)

|f(y)|A(y) dy.

Since we have x ∈ I(zx, εx) (since x ∈ ]0,+∞[ and zx ∈ I(x, εx)), we assert
that E×λ ⊂

⋃
x∈E×λ

I(zx, εx). Thanks to the previous lemma, we can then select

a disjoint collection of intervals denoted by I1 = I(z1, ε1), . . . , In = I(zn, εn), . . . ,
with each In satisfying (3.1) and such that A(Eλ) = A(E×λ ) 6 C

∑
nA(In), with C

a positive constant which depends only on α. It follows that

A(Eλ) 6
C

λ

∑
n

∫
In

|f(y)|A(y) dy 6
C

λ

∫
∪nIn

|f(y)|A(y) dy 6
C

λ
‖f‖A,1,

where we have used the inequality (3.1) in the first step, the disjoint property of
the intervals In in the second step and where we have enlarged the domain of the
integral in the last step. The first inequality of Theorem 3.2 is then proved. There
is nothing to do for the second one. Indeed, by the Marcinkiewicz interpolation
theorem (see [12]), it is a simple consequence of the trivial fact thatM is bounded
on L∞A together with the first inequality. The whole theorem is then proved. �

We now state a weighted inequality for the operator M.

Theorem 3.3. Let W be a positive and locally integrable (with respect to A) func-
tion defined on R+. For 1 < r < +∞, there exists a positive constant C which
depends only on α and r and such that for every f ∈ Lr(R+;MW (x)A(x) dx)∫

R+

(
Mf(y)

)r
W (y)A(y) dy 6 C

∫
R+

|f(y)|rMW (y)A(y) dy.

Proof. By the Marcinkiewicz interpolation theorem and since the operator M is
obviously bounded on L∞A , this theorem is a consequence of the the following in-
equality

(3.2) AW (Eλ) 6
C

λ

∫
R+

|f(y)|MW (y)A(y) dy, λ > 0,

where AW (X) =
∫
X
W (y)A(y) dy and C is a positive constant which depends only

on α. Thus, we now turn to the proof of (3.2).
Let E be any compact subset of E×λ . By a reprise of the argument given in the
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proof of Theorem 3.2 , we have the existence of a disjoint collection of intervals
denoted by I1 = I(z1, ε1), . . . , In = I(zn, εn), . . . , so that E×λ ⊂

⋃
n I

5
n (invoking

Remark 3.1), with each In satisfying

(3.3) λA(In) <

∫
In

|f(y)|A(y) dy.

Since E is a compact subset of E×λ , we can then select a finite and disjoint subcol-
lection (Ink)16k6m from the sequence (In)n such that E ⊂

⋃
16k6m I

5
nk
.

Let t be an element of Ink . Then, znk ∈ I(t, 5εnk) and we can write∫
I(znk ,5εnk )

W (y)A(y) dy 6 A
(
I(znk , 5εnk)

)
MW (t) 6 CA

(
I(znk , εnk)

)
MW (t),

where we have used the definition of the operatorM for the first inequality and the
doubling property of the measure A for the second one. We obtain by multiplying
both sides by |f(t)|A(t) and by integrating over Ink(∫

Ink

|f(t)|A(t) dt

)(∫
I(znk ,5εnk )

W (y)A(y) dy

)
6 CA

(
I(znk , εnk)

) ∫
Ink

|f(t)|MW (t)A(t) dt.

On account of (3.3), we are readily led to

(3.4)

(∫
I5nk

W (y)A(y) dy

)
6
C

λ

∫
Ink

|f(t)|MW (t)A(t) dt.

Since we have

AW (E) 6 AW
( ⋃

16k6m

I5nk

)
6

∑
16k6m

(∫
I5nk

W (y)A(y) dy

)
,

we can deduce from (3.4) that

AW (E) 6
C

λ

∑
16k6m

∫
Ink

|f(t)|MW (t)A(t) dt.

We obtain by using the disjoint property of (Ink)16k6m and then by enlarging the
domain of the integral

AW (E) 6
C

λ

∫
R+

|f(t)|MW (t)A(t) dt.

It follows at once that

AW
(
E×λ
)
6
C

λ

∫
R+

|f(t)|MW (t)A(t) dt,

from which we deduce the inequality (3.2). Then, the theorem is proved. �

Remark 3.2. Since we readily have Mf(x) 6 Mf(x) where M is the centered
maximal operator introduced in [6] by W. Bloom and Z. Xu and given by

Mf(x) = sup
ε>0

1

A
(
]0, ε[

) ∫ ε

0

Tx|f |(y)A(y) dy, x ∈ R+,
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it follows that Theorem 1.1 is also true if we replace Mr by the operator Mr given
by

Mrf(·) =

(+∞∑
n=0

(
Mfn(·)

)r) 1
r

, f = (fn)n∈N.
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la Vallée, 5 boulevard Descartes, Champs sur Marne, 77454 Marne la Vallée, Cédex 2,
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