Discrete time approximation of decoupled Forward-Backward SDE with jumps

Bruno BOUCHARD
LPMA
CNRS, UMR 7599
Université Paris 6
e-mail: bouchard@ccr.jussieu.fr
and CREST

Romuald ELIE
CEREMADE
CNRS, UMR 7534
Université Paris 9
e-mail: elie@ensae.fr
and CREST-ENSAE

This version : March 2007

Abstract

We study a discrete-time approximation for solutions of systems of decoupled forward-backward stochastic differential equations with jumps. Assuming that the coefficients are Lipschitz-continuous, we prove the convergence of the scheme when the number of time steps n goes to infinity. The rate of convergence is at least $n^{-1/2+\varepsilon}$, for any $\varepsilon > 0$. When the jump coefficient of the first variation process of the forward component satisfies a non-degeneracy condition which ensures its invertibility, we achieve the optimal convergence rate $n^{-1/2}$. The proof is based on a generalization of a remarkable result on the path-regularity of the solution of the backward equation derived by Zhang [25] in the no-jump case.

Key words : Discrete-time approximation, forward-backward SDE’s with jumps, Malliavin calculus.

MSC Classification (2000): 65C99, 60H07, 60J75.

1 Introduction

In this paper, we study a discrete time approximation scheme for the solution of a system of decoupled Forward-Backward Stochastic Differential Equations (FBSDE in short) with jumps of the form

\[
\begin{align*}
X_t &= X_0 + \int_0^t b(X_r)dr + \int_0^t \sigma(X_r)dW_r + \int_0^t \int E \beta(X_r-e,\bar{\mu}(de,dr))du_r e_r d\bar{\mu}(de,dr) \\
Y_t &= g(X_T) + \int_t^T h(\Theta_r)dr - \int_t^T Z_r \cdot dW_r - \int_t^T \int E U_r(e)\bar{\mu}(de,dr)
\end{align*}
\]

(1.1)

where $\Theta := (X, Y, Z, \Gamma)$ with $\Gamma := \int E \rho(e)U(e)\lambda(de)$. Here, W is a d-dimensional Brownian motion and $\bar{\mu}$ an independent compensated Poisson measure $\bar{\mu}(de,dr) = \mu(de,dr) - \lambda(de)dr$. Such equations naturally appear in hedging problems, see e.g. Eyraud-Loisel [13], or in stochastic control, see e.g. Tang and Li [23] and the
recent paper Becherer [3] for an application to exponential utility maximization in finance. Under standard Lipschitz assumptions on the coefficients b, σ, β, g and h, existence and uniqueness of the solution have been proved by Tang and Li [23], thus generalizing the seminal paper of Pardoux and Peng [20].

The main motivation for studying discrete time approximations of systems of the above form is that they provide an alternative to classical numerical schemes for a large class of (deterministic) PDE’s of the form

$$\mathcal{L}u(t,x) + h(t,x,u(t,x),\sigma(t,x)\nabla_x u(t,x), I[u](t,x)) = 0, \quad u(T,x) = g(x),$$

where

$$\mathcal{L}u(t,x) := \frac{\partial u}{\partial t}(t,x) + \nabla_x u(t,x)b(x) + \frac{1}{2} \sum_{i,j=1}^{d} (\sigma^i(x)) \partial_{x^i} \partial_{x^j} u(t,x) + \int_{E} \left\{ u(t,x + \beta(x,e)) - u(t,x) - \nabla_x u(t,x)\beta(x,e) \right\} \lambda(de),$$

$$I[u](t,x) := \int_{E} \left\{ u(t,x + \beta(x,e)) - u(t,x) \right\} \rho(e) \lambda(de).$$

Indeed, it is well known that, under mild assumptions on the coefficients, the component Y of the solution can be related to the (viscosity) solution u of (1.2) in the sense that $Y_t = u(t,X_t)$, see e.g. [1] or [9]. Thus solving (1.1) or (1.2) is essentially the same. In the so-called four-steps scheme, this relation allows to approximate the solution of (1.1) by first estimating numerically u, see e.g. [10]. Here, we follow the converse approach. Since classical numerical schemes for PDE’s generally do not perform well in high dimension, we want to estimate directly the solution of (1.1) so as to provide an approximation of u.

In the no-jump case, i.e. $\beta = 0$, the numerical approximation of (1.1) has already been studied in the literature, see e.g. Zhang [25], Bally and Pages [2], Bouchard and Touzi [7] or Gobet et al. [16]. In [7], the authors suggest the following implicit scheme. Given a regular grid $\pi = \{t_i = iT/n, \ i = 0, \ldots, n\}$, they approximate X by its Euler scheme X^π and (Y,Z) by the discrete-time process $(\hat{Y}_{t_i}^\pi, \hat{Z}_{t_i}^\pi)_{i \leq n}$ defined backward by

$$\begin{cases}
\hat{Z}_{t_i}^\pi &= \frac{1}{n} \mathbb{E} \left[\hat{Y}_{t_{i+1}}^\pi \Delta W_{i+1} \mid \mathcal{F}_{t_i} \right] \\
\hat{Y}_{t_i}^\pi &= \mathbb{E} \left[\hat{Y}_{t_{i+1}}^\pi \mid \mathcal{F}_{t_i} \right] + \frac{1}{n} \mathbb{E} \left[h(X_{t_{i+1}}^\pi, \hat{Y}_{t_{i+1}}^\pi, \hat{Z}_{t_{i+1}}^\pi) \right]
\end{cases}$$

where $\hat{Y}_{t_i}^\pi := g(X_{t_i}^\pi)$ and $\Delta W_{i+1} := W_{t_{i+1}} - W_{t_i}$. In the no-jump case, it turns out that the discretization error

$$\text{Err}_n(Y,Z) := \left\{ \max_{i < n} \sup_{t \in [t_i, t_{i+1}]} \mathbb{E} \left[|Y_t - \hat{Y}_{t_i}^\pi|^2 \right] + \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - \hat{Z}_{t_i}^\pi|^2 \right] dt \right\}^{\frac{1}{2}}$$

is intimately related to the quantity

$$\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - \hat{Z}_{t_i}^\pi|^2 \right] dt \quad \text{where} \quad \hat{Z}_{t_i} := n \mathbb{E} \left[\int_{t_i}^{t_{i+1}} Z_t dt \mid \mathcal{F}_{t_i} \right].$$
Under Lipschitz continuity conditions on the coefficients, Zhang [24] was able to prove that the latter is of order of n^{-1}. This remarkable result allows to derive the bound $\text{Err}_n(Y,Z) \leq C n^{-1/2}$. Observe that this rate of convergence can not be improved in general. Consider for example the case where X is equal to the Brownian motion W, g is the identity and $h = 0$. Then, $Y = W$ and $\bar{Y}_t^n = W_t$.

In this paper, we extend the approach of Bouchard and Touzi [7] and approximate the solution of (1.1) by the backward scheme

$\left\{ \begin{array}{l} Z_t^n = \mathbb{P} \mathbb{E} \left[Y_{t+1}^n | \mathcal{F}_{t+1} \right] , \quad \bar{Y}_t^n = \mathbb{P} \mathbb{E} \left[Y_{t+1}^n \int_E \rho(\epsilon) \tilde{\nu}(de, (t_i, t_{i+1})) | \mathcal{F}_{t_i} \right] \\ \bar{Y}_t^n = \mathbb{E} \left[Y_{t+1}^n | \mathcal{F}_{t+1} \right] + \frac{\varepsilon}{2} h \left(X_t^n, \bar{Y}_t^n, \bar{Z}_t^n, \bar{\Gamma}_t^n \right) \end{array} \right.$

where $\bar{Y}_t^n := g(X_t^n)$. By adapting the arguments of Gobet et al. [16], we first prove that our discretization error $\text{Err}_n(Y, Z, U)$ defined as

$$\max_{i < n} \sup_{t \in [t_i, t_{i+1}]} \mathbb{E} \left[|Y_t - \bar{Y}_t^n|^2 \right] + \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - \bar{Z}_t^n|^2 + |\Gamma_t - \bar{\Gamma}_t^n|^2 \right] dt$$

converges to 0 as the discretization step T/n tends to 0. We then provide upper bounds on

$$\max_{i < n} \sup_{t \in [t_i, t_{i+1}]} \mathbb{E} \left[|Y_t - \bar{Y}_t^n|^2 \right] + \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - \bar{Z}_t^n|^2 + |\Gamma_t - \bar{\Gamma}_t^n|^2 \right] dt ,$$

where $\bar{\Gamma}_t^n := (n/T) \mathbb{E} \left[\int_{t_i}^{t_{i+1}} \Gamma_t dt | \mathcal{F}_{t_i} \right]$. When the coefficients are Lipschitz continuous, we obtain

$$\max_{i < n} \sup_{t \in [t_i, t_{i+1}]} \mathbb{E} \left[|Y_t - \bar{Y}_t^n|^2 \right] + \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|\Gamma_t - \bar{\Gamma}_t^n|^2 \right] dt \leq C n^{-1}$$

and

$$\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - \bar{Z}_t^n|^2 \right] dt \leq C_\varepsilon n^{-1+\varepsilon} ,$$

for any $\varepsilon > 0$.

Under some additional conditions on the invertibility of $\nabla \beta + I_d$, see \mathbf{H}, we then prove that the previous inequality holds true for $\varepsilon = 0$. This extends to our framework the remarkable result derived by Zhang [25] in the no-jump case. It allows us to show that our discrete-time scheme achieves, under the standard Lipschitz conditions, a rate of convergence of at least $n^{-1/2+\varepsilon}$, for any $\varepsilon > 0$, and the optimal rate $n^{-1/2}$ under the additional assumption \mathbf{H}.

Observe that, in opposition to algorithms based on the approximation of the Brownian motion by discrete processes taking a finite number of possible values (see e.g. [17] and the references therein), our scheme does not provide a fully implementable numerical procedure since it involves the computation of a large number of conditional expectations. However, the implementation of the above mentioned schemes
in high dimension is questionable and, in our setting, this issue could be solved by approximating the conditional expectation operators numerically in an efficient way, see [2], [7], [16] and [11] for an adaptation to our setting of the technics suggested in [16].

The rest of the paper is organized as follows. In Section 2, we describe the approximation scheme and state our main convergence result. Section 3 contains some results on the Malliavin derivatives of Forward and Backward SDE’s. Applying these results in Section 4, we derive some regularity properties for the solution of the backward equation under additional smoothness assumptions on the coefficients. We finally use an approximation argument to conclude the proof of our main theorem.

Notations: Any element \(x \in \mathbb{R}^d \) will be identified to a column vector with \(i \)-th component \(x^i \) and Euclidian norm \(|x| \). For \(x_i \in \mathbb{R}^{d_i}, i \leq n \) and \(d_i \in \mathbb{N} \), we define \((x_1, \ldots, x_n)\) as the column vector associated to \((x^1_1, \ldots, x^{d_1}_1, \ldots, x^1_n, \ldots, x^{d_n}_n)\). The scalar product on \(\mathbb{R}^d \) is denoted by \(x \cdot y \). For a \((m \times d)\)-dimensional matrix \(M \), we note \(|M| := \text{sup}\{|Mx| : x \in \mathbb{R}^d, |x| = 1\}, M^* \) its transpose and we write \(M \in M^d \) if \(m = d \). Given \(p \in \mathbb{N} \) and a measured space \((A, \mathcal{A}, \mu_A)\), we denote by \(L^p(A, \mathcal{A}, \mu_A; \mathbb{R}^d) \), or simply \(L^p(A, \mathcal{A}) \) or \(L^p(A) \) if no confusion is possible, the set of \(p \)-integrable \(\mathbb{R}^d \)-valued measurable maps on \((A, \mathcal{A}, \mu_A)\). For \(p = \infty \), \(L^\infty(A, \mathcal{A}, \mu_A; \mathbb{R}^d) \) is the set of essentially bounded \(\mathbb{R}^d \)-valued measurable maps. The set of \(k \)-times differentiable maps with bounded derivatives up to order \(k \) is denoted by \(C^k_b \) and \(C^\infty_b := \cap_{k \geq 1} C^k_b \). For a map \(b : \mathbb{R}^d \rightarrow \mathbb{R}^k \), we denote by \(\nabla b \) is Jacobian matrix whenever it exists.

In the following, we shall use these notations without specifying the dimension when it is clearly given by the context.

2 Discrete time approximation of decoupled FBSDE with jumps

2.1 Decoupled forward backward SDE’s

As in [5], we shall work on a suitable product space \(\Omega := \Omega_W \times \Omega_\mu \) where \(\Omega_W \) is the set of continuous functions \(w \) from \([0, T]\) into \(\mathbb{R}^d \), and \(\Omega_\mu \) is the set of integer-valued measures on \([0, T] \times E\) with \(E := \mathbb{R}^m \) for some \(m \geq 1 \). For \(\omega = (w, \eta) \in \Omega \), we set \(W(w, \eta) = w \) and \(\mu(w, \eta) = \eta \) and define \(\mathbb{F}^W = (\mathcal{F}^W_t)_{t \leq T} \) (resp. \(\mathbb{F}^\mu = (\mathcal{F}^\mu_t)_{t \leq T} \)) as the smallest right-continuous filtration on \(\Omega_W \) (resp. \(\Omega_\mu \)) such that \(W \) (resp. \(\mu \)) is optional. We let \(\mathbb{P}_W \) be the Wiener measure on \((\Omega_W, \mathcal{F}^W_T)\) and \(\mathbb{P}_\mu \) be the measure on \((\Omega_\mu, \mathcal{F}^\mu_T)\) under which \(\mu \) is a Poisson measure with intensity \(\nu(dt, de) = \lambda(de)dt \), for some finite measure \(\lambda \) on \(E \), endowed with its Borel tribe \(\mathcal{E} \). We then define the probability measure \(\mathbb{P} := \mathbb{P}_W \otimes \mathbb{P}_\mu \) on \((\Omega, \mathcal{F}^W_T \otimes \mathcal{F}^\mu_T)\). With this construction, \(W \) and \(\mu \) are independent under \(\mathbb{P} \). Without loss of generality, we can assume that the natural filtration \(\mathbb{F} = (\mathcal{F}_t)_{t \leq T} \) induced by \((W, \mu)\) is complete. We denote by
Given $K > 0$, two K-Lipschitz continuous functions $b : \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma : \mathbb{R}^d \to \mathbb{M}^d$, and a measurable map $\beta : \mathbb{R}^d \times E \to \mathbb{R}^d$ such that

$$\sup_{e \in E} |\beta(0, e)| \leq K \quad \text{and} \quad \sup_{e \in E} |\beta(x, e) - \beta(x', e)| \leq K|x - x'| \quad \forall \ x, x' \in \mathbb{R}^d, \quad (2.1)$$

we define X as the solution on $[0, T]$ of

$$X_t = X_0 + \int_0^t b(X_r)dr + \int_0^t \sigma(X_r)dW_r + \int_0^t \int_E \beta(X_r-, e)\bar{\mu}(de, dr), \quad (2.2)$$

for some initial condition $X_0 \in \mathbb{R}^d$. The existence and uniqueness of such a solution is well known under the above assumptions, see the Appendix for standard estimates for solutions of such SDE.

Before introducing the backward SDE, we need to define some additional notations. Given $s \leq t$ and some real number $p \geq 2$, we denote by $S^p_{[s,t]}$ the set of real valued adapted càdlàg processes Y such that

$$\|Y\|_{S^p_{[s,t]}} := \mathbb{E} \left[\sup_{s \leq r \leq t} |Y_r|^p \right]^{\frac{1}{p}} < \infty,$$

$H^p_{[s,t]}$ is the set of progressively measurable \mathbb{R}^d-valued processes Z such that

$$\|Z\|_{H^p_{[s,t]}} := \mathbb{E} \left[\left(\int_s^t |Z_r|^2 dr \right)^{\frac{p}{2}} \right]^{\frac{1}{p}} < \infty,$$

$L^p_{\lambda,[s,t]}$ is the set of $\mathcal{P} \otimes \mathcal{E}$ measurable maps $U : \Omega \times [0, T] \times E \to \mathbb{R}$ such that

$$\|U\|_{L^p_{\lambda,[s,t]}} := \mathbb{E} \left[\int_s^t \int_E |U_s(e)|^p \lambda(de)ds \right]^{\frac{1}{p}} < \infty$$

with \mathcal{P} defined as the σ-algebra of \mathbb{F}-predictable subsets of $\Omega \times [0, T]$. The space

$$\mathcal{B}^p_{[s,t]} := S^p_{[s,t]} \times H^p_{[s,t]} \times L^p_{\lambda,[s,t]}$$

is endowed with the norm

$$\|(Y, Z, U)\|_{\mathcal{B}^p_{[s,t]}} := \left(\|Y\|_{S^p_{[s,t]}}^p + \|Z\|_{H^p_{[s,t]}}^p + \|U\|_{L^p_{\lambda,[s,t]}}^p \right)^{\frac{1}{p}}.$$

In the sequel, we shall omit the subscript $[s, t]$ in these notations when $(s, t) = (0, T)$. For ease of notations, we shall sometimes write that an \mathbb{R}^n-valued process is in $S^p_{[s,t]}$ or $L^p_{\lambda,[s,t]}$ meaning that each component is in the corresponding space. Similarly an element of \mathbb{M}^m is said to belong to $H^p_{[s,t]}$ if each column belongs to $H^p_{[s,t]}$. The norms are then naturally extended to such processes.
The aim of this paper is to study a discrete time approximation of the triplet \((Y, Z, U)\) solution on \([0, T]\) of the backward stochastic differential equation

\[
Y_t = g(X_T) + \int_t^T h(\Theta_r) \, dr - \int_t^T Z_r \cdot dW_r - \int_t^T \int_E U_r(e) \, \bar{\mu}(de, dr), \tag{2.3}
\]

where \(\Theta := (X, Y, Z, \Gamma)\) and \(\Gamma\) is defined by

\[
\Gamma := \int_E \rho(e) U(e) \lambda(de),
\]

for some measurable map \(\rho : E \to \mathbb{R}^m\) satisfying

\[
\sup_{e \in E} |\rho(e)| \leq K. \tag{2.4}
\]

By a solution, we mean a triplet \((Y, Z, U) \in B^2\) satisfying (2.3).

In order to ensure the existence and uniqueness of a solution to (2.3), we assume that the map \(g : \mathbb{R}^d \to \mathbb{R}\) and \(h : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}\) are \(K\)-Lipschitz continuous (see Lemma 5.2 in the Appendix).

For ease of notations, we shall denote by \(C_p\) a generic constant depending only on \(p\) and the constants \(K, \lambda(E), b(0), \sigma(0), h(0), g(0)\) and \(T\). We write \(C_p^0\) if it also depends on \(X_0\). In this paper, \(p\) will always denote a real number greater than 2.

Remark 2.1 For the convenience of the reader, we have collected in the Appendix standard estimates for the solutions of Forward and Backward SDE’s. In particular, they imply

\[
\| (X, Y, Z, U) \|^p_{B^p \times B^p} \leq C_p \left(1 + |X_0|^p\right), \quad p \geq 2. \tag{2.5}
\]

The estimate on \(X\) is standard, see (5.2) of Lemma 5.1 in the Appendix. Plugging this in (5.6) of Lemma 5.2 leads to the bound on \(\|(Y, Z, U)\|_{B^p}\). Using (5.3) of Lemma 5.1, we also deduce that

\[
\mathbb{E} \left[\sup_{s \leq u \leq t} |X_u - X_s|^p \right] \leq C_p \left(1 + |X_0|^p\right) |t - s|, \tag{2.6}
\]

while the previous estimates on \(X\) combined with (5.7) of Lemma 5.2 implies

\[
\mathbb{E} \left[\sup_{s \leq u \leq t} |Y_u - Y_s|^p \right] \leq C_p \left\{ (1 + |X_0|^p) |t - s|^p + \|Z\|^p_{H^p_{[s,t]}} + \|U\|^p_{L^p_{\Lambda,[s,t]}} \right\}. \tag{2.7}
\]

2.2 Discrete time approximation

We first fix a regular grid \(\pi := \{t_i := iT/n, \ i = 0, \ldots, n\}\) on \([0, T]\) and approximate \(X\) by its Euler scheme \(X^n\) defined by

\[
\begin{cases}
X^n_0 & := X_0 \\
X^n_{t_{i+1}} & := X^n_{t_i} + \frac{T}{n} \beta(X^n_{t_i}) + \sigma(X^n_{t_i}) \Delta W_{i+1} + \int_E \beta(X^n_{t_i}, e) \bar{\mu}(de, (t_i, t_{i+1}]).
\end{cases} \tag{2.8}
\]
where \(\Delta W_{t+1} := W_{t+1} - W_t \). It is well known that

\[
\max_{t < n} \mathbb{E} \left[\sup_{t \in [t, t+1]} |X_t - X_t^\pi|^2 \right] \leq C_d n^{-1}. \tag{2.9}
\]

We then approximate \((Y, Z, \Gamma)\) by \((\bar{Y}^\pi, \bar{Z}^\pi, \bar{\Gamma}^\pi)\) defined by the backward implicit scheme

\[
\bar{Z}^\pi_t := \frac{n}{T} \mathbb{E} \left[\bar{Y}^\pi_{t+1} \Delta W_{t+1} | \mathcal{F}_t \right], \quad \bar{\Gamma}^\pi_t := \frac{n}{T} \mathbb{E} \left[\bar{Y}^\pi_{t+1} \int_E \rho(e) \mu(de, (t_i, t_{i+1}]) | \mathcal{F}_t \right]
\]

\[
\bar{Y}^\pi_t := \mathbb{E} \left[\bar{Y}^\pi_{t+1} | \mathcal{F}_t \right] + \frac{T}{n} \left(X_{t_i} \bar{Y}^\pi_{t_i}, \bar{Z}^\pi_{t_i}, \bar{\Gamma}^\pi_{t_i} \right) \tag{2.10}
\]

on each interval \([t_i, t_{i+1})\), where \(\bar{Y}^\pi_{t_i} := g(X^\pi_{t_i}) \). Observe that the resolution of the last equation in (2.10) may involve the use of a fixed point procedure. However, \(h \) being Lipschitz and multiplied by \(1/n \), the approximation error can be neglected for large values of \(n \).

Remark 2.2 The above backward scheme is a natural extension of the one considered in [7] in the case \(\beta = 0 \).

By the representation theorem, see e.g. Lemma 2.3 in [23], there exist two processes \(Z^\pi \in \mathbb{H}_2^2 \) and \(U^\pi \in \mathbb{L}_\lambda^2 \) satisfying

\[
\bar{Y}^\pi_{t_i+1} - \mathbb{E} \left[\bar{Y}^\pi_{t_i+1} | \mathcal{F}_{t_i} \right] = \int_{t_i}^{t_{i+1}} Z^\pi_s \, dW_s + \int_{t_i}^{t_{i+1}} \int_E U^\pi_s(e) \mu(ds, de).
\]

Observe that \(\bar{Z}^\pi \) and \(\bar{\Gamma}^\pi \) defined in (2.10) satisfy

\[
\bar{Z}^\pi_{t_i} = \frac{n}{T} \mathbb{E} \left[\int_{t_i}^{t_{i+1}} Z^\pi_s \, ds | \mathcal{F}_{t_i} \right] \quad \text{and} \quad \bar{\Gamma}^\pi_{t_i} = \frac{n}{T} \mathbb{E} \left[\int_{t_i}^{t_{i+1}} \Gamma^\pi_s \, ds | \mathcal{F}_{t_i} \right], \tag{2.11}
\]

and therefore coincide with the best \(\mathbb{H}_2^{2, t_i, t_{i+1}} \)-approximations of \((Z^\pi_t)_{t_i \leq t < t_{i+1}} \) and \((\Gamma^\pi_t)_{t_i \leq t < t_{i+1}} := (\int_E \rho(e) U^\pi_t(e) \lambda(de))_{t_i \leq t < t_{i+1}} \) by \(\mathcal{F}_{t_i} \)-measurable random variables (viewed as constant processes on \([t_i, t_{i+1})\)).

Finally, observe that we can define \(Y^\pi \) on \([t_i, t_{i+1})\) by setting

\[
Y^\pi_t := \bar{Y}^\pi_t - (t - t_i) h(X^\pi_{t_i}, \bar{Y}^\pi_{t_i}, \bar{Z}^\pi_{t_i}, \bar{\Gamma}^\pi_{t_i}) + \int_{t_i}^t Z^\pi_s \, dW_s + \int_{t_i}^t \int_E U^\pi_s(e) \mu(ds, de).
\]

2.3 Convergence of the approximation scheme

In this subsection, we show that the approximation error

\[
\text{Err}_n (Y, Z, U) := \left\{ \sup_{t \leq T} \mathbb{E} \left[|Y_t - \bar{Y}^\pi_t|^2 \right] + \|Z - \bar{Z}^\pi\|_{\mathbb{H}_2^2}^2 + \|\Gamma - \bar{\Gamma}^\pi\|_{\mathbb{H}_2^2}^2 \right\}^{\frac{1}{2}}
\]

converges to 0. Let us first introduce the processes \((\bar{Z}, \bar{\Gamma})\) defined on each interval \([t_i, t_{i+1})\) by

\[
\bar{Z}_t := \frac{n}{T} \mathbb{E} \left[\int_{t_i}^{t_{i+1}} Z_s \, ds | \mathcal{F}_{t_i} \right] \quad \text{and} \quad \bar{\Gamma}_t := \frac{n}{T} \mathbb{E} \left[\int_{t_i}^{t_{i+1}} \Gamma_s \, ds | \mathcal{F}_{t_i} \right].
\]
Remark 2.3 Observe that \(\bar{Z}_{t_i} \) and \(\bar{\Gamma}_{t_i} \) are the counterparts of \(\bar{Z}_n \) and \(\bar{\Gamma}_n \) for the original backward SDE. They can also be interpreted as the best \(H^2 \)-approximations of \((Z_t)_{t_i \leq t < t_{i+1}}\) and \((\Gamma_t)_{t_i \leq t < t_{i+1}}\) by \(\mathcal{F}_{t_i} \)-measurable random variables (viewed as constant processes on \([t_i, t_{i+1})\)).

Proposition 2.1 We have
\[
\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Y_t - Y_{t_i}|^2 \right] dt \leq C_2^0 n^{-1} \quad \text{and} \quad \|Z - \bar{Z}\|_{H^2} + \|\Gamma - \bar{\Gamma}\|_{H^2} \leq \epsilon(n) \tag{2.12}
\]
where \(\epsilon(n) \to 0 \) as \(n \to \infty \).

Moreover,
\[
\text{Err}_n (Y, Z, U) \leq C_2^0 \left(n^{-1/2} + \|Z - \bar{Z}\|_{H^2} + \|\Gamma - \bar{\Gamma}\|_{H^2} \right) , \tag{2.13}
\]
so that \(\text{Err}_n (Y, Z, U) \xrightarrow{n \to \infty} 0 \).

Proof. Since \(Y \) solves (2.3),
\[
\mathbb{E} \left[|Y_t - Y_{t_i}|^2 \right] \leq C_2^0 \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|h(X_r, Y_r, Z_r, \Gamma_r)|^2 + |Z_r|^2 + \int_E |U_r(e)|^2 \lambda(de) \right] dr .
\]
Combining the Lipschitz property of \(h \) with (2.5), it follows that
\[
\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Y_t - Y_{t_i}|^2 \right] dt \leq C_2^0 .
\]
This is exactly the first part of (2.12). The proof of (2.13) then follows exactly the same arguments as in [7], see p 99 in [11] for details. It remains to prove the second part of (2.12). Since \(Z \) is \(\mathbb{F} \)-adapted, there is a sequence of adapted processes \((Z^n)_{n}\) such that \(Z^n = Z^n_{t_i} \) on each \([t_i, t_{i+1})\) and \(Z^n \) converges to \(Z \) in \(H^2 \). By Remark 2.3, we observe that \(\|Z - \bar{Z}\|_{H^2}^2 \leq \|Z - Z^n\|_{H^2}^2 \), and applying the same reasoning to \(\Gamma \) concludes the proof. \(\Box \)

2.4 Path-regularity and convergence rate

In view of Proposition 2.1, the discretization error converges to zero. In order to control its speed of convergence, it remains to study \(\|Z - \bar{Z}\|_{H^2} + \|\Gamma - \bar{\Gamma}\|_{H^2} \). Before stating our main result, let us introduce the following assumption:

\(H \) : For each \(e \in E \), the map \(x \in \mathbb{R}^d \mapsto \beta(x, e) \) admits a Jacobian matrix \(\nabla \beta(x, e) \) such that the function
\[
(x, \xi) \in \mathbb{R}^d \times \mathbb{R}^d \mapsto a(x, \xi; e) := \xi^t (\nabla \beta(x, e) + I_d) \xi
\]
satisfies one of the following condition uniformly in \((x, \xi) \in \mathbb{R}^d \times \mathbb{R}^d\)
\[
a(x, \xi; e) \geq |\xi|^2 K^{-1} \quad \text{or} \quad a(x, \xi; e) \leq -|\xi|^2 K^{-1} .
\]
Remark 2.4 Observe for later use that the condition H implies that, for each $(x, e) \in \mathbb{R}^d \times E$, the matrix $\nabla \beta(x, e) + I_d$ is invertible with inverse bounded by K. This ensures the invertibility of the first variation process ∇X of X, see Remark 3.6. Moreover, if q is a smooth density on \mathbb{R}^d with compact support, then the approximating functions β^k, $k \in \mathbb{N}$, defined by $\beta^k(x, e) := \int_{\mathbb{R}^d} k^d \beta(x, e) q(k|x-x|) dx$ are smooth and also satisfy H. In Section 5 of [9], the authors impose a similar condition: $|\det(\nabla \beta(x, e) + I_d)| \leq 1 - \delta$, $\forall x \in \mathbb{R}^d \lambda(de) - a.e.$ for some $\delta > 0$.

Under mild additional assumptions, this allows to prove the existence of a bounded solution, in a suitable weighted Sobolev space, to a PDE of the form (1.2) which can then be related to Y.

Our main theorem is stated for a suitable version of (Z, U, Γ). Observe that it does not change the quantity $\text{Err}_n(Y, Z, U)$.

Theorem 2.1 The following holds.

(i) For all $i < n$,

$$
\mathbb{E} \left[\sup_{t \in [t_i, t_{i+1}]} |Y_t - Y_{t_i}|^2 \right] \leq C_2^0 n^{-1/2} \quad \text{and} \quad \mathbb{E} \left[\sup_{t \in [t_i, t_{i+1}]} |\Gamma_t - \Gamma_{t_i}|^2 \right] \leq C_2^0 n^{-1/2} \tag{2.14}
$$

so that $\|\Gamma - \Gamma\|_{L^2}^2 \leq C_2^0 n^{-1/2}$ and $\|\Gamma - \Gamma\|_{H^2}^2 \leq C_2^0 n^{-1}$. Moreover, for any $\varepsilon > 0$,

$$
\|Z - \tilde{Z}\|_{H^2}^2 \leq C_2^0 n^{-1+\varepsilon}. \tag{2.15}
$$

(ii) Assume that H holds. Then

$$
\|Z - \tilde{Z}\|_{H^2}^2 \leq C_2^0 n^{-1}.
$$

This regularity property will be proved in the subsequent sections. Combined with Proposition 2.1, it provides an upper bound for the convergence rate of our backward implicit scheme.

Corollary 2.1 For any $\varepsilon > 0$, $\text{Err}_n(Y, Z, U) \leq C_2^0 n^{-1/2+\varepsilon}$. If H holds, then $\text{Err}_n(Y, Z, U) \leq C_2^0 n^{-1/2}$.

Remark 2.5 One could also use an explicit scheme as in e.g. [2] or [16]. In this case, (2.10) has to be replaced by

$$
\tilde{Z}_{t_i}^\pi := \frac{n}{T} \mathbb{E} \left[\tilde{Y}_{t_{i+1}}^\pi \Delta W_{t_{i+1}} \mid F_{t_i} \right], \quad \tilde{\Gamma}_{t_i}^\pi := \frac{n}{T} \mathbb{E} \left[\tilde{Y}_{t_{i+1}}^\pi \int_E \rho(e) \bar{\mu}(de, (t_i, t_{i+1}]) \mid F_{t_i} \right],
$$

$$
\tilde{Y}_{t_i}^\pi := \mathbb{E} \left[\tilde{Y}_{t_{i+1}}^\pi \mid F_{t_i} \right] + \frac{T}{n} \mathbb{E} \left[h(X_{t_i}^\pi, \tilde{Y}_{t_{i+1}}^\pi, \tilde{Z}_{t_i}^\pi, \tilde{\Gamma}_{t_i}^\pi) \mid F_{t_i} \right] \tag{2.17}
$$

with the terminal condition $\tilde{Y}_{t_n}^\pi = g(X_{t_n}^\pi)$. The advantage of this scheme is that it does not require a fixed point procedure. However, from a numerical point of view, adding a term in the conditional expectation defining $\tilde{Y}_{t_i}^\pi$ makes it more difficult to estimate. We therefore think that the implicit scheme may be more tractable in practice. The above convergence results can be easily extended to this scheme, see [11] for details.
Remark 2.6 In the unpublished paper [9], the authors discuss the regularity of \((X, Y, Z, U)\) with respect to the initial condition \(X_0\) in a case where the coefficients \(b, \sigma, h\) and \(g\) are \(C^3\), with linear growth and bounded derivatives for the two first ones and derivatives having polynomial growth for the two last ones. Under these regularity assumptions, they show that the map \((t, x) \mapsto u(t, x) = Y_t^{t,x}\) belongs to \(C^{0,2}([0, T] \times \mathbb{R}^d)\) with \(\frac{1}{2}\)-Hölder continuity in time and derivatives having polynomial growth in space, see their Proposition 3.5 and their Corollary 3.6. Similar results are obtained for \((t, x) \mapsto (Z_t^{t,x}, U_t^{t,x})\) which can be identified to \((\nabla u(t, x) \sigma(x), u(t, x + \beta(x, \cdot)) - u(t, x))\).

This readily implies the properties stated in Theorem 2.1 which can be seen as weak versions of the regularity results of [9]. The important point here is that:
1. Our results do not require all the regularity assumptions of [9];
2. This is all we need to provide the convergence rates of Corollary 2.1.

Remark 2.7 It will be clear from the proofs that all the results of this paper hold if we let the maps \(b, \sigma, \beta,\) and \(h\) depend on \(t\) whenever these functions are \(1/2\)-Hölder in \(t\) and the other assumptions are satisfied uniformly in \(t\). The Euler approximation \(X^\pi\) of \(X\) could also be replaced by any other adapted approximation satisfying (2.9).

Remark 2.8 We refer to [11] for extensions to the approximation of systems of semilinear PDEs through their relation with BSDEs with jumps, see [21], and for similar convergence results without \(H\) but under additional regularity assumptions.

3 Malliavin calculus for FBSDE

In this section, we prove that the solution \((Y, Z, U)\) of (2.3) is smooth in the Malliavin sense under the additional assumptions

\[
C^X: \ b, \sigma and \beta(\cdot, e) are C^1_b \text{ uniformly in } e \in E, \quad C^Y: \ g \text{ and } h are C^1_b.
\]

This will allow us to provide representation and regularity results for \(Y, Z\) and \(U\) in Section 4. Under \(C^X-C^Y\), these results will immediately imply the first assertion of (i) of Theorem 2.1, while the second one (resp. (ii)) will be obtained by adapting the arguments of [6] (resp. [25] under the additional assumption \(H\)).

3.1 Generalities

The construction of the Malliavin derivatives on the Wiener space is standard, see e.g. [18], and can be easily extended to our setting by observing that there is an isometry between \(L^2(\Omega_W \times \Omega_\mu)\) and \(L^2(\Omega_W, L^2(\Omega_\mu))\), with obvious notations.

Let \(S\) denote the set of random variables of the form

\[
F = \phi \left(\int_0^T f^1(t) \cdot dW_t, \ldots, \int_0^T f^\kappa(t) \cdot dW_t, \mu \right),
\]

where \(\kappa \geq 1, f^i : [0, T] \mapsto \mathbb{R}^d\) is a bounded measurable map for each \(i \leq \kappa\), \(\phi\) is a real-valued measurable map on \(\mathbb{R}^\kappa \times \Omega_\mu\) and \(\phi(\cdot, \eta) \in C^\infty_b, \mathbb{P}_\mu(d\eta)\)-a.e.
We denote by D the Malliavin derivative operator with respect to the Brownian motion. For $F \in \mathcal{S}$ as above and $s \leq T$, it is defined as

$$D_s F := \sum_{i \leq k} \nabla_i \phi \left(\int_0^T f^1(t) \cdot dW_t, \ldots, \int_0^T f^n(t) \cdot dW_t, \mu \right) f^i(s),$$

where $\nabla_i \phi$ is the derivative of ϕ with respect to its i-th argument.

We then denote by $\mathbb{D}^{1,2}$ the closure of \mathcal{S} with respect to the norm

$$\|F\|_{\mathbb{D}^{1,2}} := \left\{ \mathbb{E} \left[|F|^2 \right] + \mathbb{E} \left[\int_0^T |D_s F|^2 ds \right] \right\}^{\frac{1}{2}},$$

and define $\mathbb{H}^2(\mathbb{D}^{1,2})$ as the set of elements $\xi \in \mathbb{H}^2$ such that $\xi_t \in \mathbb{D}^{1,2}$ for almost all $t \leq T$ and such that, after possibly passing to a measurable version,

$$\|\xi\|_{\mathbb{H}^2(\mathbb{D}^{1,2})}^2 := \|\xi\|_{\mathbb{H}^2}^2 + \int_0^T \|D_s \xi\|_{\mathbb{H}^2}^2 ds < \infty.$$

Observe that for ψ in $\mathbb{L}^2_\lambda(\mathbb{P}^\mu)$, the set of elements of \mathbb{L}^2_λ which are independent of W, we have $D\psi = 0$. We finally define $\mathbb{L}^2_\lambda(\mathbb{D}^{1,2})$ as the closure of the set

$$\mathbb{L}^2_\lambda(\mathbb{D}^{1,2}) := \text{Vect} \left\{ \psi = \xi \vartheta : \xi \in \mathbb{H}^2_\mathbb{P}(\mathbb{D}^{1,2}, \mathbb{P}^W), \vartheta \in \mathbb{L}^2_\lambda(\mathbb{P}^\mu), \|\psi\|_{\mathbb{L}^2_\lambda(\mathbb{D}^{1,2})} < \infty \right\}$$

for the norm

$$\|\psi\|_{\mathbb{L}^2_\lambda(\mathbb{D}^{1,2})}^2 := \|\psi\|_{\mathbb{L}^2_\lambda}^2 + \int_0^T \|D_s \psi\|_{\mathbb{L}^2_\lambda}^2 ds.$$

Here, $\mathbb{H}^2_\mathbb{P}(\mathbb{D}^{1,2}, \mathbb{P}^W)$ denotes the set of \mathbb{P}^W-predictable elements of $\mathbb{H}^2(\mathbb{D}^{1,2})$ and $D_s (\xi \vartheta) = (D_s \xi) \vartheta$ for $\xi \in \mathbb{H}^2_\mathbb{P}(\mathbb{D}^{1,2}, \mathbb{P}^W)$, $\vartheta \in \mathbb{L}^2_\lambda(\mathbb{P}^\mu)$. Here again, we extend the definition of $\|\cdot\|_{\mathbb{H}^2(\mathbb{D}^{1,2})}$ and $\|\cdot\|_{\mathbb{L}^2_\lambda(\mathbb{D}^{1,2})}$ to processes with values in \mathbb{M}^d and \mathbb{R}^d in a natural way.

From now on, given a matrix A, we shall denote by A^i its i-th column. For $k \leq d$, we denote by D^k the Malliavin derivative with respect to W^k, meaning that $D^k F = (DF)^k$ for $F \in \mathbb{D}^{1,2}$.

Remark 3.1 With this construction, the operator D enjoys the usual properties of the Malliavin derivative operator on Wiener spaces. In particular, if $\xi \in \mathbb{H}^2(\mathbb{D}^{1,2})$ and $f \in C^1_0(\mathbb{R}^d)$, then

$$D_s \left(\int_0^T f(\xi_t) dt + \int_0^T \xi_t \cdot dW_t \right) = \int_s^T \nabla f(\xi_t) D_s \xi_t dt + \xi_s^* + \sum_{j=1}^d \int_s^T D_s \xi_t^j \cdot dW_t^j$$

for all $s \leq T$. Here * denotes transposition. It follows from the same argument as in [18], which we refer to for more details.
Remark 3.2 Fix $\xi \in H^2_{\lambda}(\mathbb{D}^{1,2}, \mathbb{F}^W)$. By Lemma 1.3.1 in [18], there exists a family of deterministic measurable kernels $f_m(t_1, \ldots, t_m, t)$ in $L^2([0, T]^{m+1})$, $m \geq 0$, such that $\xi_t = \sum_{m \geq 0} I_m(f_m(\cdot, t))$ and $D_s \xi_t = \sum_{m \geq 1} m I_{m-1}(f_m(\cdot, s, t))$ where I_m denotes the m-iterated Wiener integral, see Proposition 1.2.1 in [18]. Therefore, if τ is a random time bounded by T and independent of W, we have $\xi_\tau = \sum_{m \geq 0} I_m(f_m(\cdot, \tau))$ and, by the same argument as in the proof of Proposition 1.2.1 in [18], $\xi_\tau \in \mathbb{D}^{1,2}$ whenever τ has a bounded density and $D_s(\xi_\tau) = \sum_{m \geq 1} m I_{m-1}(f_m(\cdot, s, \tau)) = (D_s \xi)_\tau$.

Remark 3.3 For $\xi \in H^2(\mathbb{D}^{1,2})$ the integrals $\int_0^T D_s \xi_t dt$ and $\int_0^T D_s \xi_t dW_t$ have to be understood as integrals written on the process $D_s \xi$, i.e. $\int_0^T (D_s \xi)_t dt$ and $\int_0^T (D_s \xi)_t dW_t$. Similarly, for $\psi \in L^2_{\lambda}(\mathbb{D}^{1,2})$, $\int_0^T \int_E D_s \psi_t(e) \mu(de, dt)$ has to be understood as $\int_0^T \int_E (D_s \psi)_t(e) \mu(de, dt)$. However, it follows from Remark 3.2 that it coincides with $\int_0^T \int_E D_s(\psi_t(e)) \mu(de, dt)$, so that there is no ambiguity.

The two following Lemmas are generalizations of Lemma 3.3 and Lemma 3.4 in [21] which correspond to the case where E is finite, see also Lemma 2.3 in [20] for the case of Itô integrals.

Lemma 3.1 Assume that $\psi \in L^2_{\lambda}(\mathbb{D}^{1,2})$. Then, $H := \int_0^T \int_E \psi_t(e) \mu(de, dt)$ in $\mathbb{D}^{1,2}$ and $D_s H = \int_0^T \int_E D_s \psi_t(e) \mu(de, dt)$ for all $s \leq T$.

Proof. First notice that it suffices to prove the required result when $\psi \in L^2_{\lambda}(\mathbb{D}^{1,2})$. Indeed, we can then retrieve the general case by considering a sequence (ψ^n) in $L^2_{\lambda}(\mathbb{D}^{1,2})$ which converges to ψ in $L^2_{\lambda}(\mathbb{D}^{1,2})$, so that $H^n := \int_0^T \int_E \psi^n_t(e) \mu(de, dt)$ is a Cauchy sequence in $\mathbb{D}^{1,2}$ which converges to H and $(D_s H^n)_{s \leq T}$ converges to $(\int_0^T \int_E D_s \psi_t(e) \mu(de, dt))_{s \leq T}$ in H^2.

We therefore assume that $\psi = \xi \vartheta$ where $\xi \in H^2_{\lambda}(\mathbb{D}^{1,2}, \mathbb{F}^W)$, $\vartheta \in L^2_{\lambda}(\mathbb{F}^\mu)$ and $\|\psi\|_{L^2_{\lambda}(\mathbb{D}^{1,2})} < \infty$. Then,

$$\int_0^T \int_E \psi_t(e) \mu(de, dt) = \int_0^T \int_E \xi_t \vartheta_t(e) \mu(de, dt) - \int_0^T \int_E \vartheta_t(e) \lambda(de)dt ,$$

where, by Remark 3.1 and the fact that $\int_E \vartheta_t(e) \lambda(de)$ is independent of W,

$$D_s \int_0^T \xi_t \left(\int_E \vartheta_t(e) \lambda(de) \right) dt = \int_0^T D_s \xi_t \int_E \vartheta_t(e) \lambda(de)dt$$

$$= \int_0^T \int_E (D_s \xi_t) \vartheta_t(e) \lambda(de)dt .$$

It remains to prove that

$$D_s \int_0^T \int_E \xi_t \vartheta_t(e) \mu(de, dt) = \int_0^T \int_E (D_s \xi_t) \vartheta_t(e) \mu(de, dt) .$$
To see this, we define \(N_t := \int_0^t \mu(E, ds) \) for \(t \leq T \), \((\tau_i)_{i \geq 1} \) as the sequence of jump times of \(N \) and \((E_i)_{i \geq 1} \) by \(E_i := N_{\tau_i} - N_{\tau_{i-1}} \). With these notations, we have to show that

\[
D_s \sum_{i \geq 1} \xi_{\tau_i} \partial_{\tau_i}(E_i) 1_{\tau_i \leq T} = \sum_{i \geq 1} (D_s \xi)_{\tau_i} \partial_{\tau_i}(E_i) 1_{\tau_i \leq T},
\]

see Remark 3.3. Using Remark 3.2, we now observe that \(D_s \sum_{i=1}^n \xi_{\tau_i} \partial_{\tau_i}(E_i) 1_{\tau_i \leq T} = \sum_{i=1}^n (D_s \xi)_{\tau_i} \partial_{\tau_i}(E_i) 1_{\tau_i \leq T} \), for each \(n \geq 1 \). Passing to the limit leads to (3.1) and concludes the proof. Indeed, the previous identity implies that the sequence \((F_n)_{n \geq 1}\) defined by \(F_n := \sum_{i=1}^n \xi_{\tau_i} \partial_{\tau_i}(E_i) 1_{\tau_i \leq T} \) belongs to \(\mathbb{H}^2(\mathbb{D}^{1,2}) \) and satisfies

\[
|F_n| \leq \sum_{i \geq 1} |\xi_{\tau_i} \partial_{\tau_i}(E_i)| 1_{\tau_i \leq T}
\]

as well as

\[
|D_s F_n| \leq \sum_{i \geq 1} |(D_s \xi)_{\tau_i} \partial_{\tau_i}(E_i)| 1_{\tau_i \leq T}
\]

which implies that \(\sup_{n \geq 1} \|F_n\|_{\mathbb{H}^2(\mathbb{D}^{1,2})}^2 \) is bounded by

\[
2 \left(\mathbb{E} \left[\left(\int_0^T \int_E \xi_t \partial_t(e) \left| \mu(de, dt) \right|^2 \right) \right] + \mathbb{E} \left[\left(\int_0^T \int_E |D_s \xi_t \partial_t(e)| \lambda(de) dt \right)^2 \right] \right) + 2 \int_0^T \mathbb{E} \left[\left(\int_0^T \int_E |D_s \xi_t \partial_t(e)| \mu(de, dt) \right)^2 \right] ds
\]

\[
+ 2 \int_0^T \mathbb{E} \left[\left(\int_0^T \int_E |D_s \xi_t \partial_t(e)| \lambda(de) dt \right)^2 \right] ds
\]

\[
\leq C_2 \|\psi\|^2_{L_2^2(\mathbb{D}^{1,2})} < \infty,
\]

where the second and the fourth terms on the right hand-side are bounded by using Jensen’s inequality and the assumption \(\lambda(E) < \infty \). Moreover, by dominated convergence, \(\mathbb{E}[|F_n - F|^2] + \int_0^T \mathbb{E}[|D_s F_n - D_s F|^2] ds \to 0 \) where \(F := \sum_{i \geq 1} \xi_{\tau_i} \partial_{\tau_i}(E_i) 1_{\tau_i \leq T} \) and \(D_s F := \sum_{i \geq 1} (D_s \xi)_{\tau_i} \partial_{\tau_i}(E_i) 1_{\tau_i \leq T} \) satisfy, by the same arguments as above, \(\|F\|^2_{\mathbb{H}^2(\mathbb{D}^{1,2})} \leq C_2 \|\psi\|^2_{L_2^2(\mathbb{D}^{1,2})} < \infty \).

\[\Box\]

Remark 3.4 Similar arguments as in the above proof shows that for \(\psi \in L_2^2(\mathbb{D}^{1,2}) \) and \(f \in L^\infty(E) \), we have, for almost every \(s \leq T \), \(\int_E \psi_s(e) f(e) \lambda(de) \in \mathbb{D}^{1,2} \) and

\[
D_t \left(\int_E \psi_s(e) f(e) \lambda(de) \right) := \int_E D_t \psi_s(e) f(e) \lambda(de).
\]

Lemma 3.2 Let \(S(W) \) denote the set of random variables of the form

\[
H^W = \phi \left(\int_0^T f^1(t) \cdot dW_t, \ldots, \int_0^T f^\kappa(t) \cdot dW_t \right)
\]

where \(\kappa \geq 1 \), \(\phi \in C_0^\infty \) and \(f^i : [0,T] \mapsto \mathbb{R}^d \) is a bounded measurable map for each \(i \leq \kappa \). Then, \(\text{Vec}(S(W) \times L^\infty(\Omega, \mathcal{F}_T)) \) is dense in \(\mathbb{D}^{1,2} \) for the norm \(\| \cdot \|_{\mathbb{D}^{1,2}} \).
Lemma 3.3 Fix D acting only its last ϕ components. Since both functions are continuous, we can the n components and set $f := (f^1, \ldots, f^n)$, $G := \left(\int_0^T f^1(t) \cdot dW_t, \ldots, \int_0^T f^n(t) \cdot dW_t\right)$. Since

$$(H, D_4 H) = \sum_{n \geq 0} \left(\phi_n(G, (t^{n,i}_i, e^{n,i}_i)_{1 \leq i \leq n}), \psi_n(G, (t^{n,i}_i, e^{n,i}_i)_{1 \leq i \leq n}) \cdot f(s)\right) 1_{\mu(\bar{E},[0,T]) = n},$$

it suffices to prove that each $H_n := \phi_n(G, (t^{n,i}_i, e^{n,i}_i)_{1 \leq i \leq n})$ can be approximated by linear combinations of elements of $S(W) \times L^\infty(\Omega, \mathcal{F}^0_T)$. Moreover, we can always assume that ϕ_n is C^∞ on $\mathbb{R}^n \times G_n$. Indeed, ϕ is already C^∞ in its first κ components, a.e., and we can replace ϕ_n by its convolution with a sequence of smooth kernels acting only its last n components. Since both functions are continuous, we can then approximate (ϕ_n, ψ_n) pointwise by linear combinations of functions of the form $(\phi_n, \psi_n)(\cdot, (t_i, e_i)_{1 \leq i \leq n})1_A$ where A is a Borel set of G_n and $(t_i, e_i)_{1 \leq i \leq n} \in G_n$. The required result then follows from the fact that $D_4 \phi_n(G, (t_i, e_i)_{1 \leq i \leq n})1_A((t^{n,i}_i, e^{n,i}_i)_{1 \leq i \leq n}) = (\psi_n(G, (t_i, e_i)_{1 \leq i \leq n}) \cdot f(s)) 1_A((t^{n,i}_i, e^{n,i}_i)_{1 \leq i \leq n})$. }

Lemma 3.3 Fix $H \in \mathbb{H}^2 \times L^2_\lambda$ and assume that

$$H := \int_0^T \xi_t \cdot dW_t + \int_0^T \int_E \psi_t(e)\mu(de, dt) \in \mathbb{D}^{1,2}.$$ Then, $(\xi, \psi) \in \mathbb{H}^2(\mathbb{D}^{1,2}) \times L^2_\lambda(\mathbb{D}^{1,2})$ and

$$D_4 H := \xi^{\ast} + \int_0^T \sum_{i=1}^d D_4 \xi^i_t dW^i_t + \int_0^T \int_E D_4 \psi_t(e)\mu(de, dt),$$

where ξ^{\ast} denotes the transpose of ξ.

Proof. One easily deduce from Lemma 3.2 that $H := \text{Vect}\{H^W H^\bar{\mu} : H^W \in S(W), H^\bar{\mu} \in L^\infty(\Omega, \mathcal{F}^0_T), \mathbb{E}[H^W H^\bar{\mu}] = 0\}$ is dense in $\mathbb{D}^{1,2} \cap \{H \in L^2(\Omega, \mathcal{F}, \mathbb{P}) : \mathbb{E}[H] = 0\}$ for $\|\cdot\|_{\mathbb{D}^{1,2}}$. Thus, it suffices to prove the result for H of the form $H^W H^\bar{\mu}$ where $H^W \in S(W)$, $H^\bar{\mu} \in L^\infty(\Omega, \mathcal{F}^0_T)$ and $\mathbb{E}[H^W H^\bar{\mu}] = 0$. By the representation theorem, see e.g. [8], there exists $\psi \in L^2_\lambda$ such that $H^\bar{\mu} = \mathbb{E}[H^\bar{\mu}] + \int_0^T \int_E \psi_t(e)\mu(de, dt)$ and by Ocone’s formula, see e.g. Proposition 1.3.5 in [18], $H^W = \mathbb{E}[H^W] + \int_0^T \mathbb{E}[D_4 H^W | \mathcal{F}_t] dW_t$. Thus it follows from Itô’s Lemma that $H = \int_0^T H^W_t \mathbb{E}[D_4 H^W | \mathcal{F}_t] dW_t + \int_0^T \int_E H^W_t \psi_t(e)\mu(de, dt)$ where $H^W_t = \mathbb{E}[H^W | \mathcal{F}_t]$ and $H^\bar{\mu} = \mathbb{E}[H^\bar{\mu} | \mathcal{F}_t]$. Furthermore, easy computations show that the two integrands belong respectively to $\mathbb{H}^2(\mathbb{D}^{1,2})$ and $L^2_\lambda(\mathbb{D}^{1,2})$. Thus, Remark 3.1 and Lemma 3.1 conclude the proof.
3.2 Malliavin calculus on the Forward SDE

In this section, we recall well-known properties concerning the differentiability in the Malliavin sense of the solution of a Forward SDE. In the case where \(\beta = 0 \) the following result is stated in e.g. [18]. The extension to the case \(\beta \neq 0 \) is easily obtained by conditioning by \(\mu \), see e.g. [14] for explanations in the case where \(E \) is finite, or by combining Remark 3.1, Lemma 3.1 with a fixed point procedure as in the proof of Theorem 2.2.1. in [18], see also Proposition 3.2 below.

Proposition 3.1 Assume that \(C^X \) holds, then \(X_t \in \mathbb{D}^{1,2} \) for all \(t \leq T \). For all \(s \leq T \) and \(k \leq d, D^s X \) admits a version \(\chi^{s,k}_t \) which solves on \([s,T]\)

\[
\chi^{s,k}_t = \sigma^k(X_{s-}) + \int_s^t \nabla b(X_r)\chi^{s,k}_r dr + \int_s^t \sum_{j=1}^d \nabla \sigma^j(X_r)\chi^{s,k}_r dW^j_r
+ \int_s^t \int_E \nabla \beta(X_{r-}, e)\chi^{s,k}_{r-} \bar{\mu}(dr, de) .
\]

Remark 3.5 Fix \(p \geq 2 \) and \(r \leq s \leq t \leq u \leq T \). Under \(C^X \), it follows from Lemma 5.1 applied to \(X \) and \(\chi^s \) that \(\|\chi^s\|_{S^p} \leq C_p (1 + |X_0|^p), \mathbb{E}[|\chi^u_s - \chi^s_t|^p] \leq C_p (u - t) (1 + |X_0|^p) \) and \(\|\chi^s - \chi^r\|_{S^p} \leq C_p |s - r| (1 + |X_0|^p) \).

Remark 3.6 Under \(C^X \), we can define the first variation process \(\nabla X \) of \(X \) which solves on \([0,T]\)

\[
\nabla X_t = I_d + \int_0^t \nabla b(X_r)\nabla X_r dr + \int_0^t \sum_{j=1}^d \nabla \sigma^j(X_r)\nabla X_r dW^j_r
+ \int_0^t \int_E \nabla \beta(X_{r-}, e)\nabla X_{r-} \bar{\mu}(dr, de) .
\]

Moreover, under \(H \), see Remark 2.4, \((\nabla X)^{-1} \) is well defined and solves on \([0,T]\)

\[
(\nabla X)^{-1}_t = I_d - \int_0^t (\nabla X)^{-1}_r \left[\nabla b(X_r) - \sum_{j=1}^d \nabla \sigma^j(X_r)\nabla \sigma^j(X_r) \right] dr
+ \int_0^t (\nabla X)^{-1}_r \int_E \nabla \beta(X_{r-}, e) \lambda(de) dr - \int_0^t \sum_{j=1}^d (\nabla X)^{-1}_r \nabla \sigma^j(X_r) dW^j_r
- \int_0^t \int_E (\nabla X)^{-1}_r \nabla \beta(X_{r-}, e) + I_d)^{-1} \nabla \beta(X_{r-}, e) \mu(de, dr) .
\]

Remark 3.7 Fix \(p \geq 2 \). Under \(H-C^X \), it follows from Remark 2.4 and Lemma 5.1 applied to \(\nabla X \) and \((\nabla X)^{-1} \) that \(\|\nabla X\|_{S^p} + \|(\nabla X)^{-1}\|_{S^p} \leq C_p \).

Remark 3.8 Assume that \(H-C^X \) holds and observe that \(\chi^s = (\chi^{s,k})_{k \leq d} \) and \(\nabla X \) solve the same equation up to the condition at time \(s \). By uniqueness of the solution on \([t,T]\), it follows that \(\chi^s = \nabla X_r (\nabla X_{s-})^{-1} \sigma(X_{s-}) 1_{s \leq r} \) for all \(s, r \leq T \).
3.3 Malliavin calculus on the Backward SDE

In this section, we generalize the result of Proposition 3.1 in [21]. Let us denote by $\mathcal{B}^2(\mathbb{D}^{1,2})$ the set of triples $(Y, Z, U) \in \mathcal{B}^2$ such that $Y_t \in \mathbb{D}^{1,2}$ for all $t \leq T$ and $(Z, U) \in \mathcal{H}^2(\mathbb{D}^{1,2}) \times \mathcal{L}^2_x(\mathbb{D}^{1,2})$.

Proposition 3.2 Assume that $C_X^{-C_Y}$ holds. Then, the triples (Y, Z, U) belongs to $\mathcal{B}^2(\mathbb{D}^{1,2})$. For each $s \leq T$ and $k \leq d$, the equation

$$\Gamma_t^{s,k} = \nabla g(X_T)\lambda_t^{s,k} + \int_t^T \nabla h(\Theta_r)\Phi_r^{s,k}dr - \int_t^T \zeta_r^{s,k} \cdot dW_r - \int_t^T \int_E V_r^{s,k}(e)\bar{\mu}(de, dr)$$

with $\Phi_r^{s,k} := (\chi_r^{s,k}, \Upsilon_r^{s,k}, \zeta_r^{s,k}, \Gamma_r^{s,k})$ and $\Gamma_r^{s,k} := \int_E \rho(e)V_r^{s,k}(e)\lambda(de)$, admits a unique solution. Moreover, $(\Upsilon_t^{s,k}, \zeta_t^{s,k}, \nabla g(X_T))_{t \leq T}$ is a version of $(D_t^kY_t, D_t^kZ_t, D_t^kU_t)_{s,t \leq T}$.

Proof. With the help of Lemma 3.3 and the estimates of Lemma 5.2, we can reproduce exactly the proof of Proposition 5.3 in [12] up to minor modifications. See [11] p 113 for details.

Proposition 3.3 Assume that $C_X^{-C_Y}$ holds. For each $k \leq d$, the equation

$$\nabla Y_t^k = \nabla g(X_T)\nabla X_T^k + \int_t^T \nabla h(\Theta_r)\nabla \Phi_r^k dr - \int_t^T \nabla Z_r^k \cdot dW_r - \int_t^T \int_E \nabla U_r^k(e)\bar{\mu}(de, dr)$$

with $\nabla \Phi_r^k = (\nabla X_r^k, \nabla Y_r^k, \nabla Z_r^k, \nabla \Gamma_r^k)$ and $\nabla \Gamma_r^k := \int_E \rho(e)\nabla U_r^k(e)\lambda(de)$, admits a unique solution $(\nabla Y_r^k, \nabla Z_r^k, \nabla U_r^k)$. Moreover, there is a version of $(\zeta_t^{s,k}, \Upsilon_t^{s,k}, \nabla g(X_T))_{s,t \leq T}$ given by $\{(\nabla Y_t, \nabla Z_t, \nabla U_t)\nabla X_{s-}^k\sigma_t^k(X_{s-})1_{s \leq t}\}_{s,t \leq T}$ where ∇Y_t is the matrix whose k-column is given by ∇Y_t^k and $\nabla Z_t, \nabla U_t$ are defined similarly.

Proof. In view of Proposition 3.2 and Remark 3.8, this follows immediately from the uniqueness of the solution of (3.4).

Remark 3.9 Combined with $C_X^{-C_Y}$ and Remark 3.5, Lemma 5.2 below implies that

$$\sup_{s \leq T} \|(\Upsilon^s, \zeta^s, V^s)\|_{B^p}^p \leq C_p \left(1 + |X_0|^p\right) \text{ for all } p \geq 2. \tag{3.6}$$

It follows from Lemma 5.2 and Remark 3.7 that

$$\|\nabla Y, \nabla Z, \nabla U\|_{B^p} \leq C_p \text{ for all } p \geq 2. \tag{3.7}$$

4 Representation results and path regularity for the BSDE

In this section, we use the above results to obtain some regularity for the solution of the BSDE (2.3) under $C_X^{-C_Y}, C_X^{-C_Y}$. Similar results without $C_X^{-C_Y}$ will then be obtained by using an approximation argument.
Fix \((u, s, t, x) \in [0, T] \times \mathbb{R}^d\) and \(k, \ell \leq d\). In the sequel, we shall denote by \(X(t, x)\) the solution of (2.2) on \([t, T]\) with initial condition \(X(t, x)_t = x\), and by \((Y(t, x), Z(t, x), U(t, x))\) the solution of (2.3) with \(X(t, x)\) in place of \(X\). We define similarly \((T^{s,k}(t, x), \zeta^{s,k}(t, x), V^{s,k}(t, x))\) and \((\nabla Y(t, x), \nabla Z(t, x), \nabla U(t, x))\). Observe that, with these notations, we have \((X(0, X_0), Y(0, X_0), Z(0, X_0), U(0, X_0)) = (X, Y, Z, U)\).

4.1 Representation

We start this section by proving useful bounds for the (deterministic) maps defined on \([0, T] \times \mathbb{R}^d\) by \(u(t, x) := Y(t, x)_t, \nabla u(t, x) := \nabla Y(t, x)_t, v^{s,k}(t, x) := Y^{s,k}(t, x)_t, \) where \(s \in [0, T]\) and \(k \leq d\).

Proposition 4.1 Assume that \(C^X\) and \(C^Y\) hold, then,

\[
|u(t, x)| + |v^{s,k}(t, x)| \leq C_2 (1 + |x|) \quad \text{and} \quad |\nabla u(t, x)| \leq C_2
\]

for all \(s, t \leq T, k \leq d\) and \(x \in \mathbb{R}^d\).

Proof. When \((t, x) = (0, X_0)\), the result follows from (2.5) in Remark 2.1, (3.6) and (3.7). The general case is obtained similarly by changing the initial condition on \(X\).

Proposition 4.2 Assume that \(C^X\) and \(C^Y\) hold. Then, there is a version of \(Z\) given by \((Y^t)_{t \leq T}\) which satisfies \(\|Z\|_{S^p} \leq C_p (1 + |X_0|^p)\).

Proof. Here again we only consider the case \(d = 1\) and omit the indexes \(k, \ell\). By Proposition 3.2, \((Y, Z, U)\) belongs to \(B^2(\mathbb{D}^{1,2})\) and it follows from Lemma 3.3 that

\[
D_sY_t = Z_s - \int_s^t \nabla h(\Theta_r)D_s\Theta_r dr + \int_s^t D_sZ_r dW_r + \int_s^t D_sU_r(e)\tilde{\mu}(de, dr),
\]

for \(0 < s \leq t \leq T\). Taking \(s = t\) leads to the representation of \(Z\). Thus, after possibly passing to a suitable version, we have \(Z_t = D_tY_t = Y^t_t\). By uniqueness of the solution of the (2.2)-(2.3)-(3.4) for any initial condition in \(L^2(\Omega, \mathcal{F}_t)\) at \(t\), we have \(Y^t_t = v^j(t, X_t)\). The bound on \(Z\) then follows from Proposition 4.1 combined with (2.5) of Remark 2.1.

Proposition 4.3 (i) Define \(\tilde{U}\) by \(\tilde{U}_t(e) := u(t, X_{t-} + \beta(X_{t-}, e)) - \lim_{r \uparrow t} u(r, X_r) = Y_t - Y_{t-}\). Then \(\tilde{U}\) is a version of \(U\) and it satisfies

\[
\|\sup_{e \in E} |\tilde{U}(e)|\|_{S^p} \leq C_p (1 + |X_0|^p).
\]

(ii) Assume that \(C^X\) and \(C^Y\) hold. Define \(\nabla \tilde{U}\) by \(\nabla \tilde{U}_t(e) := \nabla u(t, X_{t-} + \beta(X_{t-}, e)) - \lim_{r \uparrow t} \nabla u(r, X_r)\). Then \(\nabla \tilde{U}\) is a version of \(\nabla U\) and it satisfies

\[
\|\sup_{e \in E} |\nabla \tilde{U}(e)|\|_{S^p} \leq C_p.
\]
Remark 4.1 We will see in Proposition 4.4 below that u is continuous under C^X and C^Y so that $\tilde{U}(e) = u(t, X_{t-} + \beta(X_{t-}, e)) - u(t, X_{t-})$. A similar representation is derived in [21], in a case where E is finite, and in [9], in the case where E is not finite, but under more regularity assumptions on the coefficients.

Proof of Proposition 4.3. We only provide the proof of (i), the other assertion is proved similarly.

1. By uniqueness of the solution of (2.2)-(2.3) for any initial condition in $L^2(\Omega, \mathcal{F}_t)$ at time t, one has $Y_t = u(t, X_t)$ a.s. for each $t \leq T$. We shall prove in step 2. below that u is jointly continuous in x and right-continuous in t. This implies that $(u(t, X_t))_{t \leq T}$ is right-continuous so that $Y_t = u(t, X_t)$ and $Y_{t-} = \lim_{r \uparrow t} u(r, X_r)$ for each $t \leq T$ a.s., see Theorem I.2 in [22] and recall that X and Y are c\`adl\`ag. Thus $\int E U_t(e) \mu(de, \{t\}) = Y_t - Y_{t-} = u(t, X_t) - \lim_{r \uparrow t} u(r, X_r) = \int E \tilde{U}_t(e) \mu(de, \{t\})$, for each $t \leq T$ a.s. and $\int_0^T \int E \tilde{U}_t(e) - U_t(e) \mu(de, dt) = 0$, which implies, by taking expectation, $\left\| \tilde{U}_t(e) - U_t(e) \right\|^2_{L^2} = 0$.

2. We now prove that u is continuous in x and right-continuous on t. Fix $0 \leq t_1 \leq t_2 \leq T$ and $(x_1, x_2) \in \mathbb{R}^{2d}$. For A denoting X, Y, Z or U, we set $A^i := A(t_i, x_i)$ for $i = 1, 2$ and $\delta A := A^1 - A^2$. By (5.4) of Lemma 5.1, we derive

\[
\| \delta X \|_{S^2_{[t_2, T]}}^2 \leq C_2 \left\{ |x_1 - x_2|^2 + (1 + |x_1|^2)|t_2 - t_1| \right\}. \tag{4.5}
\]

Plugging this estimate in (5.8) of Lemma 5.2 leads to

\[
\| (\delta Y, \delta Z, \delta U) \|_{B^2_{[t_2, T]}}^2 \leq C_2 \left\{ |x_1 - x_2|^2 + (1 + |x_1|^2)|t_2 - t_1| \right\}. \tag{4.6}
\]

Now, observe that

\[
|u(t_1, x_1) - u(t_2, x_2)|^2 = |Y^1_{t_1} - Y^1_{t_2}|^2 \leq C_2 \mathbb{E} \left[|Y^1_{t_2} - Y^1_{t_1}|^2 + |Y^1_{t_2} - Y^1_{t_2}|^2 \right]. \tag{4.7}
\]

Since Y^1 is right-continuous and bounded in S^2, the first term on the right-hand side goes to 0 as $t_2 \to t_1$, while the second is controlled by (4.6).

\[\square\]

4.2 Path regularity

Proposition 4.4 Assume that C^X and C^Y hold. Then, for $0 \leq t_1 \leq t_2 \leq T$ and $(x_1, x_2) \in \mathbb{R}^{2d}$, $|u(t_1, x_1) - u(t_2, x_2)|^2 \leq C_2 \left\{ (1 + |x_1|^2)|t_2 - t_1| + |x_1 - x_2|^2 \right\}$.

Proof. It suffices to plug the estimate of Proposition 4.2 and (4.3) in (2.7), which is possible since the norms in (2.7) do not change after passing to suitable versions, and appeal to (4.6) and (4.7).

\[\square\]

Remark 4.2 A similar result is obtained in [21] when λ has a finite support. The continuity of u is proved in [1] in a case where h is bounded, see also [9].
Corollary 4.1 Assume that C^X and C^Y hold. Then, there is a version of U such that for all $s \leq t \leq T$

$$
\mathbb{E} \left[\sup_{r \in [s,t]} |Y_r - Y_s|^2 \right] + \mathbb{E} \left[\sup_{e \in E} \sup_{r \in [s,t]} |U_r(e) - U_s(e)|^2 \right] \leq C_2 (1 + |X_0|^2) |t - s| .
$$

Proof. Recall from the proof of Proposition 4.3 that $Y = u(\cdot, X_\cdot)$ on $[0, T]$. Thus, plugging (2.5) and (2.6) in Proposition 4.4 gives the upper-bound on the quantity

$$
\mathbb{E} \left[\sup_{r \in [s,t]} |Y_r - Y_s|^2 \right] .
$$

The upper-bound on $\mathbb{E} \left[\sup_{e \in E} \sup_{r \in [s,t]} |U_r(e) - U_s(e)|^2 \right]$ is obtained similarly by passing to the version of U given in Remark 4.1. \hfill \square

Proposition 4.5 Assume that $H \cdot C^X, C^Y$ holds. Then there is a version of Z such that, for all $n \geq 1$, $\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - Z_{t_i}|^2 \right] \leq C_2^0 n^{-1} .

Proof. 1. We denote by $\nabla_x h$ (resp. $\nabla_y h, \nabla_z h$) the gradient of h with respect to its x variable (resp. y, z, γ). We first introduce the processes Λ and M defined by $\Lambda_t := \exp \left(\int_0^t \nabla_x h(\Theta_r) \, dr \right)$, $M_t := 1 + \int_0^t M_r \nabla_x h(\Theta_r) \cdot dW_r$. Since h has bounded derivatives, it follows from Itô’s Lemma and Proposition 4.2 that

$$
\Lambda_t M_t Z_t = \mathbb{E} \left[M_T \left(\Lambda_T \nabla g(X_T) \chi_T^f + \int_t^T \left(\nabla_x h(\Theta_r) \chi_r^f + \nabla_y h(\Theta_r) \nabla \chi_r^f \right) \Lambda_r \, dr \right) \right] F_1 \right] .
$$

By Remark 3.8 and Proposition 3.3, we deduce that

$$
\Lambda_t M_t Z_t = \mathbb{E} \left[M_T \left(\Lambda_T \nabla g(X_T) \nabla X_T + \int_t^T F_r \Lambda_r \, dr \right) \right] (\nabla X_{t-})^{-1} \sigma(X_{t-})
$$

where the process F is defined by $F_r := \nabla_x h(\Theta_r) \nabla X_r + \nabla_y h(\Theta_r) \nabla \Gamma_r$ for $r \leq T$. It follows that

$$
\Lambda_t M_t Z_t = \left\{ \mathbb{E} \left[G | F_1 \right] - \int_0^T \mathbb{E} \left[F_r \Lambda_r \, dr \right] \right\} (\nabla X_{t-})^{-1} \sigma(X_{t-}) \quad (4.8)
$$

where $G := M_T \left(\Lambda_T \nabla g(X_T) \nabla X_T + \int_0^T F_r \Lambda_r \, dr \right)$. By Remark 3.7 and (4.4), we deduce that

$$
\mathbb{E} [|G|^p] \leq C_p^0 \quad \text{for all } p \geq 2 .
$$

(4.9)

Set $m_s := \mathbb{E} [G | F_s]$ and let $(\tilde{\zeta}, \tilde{\nu}) \in \mathbb{H}^2 \times \mathbb{L}_2^2$ (with values in $\mathbb{M}^d \times \mathbb{R}^d$) be defined such that $m_s = G - \int_s^T \tilde{\zeta}_r dW_r - \int_s^T \int_E \tilde{\nu}(e) \tilde{\mu}(de, dr)$. Applying (4.9) and Lemma 5.2 to (m, ζ, ν) implies that

$$
\| (m, \zeta, \nu) \|_{BV} \leq C_p^0 \quad \text{for all } p \geq 2 .
$$

(4.10)

Using C^X, Remark 3.7, (4.4), (4.10), applying Lemma 5.1 to M^{-1} and using Itô’s Lemma, we deduce from the last assertion that

$$
\tilde{Z} := (\Lambda M)^{-1} \left(m - \int_0^T F_r \Lambda_r \, dr \right) (\nabla X)^{-1} .
$$
can be written as $$\tilde{Z}_t = \tilde{Z}_0 + \int_0^t \tilde{\mu}_r dr + \int_0^t \tilde{\sigma}_r dW_r + \int_0^t \hat{\beta}(e) \tilde{\mu}(de, dr)$$, where

$$\|\tilde{Z}\|_{S_p}^p \leq C_p^0 \text{ for all } p \geq 2,$$ \hspace{1cm} (4.11)

and $$\tilde{\mu}, \tilde{\sigma}$$ and $$\hat{\beta}$$ are adapted processes satisfying

$$A_{[0,T]}^p \leq C_p^0 \text{ for all } p \geq 2$$ \hspace{1cm} (4.12)

where $$A_{[s,t]}^p := \|\tilde{\mu}\|_{H_{[s,t]}^p}^p + \|\tilde{\sigma}\|_{H_{[s,t]}^p}^p + \|\hat{\beta}\|_{L_{\lambda,[s,t]}^p}^p$$, $$s \leq t \leq T$$.

2. Observe that $$Z_t = \hat{Z}_t$$ and $$\sigma$$ are adapted processes satisfying

$$\mathbb{E} \left[|Z_t - Z_{t_i}|^2 \right] \leq C_2 \left(I_{t_{i,t}}^1 + I_{t_{i,t}}^2 \right)$$ \hspace{1cm} (4.13)

where $$I_{t_{i,t}}^1 := \mathbb{E} \left[|\hat{Z}_t - \hat{Z}_{t_i}|^2 |\sigma(X_{t_i})| \right]$$ and $$I_{t_{i,t}}^2 := \mathbb{E} \left[|\sigma(X_t) - \sigma(X_{t_i})|^2 |\hat{Z}_{t_i}|^2 \right]$$.

Observing that

$$I_{t_{i,t}}^1 = \mathbb{E} \left[\mathbb{E} \left[|\hat{Z}_t - \hat{Z}_{t_i}|^2 |\mathcal{F}_{t_i} |\sigma(X_{t_i})|^2 \right] \right] \leq C_2 \mathbb{E} \left[\left(\int_{t_i}^{t_{i+1}} \left(|\tilde{\mu}_r|^2 + |\tilde{\sigma}_r|^2 + \int_E |\hat{\beta}(e)|^2 \lambda(de) dr \right) |\sigma(X_{t_i})|^2 \right]$$,

we deduce from Hölder inequality, (2.5) and the linear growth assumption on $$\sigma$$ that

$$\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} I_{t_{i,t}}^1 dt \leq C_2 n^{-1} \mathbb{E} \left[\left(\int_0^T \left(|\tilde{\mu}_r|^2 + |\tilde{\sigma}_r|^2 + \int_E |\hat{\beta}(e)|^2 \lambda(de) dr \right) \sup_{t \leq T} |\sigma(X_t)|^2 \right] \leq C_2 \left(A_{[0,T]}^4 \right)^{\frac{1}{2}} n^{-1}. \hspace{1cm} (4.14)$$

Using the Lipschitz continuity of $$\sigma$$, we obtain

$$I_{t_{i,t}}^2 \leq C_2 \mathbb{E} \left[|X_t - X_{t_i}|^2 |\hat{Z}_{t_i}|^2 \right]. \hspace{1cm} (4.15)$$

Now observe that for each $$k, l \leq d$$

$$\mathbb{E} \left[(X_{t_{i}}^k - X_{t_{i}}^l)^2 (\hat{Z}_{t_{i}}^l)^2 \right] \leq C_2 \left(\mathbb{E} \left[(\hat{Z}_{t_{i}}^l - \hat{Z}_{t_{i}}^l)^2 (X_{t_{i}}^k)^2 \right] + \mathbb{E} \left[(X_{t_{i}}^k \hat{Z}_{t_{i}}^l - X_{t_{i}}^k \hat{Z}_{t_{i}}^l)^2 \right] \right) \hspace{1cm} (4.16)$$

Arguing as above, we obtain

$$\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[(\hat{Z}_{t_{i}}^l - \hat{Z}_{t_{i}}^l)^2 (X_{t_{i}}^k)^2 \right] \leq C_2 \left(1 + \left(A_{[0,T]}^4 \right)^{\frac{1}{2}} \right) n^{-1}. \hspace{1cm} (4.17)$$

Moreover, we deduce from the linear growth condition on $$b$$, $$\sigma$$, $$\beta$$ and (2.5), (4.11) and (4.12) that $$X_{t_{i}}^l \hat{Z}_{t_{i}}^l$$ can be written as

$$X_{t_{i}}^l \hat{Z}_{t_{i}}^l = X_{t_{i}}^l \hat{Z}_{t_{i}}^l + \int_0^t \hat{\mu}_{r}^l dr + \int_0^t \hat{\sigma}_{r}^l dW_r + \int_0^t \hat{\beta}_r^l(e) \tilde{\mu}(de, dr)$$.
where \(\dot{\mu}_{kl}, \dot{\sigma}_{kl} \) and \(\dot{\beta}_{kl} \) are adapted processes satisfying \(\| \dot{\mu}_{kl} \|_{H^2} + \| \dot{\sigma}_{kl} \|_{H^2} + \| \dot{\beta}_{kl} \|_{L^2} \) \(\leq C_0^0 \). It follows that

\[
\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[(X^k_{it_i} \tilde{Z}^l_{it_i} - X^k_{it_i} \tilde{Z}^l_{it_i})^2 \right] \leq C_2 \epsilon n^{-1} \left(\| \dot{\mu}_{kl} \|_{H^2}^2 + \| \dot{\sigma}_{kl} \|_{H^2}^2 + \| \dot{\beta}_{kl} \|_{L^2}^2 \right)
\]

which combined with (4.15), (4.16) and (4.17) leads to

\[
\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} I^2_{ti} dt \leq C_2^0 (1 + (A^4_{0,T})^{\frac{1}{2}}) n^{-1}.
\]

The proof is concluded by plugging (4.14)-(4.18) in (4.13) and recalling (4.12). \(\Box\)

Proposition 4.6 Assume that \(C^X \cdot C^Y \) holds. Then there is a version of \(Z \) such that, for all \(\epsilon > 0 \) and \(n \geq 1 \), \(\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|Z_t - Z_{t_i}|^2 \right] \leq C^0_\epsilon n^{-1+\epsilon} \).

Proof. We adapt the arguments of [6]. Let \(\Lambda \) and \(M \) be defined as in the proof of Proposition 4.5 and recall that, after possibly passing to a suitable version, \(Z_t = I^t_t \) where, for \(s, t \leq T \),

\[
I^t_s := \mathbb{E} \left[\frac{M_T}{\Lambda_T \Lambda_t M_t} \left(\Lambda_T \nabla g(X_T) \chi_T^t + \int_t^T \left(\nabla_r h(\Theta_r) \chi_r^t + \nabla_r h(\Theta_r) \Gamma^t_r \right) \Lambda_r \, dr \right) \bigg| \mathcal{F}_s \right] .
\]

For \(t \in [t_i, t_{i+1}] \), \(i \leq n-1 \), we therefore have \(|Z_t - Z_{t_i}|^2 \leq C_2 (|I^{t_i}_t - I^{t_i}_{t_i}|^2 + |I^t_t - I^t_{t_i}|^2) \) where, by Remark 3.5, (5.8) below applied to (3.4), recall that \(\rho \) is bounded, and standard estimations on \(\Lambda M \), \(\sup_{t \leq n-1, t \in [t_i, t_{i+1}]} \mathbb{E} \left[|I^t_t - I^t_{t_i}|^2 \right] \leq C^0_2 n^{-1} \). Thus it suffices to prove that

\[
\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|I^{t_i}_t - I^{t_i}_{t_i}|^2 \right] \leq C^0_\epsilon n^{-1+\epsilon},
\]

where \(\epsilon > 0 \) is now fixed. To this purpose, we first observe that \(I^{t_i} \) is a martingale on \([t_i, t_{i+1}] \), which implies that

\[
\mathbb{E} \left[|I^{t_i}_t - I^{t_i}_{t_i}|^2 \right] \leq \mathbb{E} \left[|I^{t_i}_{t+1} - I^{t_i}_{t_i}|^2 \right].
\]

Remark that \(\sum_{i=0}^{n-1} \mathbb{E} \left[|I^{t_i}_{t+1} - I^{t_i}_{t_i}|^2 \right] = \mathbb{E} \left[|Z_T|^2 - |Z_0|^2 \right] + \sum_{i=1}^{n} \mathbb{E} \left[|I^{t_i-1}_{t_i} - |I^{t_i}_{t_i}|^2 \right] \), which, combined with Proposition 4.2 and (4.19), leads to

\[
\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|I^{t_i}_t - I^{t_i}_{t_i}|^2 \right] = C_2^0 n^{-1} \left(1 + \sum_{i=1}^{n} \mathbb{E} \left[|I^{t_i-1}_{t_i} - |I^{t_i}_{t_i}|^2 \right] \right).
\]

To conclude the proof, it remains to show that

\[
\mathbb{E} \left[|I^{t_i}_{t_i} - I^{t_i}_{t_i}|^2 \right] \leq \mathbb{E} \left[|I^{t_i-1}_{t_i} - I^{t_i}_{t_i}| |I^{t_i-1}_{t_i} + I^{t_i}_{t_i}| \right] \leq C^0_\epsilon n^{-1+\epsilon}.
\]
which follows from Hölder inequality, Remark 3.5 and Lemma 5.2 as above.

We now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. 1. We start with (ii). We first show that (2.16) holds under H and C^Y. We consider a C_b^∞ density q on \mathbb{R}^d with compact support and set

$$(b^k, \sigma^k, \beta^k(\cdot, e))(x) = k^d \int_{\mathbb{R}^d} (b, \sigma, \beta(\cdot, e))(\bar{x}) q(k|x-\bar{x}|) \, d\bar{x}.$$

For large $k \in \mathbb{N}$, these functions are bounded by $2K$ at 0. Moreover, they are K-Lipschitz and C^4_b. Using the continuity of σ, one also easily checks that σ^k is still invertible. By H and Remark 2.4, for each $e \in E$ and $x \in \mathbb{R}^d$, $I_d + \nabla \beta^k(x, e)$ is invertible with uniformly bounded inverse. We denote by (X^k, Y^k, Z^k, U^k) the solution of (2.2)-(2.3) with (b, σ, β) replaced by (b^k, σ^k, β^k). Since (b^k, σ^k, β^k) converges pointwise to (b, σ, β), one easily deduces from Lemma 5.1 and Lemma 5.2 that (X^k, Y^k, Z^k, U^k) converges to (X, Y, Z, U) in $S^2 \times \mathcal{B}^2$. Since the result of Proposition 4.5 holds for (X^k, Y^k, Z^k, U^k) uniformly in k, this shows that (ii) holds under H and C^Y, recall Remark 2.3.

We now complete the proof of Theorem 2.1. Let (X, Y^k, Z^k, U^k) be the solution of (2.2)-(2.3) with h^k instead of h, where h^k is constructed by considering a sequence of mollifiers as above. For large k, $h^k(0)$ is bounded by $2K$. By Lemma 5.2, (Y^k, Z^k, U^k) converges to (Y, Z, U) in $S^2 \times \mathcal{B}^2$ which implies (ii) by arguing as above.

2. Since ρ is bounded and $\lambda(E) < \infty$, Corollary 4.1 and Proposition 4.6 imply (2.14) and (2.15) under C^X-C^Y, recall Remark 2.3. Now observe that

$$\mathbb{E} \left[\sup_{t \in [t_i, t_{i+1}]} |\Gamma_t - \bar{\Gamma}_{t_i}|^2 \right] \leq 2 \mathbb{E} \left[\sup_{t \in [t_i, t_{i+1}]} |\bar{\Gamma}_t - \Gamma_{t_i}|^2 \right] + 2 \mathbb{E} \left[|\Gamma_{t_i} - \bar{\Gamma}_{t_i}|^2 \right]$$

where, by Jensen’s inequality and the fact that Γ_{t_i} is \mathcal{F}_{t_i}-measurable,

$$\mathbb{E} \left[|\Gamma_{t_i} - \bar{\Gamma}_{t_i}|^2 \right] \leq \mathbb{E} \left[\frac{n}{T} \int_{t_i}^{t_{i+1}} (\Gamma_t - \Gamma_s) ds \right]^2 \leq \frac{n}{T} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[|\Gamma_t - \Gamma_s|^2 \right] ds .$$

Thus, (2.14) implies $\|\Gamma - \bar{\Gamma}\|_{S^2}^2 \leq C^0_2 n^{-1}$ and $\|\Gamma - \bar{\Gamma}\|_{H^2}^2 \leq C^0_2 n^{-1}$. We conclude by the same approximation argument as above.

5 Appendix: A priori estimates

For sake of completeness, we provide in this section some a priori estimates on solutions of forward and backward SDE’s with jumps.

In the following, we consider some measurable maps $\tilde{b}^i : \Omega \times [0, T] \times \mathbb{R}^d \mapsto \mathbb{R}^d$, $\tilde{\sigma}^i : \Omega \times [0, T] \times \mathbb{R}^d \mapsto \mathbb{M}^d$, $\tilde{\beta}^i : \Omega \times [0, T] \times \mathbb{R}^d \times E \mapsto \mathbb{R}^d$ and $\tilde{f}^i : \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \times E \mapsto \mathbb{R}^{d+1}$.
Lemma 5.1

\[\|X^1\|_{L^p_{\rho(t_1,T)}}^p \leq C_p \mathbb{E}[\|\tilde{X}^1\|^p] + \|\tilde{b}^1(\cdot,0)\|^p_{H_{\rho(t_1,T)}} + \|\tilde{\sigma}^1(\cdot,0)\|^p_{H_{\rho(t_1,T)}} + \|\tilde{\beta}^1(\cdot,0)\|^p_{L^p_{\rho(t_1,T)}}. \]

Moreover, for all \(t_1 \leq s \leq t \leq T \),

\[\mathbb{E}\left[\sup_{t \leq u \leq T} |X^1_u - X^1_s|^p \right] \leq C_p A^1_p |t - s|, \quad (5.3) \]

where \(A^1_p \) is defined as

\[\mathbb{E}[|\tilde{X}^1|^p] + \mathbb{E}\left[\sup_{t \leq u \leq T} |\tilde{b}^1(u,0)|^p + \sup_{t \leq u \leq T} |\tilde{\sigma}^1(u,0)|^p + \sup_{t \leq u \leq T} \left\{ \int \tilde{\beta}^1(u,e)\lambda(de) \right\} \right], \]

and, for \(t_2 \leq t \leq T \),

\[\|\delta X\|_{L^p_{\rho(t_2,T)}}^p \leq C_p \left(E[|\tilde{X}^1 - \tilde{X}^2|^p + A^1_p |t_2 - t_1|] \right) + C_p \left(E\left(\int_{t_2}^T |\delta b| dt \right)^p + \|\delta \sigma\|^p_{H_{\rho(t_2,T)}} + \|\delta \beta\|^p_{L^p_{\rho(t_2,T)}} \right). \]

where \(\delta X := X^1 - X^2 \), \(\delta b = (\tilde{b}^1 - \tilde{b}^2)(\cdot, X^1) \) and \(\delta \sigma, \delta \beta \) are defined similarly.

Lemma 5.2 (i) Let \(\tilde{f} \) be equal to \(\tilde{f}^1 \) or \(\tilde{f}^2 \). Given \(\tilde{Y} \in L^p(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R}) \), the backward SDE

\[Y_t = \tilde{Y} + \int_t^T \tilde{f}(s, Y_s, Z_s, U_s) ds + \int_t^T Z_s \cdot dW_s + \int_t^T \int_E U_s(e) \tilde{\mu}(de, ds) \]

has a unique solution \((Y, Z, U)\) in \(B^2 \). It satisfies

\[\|Y, Z, U\|_{L^p}^p \leq C_p \mathbb{E}\left[|\tilde{Y}|^p + \left(\int_0^T |\tilde{f}(t,0)| dt \right)^p \right]. \]
Moreover, if \(A_p := E \left[|\tilde{Y}|^p + \sup_{s \leq t} |\tilde{f}(t,0)|^p \right] < \infty \), then
\[
E \left[\sup_{s \leq u \leq t} |Y_u - Y_s|^p \right] \leq C_p \left\{ A_p |t - s|^p + \|Z\|_{H^p_{[s,t]}}^p + \|U\|_{L^p_{\lambda,[s,t]}}^p \right\}. \tag{5.7}
\]

(ii) Fix \(\tilde{Y}^1 \) and \(\tilde{Y}^2 \) in \(L^p(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R}) \) and let \((Y^i, Z^i, U^i) \) be the solution of (5.6) with \((\tilde{Y}, \tilde{f}) \) in place of \((\tilde{Y}, \tilde{f}) \), \(i = 1, 2 \). Then, for all \(t \leq T \),
\[
\| (\delta Y, \delta Z, \delta U) \|_{B^p_{[t,T]}}^p \leq C_p E \left[|\delta \tilde{Y}|^p + \left(\int_t^T |\delta \tilde{f}|_r dr \right)^p \right]. \tag{5.8}
\]
where \(\delta \tilde{Y} := \tilde{Y}^1 - \tilde{Y}^2 \), \(\delta Y := Y^1 - Y^2 \), \(\delta Z := Z^1 - Z^2 \), \(\delta U := U^1 - U^2 \) and \(\delta \tilde{f} := (\tilde{f}^1 - \tilde{f}^2)(., Y^1, Z^1, U^1) \).

The proof of the previous results is standard, see e.g. [15] and [12]. We refer to pages 128-129 in [11] for more details. The jump part is handled by using the following proposition which plays the same role as the usual Burkholder-Davis-Gundy’s Lemma. It follows from an induction argument already used in [4]. The proof can be found in [11], see page 125.

Proposition 5.1 Given \(\psi \in L^2_{\lambda} \), let \(M \) be defined by \(M_t = \int_0^t \int_E \psi_s(\epsilon) \bar{\mu}(ds, de) \) on \([0,T] \). Then, for all \(p \geq 2 \), \(k_p \| \psi \|_{L^p_{\lambda,[0,T]}}^p \leq \| M \|_{S^p_{\lambda,[0,T]}}^p \leq K_p \| \psi \|_{L^p_{\lambda,[0,T]}}^p \), where \(k_p, K_p \) are positive numbers that depend only on \(p, \lambda(E) \) and \(T \).

References

