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Abstract

We consider the infinite horizon optimal consumption-investment problem under
the drawdown constraint, i.e. the wealth process never falls below a fixed fraction
of its running maximum. We assume that the risky asset is driven by the constant
coeflicients Black and Scholes model. For a general class of utility functions, we provide
the value function in explicit form, and we derive closed-form expressions for the optimal
consumption and investment strategy.
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1 Introduction

Since the seminal papers of Merton [16, 17|, there has been an extensive literature on the
problem of optimal consumption and investment decision in financial markets subject to
imperfections. The case of incomplete markets was first considered by Cox and Huang [4]
and Karatzas, Lehoczky and Shreve [12]. Cvitani¢ and Karatzas [5] considered the case
where the agent portfolio is restricted to take values in some given closed convex set. He
and Pages [11] and El Karoui and Jeanblanc [9] extended the Merton model to allow for
the presence of labor income. Constantinides and Magill 3], Davis and Norman [7], and
Shreve and Soner [21]| considered the case where the risky asset is subject to proportional
transaction costs. Ben Tahar, Soner and Touzi [2] considered the case where the sales of
the risky asset are subject taxes on the capital gains.

In this paper, we study the infinite horizon optimal consumption and investment problem
when the wealth never falls below a fixed fraction of its current maximum. This is the
so-called drawdown constraint. Fund managers do offer this type of guarantee in order to
satisfy the aversion to deception of the investors.

*We are grateful to Nicolas Gaussel we introduced the authors to this problem.
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The drawdown constraint on the wealth accumulation of the fund manager was first con-
sidered by Grossman and Zhou [10] for an agent maximizing the long term growth rate of
the expected power utility of final wealth, with no intermediate consumption. Their main
result is that the optimal investment in the risky asset is an explicit constant proportion of
the difference between the current wealth and the imposed fixed fraction of its running max-
imum. Klass and Nowicki [14] show that the strategy proposed in Grossman and Zhou [10]
does not retain its optimal long term growth property when generalized to the discrete time
setting. Nevertheless, Cvitanic and Karatzas [6] developed a beautiful martingale approach
to the Grossman and Zhou [10] problem which makes the analysis much simpler and allows
for more general class of price processes. Their main observation is that strategies based
on investment in proportions of the distance between the current wealth and its drawdown
constraint, are always admissible. Besides, El Karoui and Meziou [8] recently character-
ized the optimal portfolio obtained by Cvitanic and Karatzas [6] in terms of Azema-Yor
martingales, opening the door to the study of non linear drawdown constraints. A general
criticism that one may formulate about the long term growth rate criterion is that it only
provides the asymptotic optimal behavior of the fund manager. In other words, there is no
penalization for using an arbitrary strategy as long as it coincides with the Grossman and
Zhou [10] optimal strategy after some given fixed point in time.

In this paper, we consider the classical Merton criterion, which consists in maximizing the
infinite horizon utility of consumption, for a fund manager subject to the drawdown con-
straint. This problem was considered recently by Roche [19] in the context of the power util-
ity function. Following the initial Merton approach, Roche [19] was able to guess a solution of
the dynamic programming equation, and provided some numerical results which highlight
some interesting consequences of the drawdown constraint on the optimal consumption-
investment strategy. The homogeneity of the power utility is the key-property in order to
guess the candidate solution. Notice that Roche [19] does not provide any argument to
verify that his candidate solution is indeed the value function of the optimal consumption-
investment problem.

In contrast with Roche [19], the analysis of our paper allows for a general class of utility
functions whose asymptotic elasticity (see [15]) is bounded by some level depending on the
drawdown level, and satisfying some condition related to the relative risk aversion. For any
utility function in this class, we derive an explicit expression for the value function of the fund
manager, together with the optimal consumption and investment strategy. The key-idea in
order to guess the candidate solution is to pass from the dynamic programming equation
to the partial differential equation (PDE) satisfied by the dual indirect utility function.
The latter PDE being linear inside the state space domain, one can easily account for the
Neumann condition related to the drawdown constraint, and derive an explicit candidate
solution for any utility function. In order to prove that the thus derived candidate solution
is indeed the value function of our optimal consumption-investment problem, we use a
verification argument which requires a convenient transversality condition. The verification
argument is the main technical step where the above mentioned restrictions on the utility
functions are required.

The solution derived in this paper agrees with that of Roche [19] in the zero interest rate



and power utility case. However, for positive interest rates, we follow Cvitanic and Karatzas
[6] by defining the drawdown constraint in terms of the discounted wealth.

The paper is organized as follows. Section 2 is devoted to the formulation of the problem.
The main result of the paper is provided in Section 3. Section 4 presents the formal argument
that we used in order to guess our candidate solution. The rigorous proof of our main result

is reported in Section 5.

2 Problem formulation

Throughout this paper, we consider a complete filtered probability space (2, F, {Fi}+>0,P)
endowed with a Brownian motion W = {W, ¢ > 0} with values in R, and we denote by
F:={F,t >0}

The financial market consists of a non-risky asset, with process normalized to unity, and
one risky asset with price process defined by the Black and Scholes model :

S, = oS, (AW, + Adt) ,

where ¢ > 0 is the volatility parameter, and A € R is a constant risk premium.

The normalization of the non-risky asset to unity is as usual a reduction of the model
obtained by taking this asset as a numéraire. Hence, all amounts are evaluated in terms of
their discounted values.

For any continuous process {M;,t > 0}, we shall denote by

M} = sup M,, t>0,
0<r<t

the corresponding running maximum process, and we recall that

o
M* is non-decreasing and / (M} — M) dM; = 0. (2.1)
0

2.1 Consumption-portfolio strategies and the drawdown constraint

We next introduce the set of consumption-investment strategies whose induced wealth pro-
cess X satisfies the drawdown constraint

Xy > aX] forevery t>0, as., (2.2)

where « is some given parameter in the interval [0,1).
A portfolio strategy is an F—adapted process 6 = {6, t > 0}, with values in R, satisfying
the integrability condition

T
/ 0:%dt < oo as. forall T >0. (2.3)
0

A consumption strategy is an F—adapted process C' = {C¢, t > 0}, with values in Ry,
satisfying

T
/ Cidt < oo as. foral T >0. (2.4)
0
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Here, 6; and C; denote respectively the amount invested in the risky asset and the consump-
tion rate at time ¢t. By the self-financing condition, the wealth process induced by such a

pair (C,0) is defined by
t t
ch,C,@ = r— / Crdr + / b, (dWr + /\d’l“) t>0, (2'5)
0 0

where z is some given initial capital. We shall denote by A, (z) the collection of all such
consumption-investment strategies whose corresponding wealth process satisfies the draw-
down constraint (2.2).

Remark 2.1 For a given initial wealth x and an admissible consumption-investment strat-
egy (C,0) € Ay(2), let X := X»Y and 7 :=inf {t >0 : X; = aX]}.

e Denoting by P the probability measure under which the process {W) := W+ \t, t > 0} is
a Brownian motion, we sce that, for ¢ > 0, EF’ [f:“ Crdr\}}} =B [a X} — X, 14| F] <0
on {7 < co}. This shows that E [ [ C\.dr] = 0.

e Then X, = X, + f:+t JHTdWT)‘ on {7 < oo}, and in order for the drawdown constraint
to be satisfied, it is necessary that [ |6, [*dr = 0.

2.2 A subset of admissible strategies

In order to ensure that the drawdown constraint is satisfied, one may define the consumption

and the investment decisions in terms of proportions of the difference X; — aX; :
Cy = ¢ [Xy—aX/] and 0, = m [Xy — aX[], (2.6)

for an F—adapted pair process (¢, ) with values in R4 xR. We shall denote in this subsection
by {X&“"(t), t > 0} the corresponding wealth process with initial capital z, where the time
variable appears in parenthesis, in order to highlight the dependence on «.
Under the self-financing condition, the dynamics of this process is given by
z,c,m Z,c,m T,C,T * dSi
dXE2Om(t) = (X2T(t) — af{XZ™} (t)) | me o adt), t>0. (2.7)
t
The following argument reported from Cvitani¢ and Karatzas [6] shows that for any o €
[0,1), and for any F—adapted processes (¢, ) with values in R, x R satisfying

T T
/ ctdt—l—/ |m|?dt < co forany T >0, (2.8)
0 0

the stochastic differential equation (2.7) has a unique solution satisfying the drawdown
condition (2.2), which turns out to be explicit.

First, in the absence of the drawdown constraint, i.e. « = 0, the stochastic differential

equation (2.7) is well-known to have the following unique solution

t 1 t
X" (t) = wexp [/ <—cr + Aom, — 5]07@,]2) dr —l—/ UﬂrdWr] t>0,
0 0



for every initial capital x > 0 and every consumption-investment strategy (c,7) satisfying
(2.8).

Now, the key ingredient for the construction of a solution to (2.7) is to introduce the process
Xgom(t) = [X5o(t) — a { X3V O] (XS (@), t20. (2.9)

By It6’s Lemma together with (2.1), it follows that

axgme) = Xy O (12 | e 1] XY 0+ dxe)
= Xg,cm(t) [()\O’ﬂ't — Ct) dt + O'T('tth] . (210)

Since the dynamics of X2“™ are independent of «, we derive

Xpem — xperem — xHOCT Gith p(a) = X2OT(0) = (1— )2/ (2.11)
We next deduce from (2.9) that, for every r < ¢,
X)) < (1= a) (XY (VI < (1= a) {(XETY (V0 (2.12)

At a point of maximum r* of the process X5 " on [0,t], the previous inequality becomes

an equality so that finally
(XY (@) = (- o) {xzemy (@00, .13

Combining (2.9), (2.11) and (2.13) finally leads to

z(a),c,m @
xzer = [Xg(a“’u — {Xg“”‘)’c’“}*] 7{)(01_@ } L (214)

Since (¢, ) satisfies (2.8), Xg(a)’c’ﬂ is well defined and the above argument shows that the
right hand side of (2.14) is the unique solution of (2.7), as one can check by an immediate
application of Itd’s lemma. Remark also from (2.10) that X2 is positive so that the
solution of (2.7) necessarily satisfies the drawdown condition (2.2).

Hence, for any pair (¢, 7) of F—adapted processes, with values in R4 x R, and satisfying
(2.8), the pair process (C,0) defined by (2.6) is an admissible consumption-investment
strategy in A, ().

2.3 The optimal consumption-investment problem

The previous paragraph shows in particular that, for any initial capital x, the set A, (x)
contains non-trivial consumption-investment strategies.
We now formulate the optimal consumption-investment problem which will be the focus

of this paper. Throughout this paper, we consider a utility function

U: R, =R  C? concave, satisfying U'(04) = oo and U'(c00) = 0.  (2.15)



More conditions on U will be needed for our main result, see subsection 3.3 below. For a
given initial capital z > 0, the optimal consumption-investment problem under drawdown

constraint is defined by :

[e.9]
uy = sup  J§(C,0) where JY(C,0) = E [ / e U () dt} ., (2.16)
(C0)€Aa () 0
where (3 > 0 is the subjective discount factor which expresses the preference of the agent for
the present. For a = 0, u8 reduces to the classical Merton optimal consumption-investment
problem. We shall use the dynamic programming approach in order to derive an explicit
solution of the problem u§. We then need to introduce the dynamic version of this problem :

ut(x,z) = sup J*C,0) where J*(C,0) = E[/ e_ﬁtU(Ct)dt] ,(2.17)
(C0)eAL(2,2) 0

the pair (z,z), with < z, stands for the initial condition of the state processes (X, Z)
defined, for ¢t > 0, by

*

t t
Zf’z’c’e =2zV {XI’C’G} and Xf’c’e =z — / Crdr + / o0, (AW, + Adr) , (2.18)
0 0

t

and A, (z, z) is the collection of all F—adapted processes (C, 0) satisfying (2.3)-(2.4) together
with the drawdown constraint

Xévycye 2 aZ;BVZ’Cve a.s. , t 2 0 . (2.19)

Clearly, avoiding the trivial case x = z = 0, this restricts the pair of initial condition (z, 2)
to the closure Dy, in (0,00) x (0,00) of the domain

D, = {(z,2) : 0<az<z<z}. (2.20)

By the same argument as in Remark 2.1,

JUC0) = E [ /0 " PU(Cydt + % e-ﬁf} (2.21)
where
7 := inf {t >0 XPO0 = osz’Z’C’g} .
In particular, this implies that
u®(z,2) = U(0)/3 for (x,2) €D, \Dq. (2.22)

We conclude this subsection by stating the following concavity property of the value function
u®, as observed in [19]|. This argument can be skipped by the reader as it is not needed for
the proof of our main result.

Lemma 2.1 For any z > 0, the function u®(., z) is concave.



Proof. Let v € [0,1] and a triplet (x,2’, 2) satisfying (z,z) € D, and (2, 2) € D,. Take
(C,0) € Ay(z,2) and (C',0") € A,(2', 2). For any t > 0, we have

* *

VXtm,C,@ v (11— I/)Xx/’C,ﬁ/ > vazV {Xm,c,e} +(1-v)azV {me,crf)/}

t t

> azv{pXxO 4 (1 -y xT Y
t

so that, from the linearity of equation (2.5), we deduce
(C+ (A =v)C" v+ (1—-v)d) € Ay (va+ (1 —v)a',2) .
Now, since J defined in (2.17) inherits the concavity of U, we get
vJ*(C,0) + (1 —v)J*C,0) < J*WwC + (1 —v)C",v0+ (1 —v)0) <u®(vz + (1 —v)2, 2),

and taking the maximum over (C,0) and (C’,0") concludes the proof. O

3 The main results

3.1 The corresponding dynamic programming equation

The optimal consumption-investment problem (2.17) is in the class of stochastic control
problems studied in Barles, Daher and Romano [1]. The dynamic programming equation is
related to the second order operator

0252

Lu = Pu— sup |U(C)+ (o —Cluy + —uzsz| - (3.1)
C>0,0€R 2
Defining the Legendre-Fenchel transform
V(y) = sup (U(z) —zy) (3.2)

x>0

and, recalling the concavity property of u® stated in Lemma 2.1, the above dynamic pro-
gramming equation simplifies to

2,2
Lu = Pu—V (uzy)+ 7—”6 whenever wu is strictly concave. (3.3)
Uz
with maximizers in (3.1) given by
C = V' (u) = (U’)_l (uy) and 6 := A U . (3.4)
0 Ugy

Under some convenient smoothness conditions, we expect the value function u® to solve the
following dynamic programming equation

Lu*(z,z) = 0, for (z,z) € Dy; (3.5)
u(az,z) = 0, for z>0; (3.6)
ug(z,2) = 0, for z>0. (3.7)

We refer to [1] for the rigorous derivation of this dynamic programming equation in the
viscosity sense. Since we will be using a verification argument in this paper, we only need
to start from this partial differential equation, and "guess” a candidate solution for it.



3.2 The Fenchel-Legendre dual functions

The key-ingredient in order to derive the explicit solution in this paper is to introduce the
Legendre-Fenchel transforms of the value function u® with fixed z :

v*(y,2) = sup (u*(z,z) —ay) . (3.8)
x>0
Since the value function u® is concave in its first variable, it can indeed be recovered from
v® by the duality relation

u(xz,z) = inf (v*(y,z2)+xy) . (3.9)

f
yeR

In the absence of drawdown constraint, the functions u" and v° are independent of the z

0 can be obtained explicitly in terms of the density of the

variable and the dual function v
risk-neutral measure. This can be seen by the following formal PDE argument: assuming
that u” is smooth and satisfies the Inada conditions (u®)(0+) = +o0, (u’)'(00) = 0, it

follows that

Py) = W ([ y) —ylW”) ] (y) for y=0, (3.10)

and v%(y) = oo for y < 0. Substituting in the dynamic programming equation (3.5), it
follows that v¥ solves on (0, 00) the linear parabolic partial differential equation

)\2

Lro(y) = Boly) — Byvy(y) — T v ) = V(y). (3.11)

Under a convenient transversality condition, this provides
o 1
W(y) = E [/ e Pty (eﬁtY}> dt] where Y; = yexp <—)\Wt — 5)\215) . (3.12)
0

In the particular case of a power utility function, this relation allows to derive explicitly v°
and u° as detailed at the beginning of section 3.5. This result is well-known in the financial
mathematics literature, and can be proved rigourously by probabilistic arguments, see e.g.
[13].

In this complete market setting, it is remarkable that the Fenchel transform v° solves
a linear PDE. This is the key-observation in order to guess a candidate solution for the
optimal consumption-investment problem under drawdown constraint.

3.3 Assumptions

In this subsection, we collect the assumptions needed for our main result. Our first condition
concerns the parameter

_ 2

Assumption 3.1 —— <1—aqa.
1+~



Observe that this condition is automatically satisfied when o« = 0. Under this condition,
we may introduce the positive parameter

)
§i=—)  sothat —— = (1—a)—, (3.13)
1—a(l+7) 1+~ 146
and we may express Assumption 3.1 in the equivalent form
0 > 0. (3.14)

Our next condition concerns the so-called asymptotic elasticity of the utility function U

!
AE(U) = li;n_)s;épxUU(g),

as introduced by [15, 20].
Assumption 3.2 AE(U) < o
p ' 1446

In view of (3.14), Assumption 3.2 is stronger than the usual reasonable asymptotic elas-
ticity condition. From Lemma 6.5 in [15], we deduce the existence of a constant Kj such
that

U(z) < Ky <1 + T) , x>0, where p:=AE(U). (3.15)
p
Furthermore, since U and V satisfy the relation
U) = V([-V1'@) +2[-V] @), 220,

where both terms on the right hand side are positive, it follows from (3.15) together with
the fact that U’(co) = 0 that is

1
limsup —V'(y)yT» < oo and limsup V(y)yl%) < 0.
y—0 y—0

In particular, this ensures the following integrability properties

1 1
/ —V'(s)s°ds < oo, and / Vi(s)s®lds < 0. (3.16)
0 0

Our final assumption on the utility function is

1 Yy ! 1+5
Assumption 3.3  inf / Vi(s) <i> dsp > 0.
v>0 | yV"(y) Jo s y

Remark 3.1 Let Assumptions 3.1 and 3.2 hold. Then, Assumption 3.3 is satisfied whenever

the relative risk aversion of U is uniformly bounded from below. Indeed, if there exist C’ > 0
such that —zU"(z) > C'U’(x) for any = > 0, then C"yV"(y) < —V'(y), for any y > 0, and
the monotonicity of V' leads to Assumption 3.3.



3.4 Explicit solution under drawdown constraint

According to (3.16), under Assumptions 3.1 and 3.2, the function

9(¢) = 6(15+ 5 (/OC —VS'(S) <§>1+6ds+/coo#/(s)ds> . (>0, (3.17)

is a well defined positive C'! function from (0,00) to (0, 00), with negative derivative

, B _i C_V/(S) <f>1+6
9(C) = ﬁ(/o - : ds <0, (>0. (3.18)

We denote ¢ := g~! its inverse which is a C'! decreasing positive function from (0, 00) to

(0,00) defined implicitly by the relation

) /SO(Z) —V’(s) < s >1+5 /oo —V/(S)
z = — ds + ds|, z>0. 3.19
31+9) ( o s\ o (319
We now introduce the function
~ (’D(Z)>1+“/ /@(z) —V’(S) < s >1+6
h(y,z) = az+ < —_— ] 3.20
®2) B+ \ y 0 s ¢(z) (3.20)
ds + —

d
o /y e <f>1+7 LELPA y > o(2)
B+ | Joy 8 y y 5 T '

Lemma 3.1 Let Assumptions 3.1 and 3.2 hold. For any z > 0, the function h(.,z) is
invertible and its inverse denoted f(.,z) is a strictly decreasing C function from (az,z] to

[p(z),00) whose derivative satisfies

-1
_fx(x,z) = z—az)+ 2 RAC) s T,z
fle,z) <(7+1)( )+g/f(w) p d) ,  (@,2z)eDq. (321

Proof. Fix z > 0. The function h(., z) is C! on (¢(z), o) and

e = ()[R ) e [, () )

which is strictly negative. Therefore, since h(p(z),z) = z and h(oco, z) = az, h is invertible

and its inverse f(.,z2) is a strictly decreasing C'! function from (az, z] to [¢(z), o). Simple
computation then leads to (3.21). O

We now introduce our candidate feedback solutions for the consumption-investment prob-
lem:

Clz,2) == —[V'o fl(z,2) and 6(z,2) =

Q>

{<7+1)(w—az)—1 el

ds $(3.22)
B f(z,z) s }

for (z,z) € Dg, and C(z, 2) = O(z,z) = 0 on Dy \ D,.
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Lemma 3.2 Let Assumptions 3.1, 3.2 and 3.3 hold. Then, the functions C and 0 are
Lipschitz on D,.

The proof of this lemma requires precise regularity properties of the function f and is
reported in Section 5.2. Given an initial condition (x,z) € D,, we consider the stochastic

differential equation
dX;, = —C(Xy,Zy)dt + 0(Xy, Zy)o (dW; + Adt) (3.23)

where we used the previous notation

Zy = zVX;, t>0.

Lemma 3.3 Let Assumptions 3.1, 3.2 and 3.3 hold. Then the stochastic differential equa-
tion (3.23) has a unique strong solution (X, Z) for any initial condition (x,z) € Dy. More-

over the pair process
(0*79*) = <év é) (Xt72t) € Aa($7z)
so that X, satisfies the drawdown constraint (2.19).

Proof.  We first extend continuously ' and 6 to {(x,2) : x < z} by setting them equal to
zero, so that they remain Lipschitz, see Lemma 3.2. We shall denote by K > 0 a common
Lipschitz constant. For a fixed z, we consider the map G(t,x) := C (x(t), z V x*(t)) defined
on R, x C%(R,). Since C is Lipschitz, We directly estimate that

G(t,x) = Gt,y)] < K{x({#)-y®[+[zvx'(t)-zVy ()} < 2K [x-yl,

for t > 0 and x,y € C°(R,). This proves that G is a functional Lipschitz function in the
sense of Protter [18]. By a similar calculation, we also show that the diffusion coefficient
of the stochastic differential equation (3.23) is also functional Lipschitz. The existence and
uniqueness of a strong solution to (3.23) follows from Theorem 7 p197 in [18].
Finally, the functions ¢ and 7 defined by
Oz, z) O(x, 2)

é(x,z) = . —7ozz and 7(z,2) = s (x,2) € Dy, (3.24)

are bounded since C' and 6 are Lipschitz functions satisfying, for any z > 0, C’(az,z) =
O(az,z) = 0. The functions ¢ and 7 can be arbitrary extended to D, so that the processes

&(Xy, Zy) and 7 (Xy, Z;) are well defined and bounded for (X;, Z;) € D,. Following the same
argument as in Section 2.2, this implies in particular that (C*,6%) € A,(z, 2). O

We are now ready for the statement of our main result.

Theorem 3.1 Let Assumptions 3.1, 3.2, and 3.3 hold. Then, u® = U(0)/3 on Dy \ Da,

o Y v+1 1 [ V(s
u<:c,z>—f<,>< : /f

(x —az) + = o 5

3 ds) , (z,2) € Dy, (3.25)
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and the consumption-investment strategy (C*,0%) is an optimal solution of the problem u®.
Moreover, u® is a C° (ﬁa) N %1 (Dy) function, and the corresponding dual function v®
defined in (3.8) is given by

y( az + hy, ; ds> for y > p(z)

v“w() z) + w()—w Jor y < (2)

The proof of this result is reported in Section 5, and relies on a verification argument

v (y,z) =

which requires to guess the explicit form of the theorem. The construction of the candidate
explicit solution is provided for completeness in Section 4.

3.5 The power utility case

In the absence of drawdown constraint, the value function associated to a power utility
function and its Fenchel transform are well-known to be explicit. The main result of this
section is that, under the drawdown constraint, the Fenchel transform of the value function
associated to a power utility function is completely explicit, and the expressions of the
optimal strategy and the value function are considerably simplified.

A power utility function is characterized by its asymptotic elasticity p € (0, 1) and is given
by

Up(z) = & 0
x) = —, x>0,
P p
Its Fenchel transform satisfies
-4 1 1
V},(y):y—, y>0, with ——=-=1.
q p q

We first recall briefly the solution of the Merton problem in the absence of the drawdown
constraint. From section 3.2, under a convenient transversality condition, the Fenchel trans-
form vg of the value function ug is given by (3.12). One immediately checks that, under the
so called Merton condition

~
— >p, 3.26
T+~ 7 (3.26)
the Fenchel tranform vg is given by
~1
0 <1—m3< 1+7> 2
u(y) = 1- p) yrt <oo, y>0,
o) Bp gl
and the value function ug is obtained by direct calculation from (3.9),
~1
0 ﬁ 1 + Yy >:| p P
u(r) = |—=|(1——p —, x>0.
o) Ll—m2< gl p

The optimal consumption-investment strategy is identified as the maximizer in the dynamic
programming equation (3.1), and given by é’(x) = ¢z and é(m) = w4z, where

. _ B 149 i A
cy = e <1 5 P, m o= o (3.27)

12



We now turn to the solution of the optimal consumption-investment problem under draw-

bo = ﬁ (1 — 1%6]9) . (3.28)

Observe that the optimal consumption rate in the Merton problem without drawdown con-

down constraint. Let

straint is ¢fj = bp, since § = v whenever a = 0. Notice also from (3.13) that Assumption 3.2
which rewrites

. v
ba>0, 1.e. (1—()[)p< m,
is weaker than the Merton condition (3.26), and reduces to it when o = 0. Since the relative
risk aversion of the power utility function U, is a positive constant, Assumption 3.3 is always

satisfied under Assumptions 3.1 and 3.2, see Remark 3.1.

The main observation for the particular case of a power utility function, is that the function
¢, defined as the inverse of g given by (3.17) is fully explicit:

o(z) = Up(baz) = (baz)P™t,  2>0.

Furthermore, the value function u; inherits the homogeneity property from the power utility

function U, so that

up(r,2) = 2P uy (%,1) , (x,2z) € Dy . (3.29)

Therefore, the function C' defined in (3.4) satisfies

Clz,z) = -V, <zp_lvmu;‘ <§,1>) = —zVZ(un;‘ (%,1)) = zé(é,l) ,

for (z, 2) € D, where V,ug denotes the derivative of ug with respect to its first component.
As a consequence, the function (z,2) — —[V} o f](z,2)/(x — az) reduces to a function of
the single variable x/z. Direct calculation reveals that this function is the inverse of the
function F' defined by

2

) - el
F(é) = a+ — <1_(17—a)b0> (330)

e

which is a C* function from [bd,b,/(1 — @)] to [a,1]. By passing to the limit in (3.30), we
observe that

ba 1 ba
F() = a+— exp [— <1—a——>} whenever by = 0. 3.31
© e exp | . (331)
Indeed, under Assumptions 3.1 and 3.2, F is strictly increasing so that its inverse F~! is
well defined and a strictly increasing continuous function from [a, 1] to [bf, ba /(1 —a)]. The

functions ¢ and 7 defined in (3.24) are now given by

ép(z,2) == F71 (E) and 7p(z,2) = /\(’y +1) - i(1 —p)F! (g) , (z,2) €Dg.

z o oA
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As in lemma 3.3, under Assumptions 3.1 and 3.2, the stochastic differential equation
axX, = (Xt _ a2t> [—ép (Xt,Zt) dt + #, (Xt,Z}) o (AW, + Adt)] |
has a unique strong solution (X 7 ) for any initial condition (x,z) € D, and the pair process
(C2,07) == (X —aZ2) (ap(X, 2),7(X, 2)) e Aoz, 2).
For completeness, we restate Theorem 3.1 in the context of a power utility function

Theorem 3.2 Let U = Uy, Assumptions 3.1 and 3.2 hold. Then uy =0 on D, \ D,

uy (z,2) = (7:: ! + u gpp)zF_l <§>> [F_l <§>}p_1 (r — az)P, (x,z) € Dy,

and the consumption-investment strategy (C’;, 0;) s an optimal solution of the problem u®.
Furthermore, uy is a CcO (ﬁa) N C%1 (D,) function, and the corresponding dual function

,Ua

» is given by

a(byz)P (boz)P""\" 1—p __»
w2 = {7 b (v = 1+ p) < y >
v ((ba2)P™1, 2) + 2 ((baz)Pt —y)  for y < (baz)P!

The above solution agrees with the candidate solution derived by [19] in the case of possibly
positive interest rates. Therefore, Theorem 3.2 confirms that the candidate solution derived
by [19] is indeed the solution of the optimal consumption-investment problem.

3.6 Properties of the solution

In this subsection, we analyse the behavior of an agent maximizing its lifetime power utility
of consumption under the drawdown constraint (2.19). The particular case of a power utility
function enables us to compare our solution to the well-known benchmark Merton solution

in the absence of drawdown constraint. Remark furthermore that, since the value functions

a
p

of U, and V), all the evaluations and comparisons can be realized in terms of fraction of

vy and the consumption-investment strategy (C,6,) inherit the homogeneity properties
wealth z/z. The results presented here are similar to the ones observed by Roche [19] and
are reported here for completeness.

Considering a particular set of parameters {p, o, \, 3} = {0.2,1, 3,3} satisfying the Mer-
ton condition (3.26), we report the value functions and optimal consumption-investment
strategies associated to different values of « satisfying Assumption 3.1. Of course, the re-
sults observed when « reaches zero coincide with the benchmark Merton one. Because these
three functions equal zero whenever the drawdown constraint binds, the reader can easily
identify in each of the figures the slopes associated to the different values of a.

We first observe in Figure 1 that the amount of wealth invested in the risky asset decreases
with «. Nevertheless, when the drawdown constraint nearly binds, the marginal investment
strategy does not depend on «. But, as the fraction of wealth increases, the agent is more
reluctant to investment in the risky asset as « increases. Finally, when the wealth process

14
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2,5

0,5

Figure 1: Investment 6, versus the fraction of wealth x/z for o = 0 to 0.6

3,5

2,5

1,5

0,5

Figure 2: Consumption C), versus the fraction of wealth x/z for o = 0 to 0.6
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approaches its maximum, the amount invested in the risky asset even decreases for o high
enough. Conversely, the consumption of the agent reported in Figure 2 is decreasing in «
when the proportion of wealth is close to the drawdown constraint but increases with «
whenever the wealth process approaches its current maximum.

The key intuition behind those observations is the anticipation of the agent to the possi-
bility that the drawdown constraint may be binding in the future. Therefore its aversion to
risk increases and this explains why its investment and consumption strategy decrease with
«. The particular behavior of the optimal strategy of the agent when its wealth approaches
its current maximum relies in the ratcheting feature of the drawdown constraint. The agent
anticipates that reaching its current maximum of wealth will increase the floor imposed by
the drawdown constraint, and therefore chooses to consume instead of investing in the risky
asset. Remark that, considering an agent maximizing the long term growth rate of expected
utility of its final wealth, the optimal investment strategy derived by Grossman and Zhou
[10] is conversely always linearly increasing with the fraction of wealth.

Finally Figure 3 shows the dependence of the value function u® in terms of «. Since the
set of possible consumption-investment strategies decreases with a, u, is decreasing in «.
This effect, due to the drawdown constraint, decreases with the proximity of the wealth to
its current maximum.

2,5

\\

1,5

0,5

«

Figure 3: Value function u

versus the fraction of wealth x/z for o = 0 to 0.6
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4 Guessing a candidate solution for the dual function

In this section, we show with a formal argument how the dual function v can be guessed.
We shall assume throughout that, for any z > 0,

u®(.,z)  is a smooth increasing function. (4.1)

From the discussion of Section 3.1, the dynamic programming equation for the value function
(03

u® is
A2 2
Lu® == Pu—V (ug) + 7u—x .= 0, (x,2z) € Dy (4.2)
u“(az,z) = U0)/B, 2z>0; (4.3)
uf(z,2) =0, z2>0.

Step 1: The PDE satisfied by v®.
We first introduce the functions

o(z) == uy(z,2) and P(z) = uf(az,z), z>0.

For any z > 0, by the concavity property of u®(.,z), see Lemma 2.1, we have ¢(z) < ¥(z).
From the definition of the dual function v®, we have

vy, z) = u(2(y,2),2) — 2y, 2)y i ug (2(y,2),2) =y € [p(2),¥(2)] , (4.5)
vy, 2) = u¥(z,2) —yz i y<el(z),
v(y,z) = u(az,2) —ayz = U(0)/B —ayz if y=>y(z),

where the last equality follows from (4.3). In the situation of (4.5) where y € [p(z),¥(2)],
we obtain by a direct change of variable in (4.2) that

Lv%(y,z) = V(y) for ¢(z) <y <y(z), (4.8)

where £* is the linear operator defined in (3.11). We also observe that the Neumann
boundary condition (4.4) is converted into

vi(y,2) = @(z) —y for y<(z2). (4.9)

Step 2: From the Neumann condition to a Dirichlet condition.

Let introduce the function
w*(y,z) = v3(y,z) for z>0and p(z) <y <P(z). (4.10)

Since L£* is a linear operator, it follows that w® satisfies
2

* (0% (0% A (0%
Lw = puw® — Bywy — 7y2wyy =0, o) <y<y(z). (4.11)
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Condition (4.7) and the Neumann condition (4.9) on v® provide the following Dirichlet
conditions on w®,

w (p(2),2) = 0 and w® (YP(2),2) = —ap(z), 2z>0. (4.12)

For every fixed z > 0, the system (4.11)-(4.12) has a unique C? solution w®(., z) given by

1+ -1 p 1+
wa<y,z>=—ay<1—<ﬁj§) ) (1—(“?) ) o(2) <y < P(NA13)

Step 3: Infinite marginal utility when the drawdown constraint nearly binds.

Since we will be using a verification argument, we just need to find a solution to the
dynamic programming equation (4.2)-(4.3)-(4.4). We then seck for a candidate solution
satisfying

P(z) = uy(az,z) = +oo0,  z2>0.

From the economic viewpoint, this means that the marginal indirect utility is infinite when
the wealth process approaches the drawdown constraint. This is understandable as the
amounts of consumption and investment reduce to zero for the remaining lifetime whenever
the drawdown constraint binds, i.e. X; = aZ;, see Remark 2.1. So, any small departure
from this constraint is very important for the investor as investment on the financial market
and consumption are again possible. In this case, (4.13) reduces to

1+
w*(y,z) = —ay <1 - <M> ﬁ/> . e(z) <y. (4.14)

Y

Step 4: Derivation of a generic form for vy .
Integrating (4.14) with respect to z leads to

v*(y,2) = —ayz + ay /Z: (?)m ds+o(y), »(z) <y,

where zy and ¢(.) are still to be determined. Differentiating now with respect to y, we get

(els)\
vy (Y, 2) = —az —fw/ < " > ds+¢'(y), »(z) <y, (4.15)
20
with the two boundary conditions v; (¢(2), 2) = —z and vy (00, z) = —az given respectively

by (4.6) and (4.7). In order to determine ¢’, we observe from (4.8), that ¢ satisfies an
ordinary differential equation which provides, after differentiation with respect to vy,

V()
By

(v +2)¢"(y) +y¢"(y) = ;o ow(2) <y

We deduce

¢"(y) = —l/y: V'(s) <f>l+V ds, ¢(2) <y,



with gy a constant to be determined. Integrating with respect to y, we obtain the expression
of ¢’ up to a constant which is fixed by the boundary condition ¢'(c0) = 0 given by

(87

i (00, 2) = —az. Reporting this expression in (4.15), we finally get

z I+y y /! 14+
o 90(8)> g Vi(s) (shy
vy, z) = —az — a’y/ <— ds + / ds 4.16
v(:2) o\ Y BA+7) Sy s y (4.16)
for ¢(2) <y, with the boundary condition vy (p(2),2) = —z .

(%

Step 5: Implicit obtention of the marginal utility p(2).

«

The function ¢(z) will be implicitly given by the boundary condition vy (¢(2),2) = —az.
Rewriting the boundary condition according to (4.16) and differentiating with respect to z,
we compute

()00, (p(2),2) = —%, 2> 0. (4.17)

Assuming that ¢ is invertible and denoting g its inverse, we notice that (4.17) rewrites as
an ordinary differential equation satisfied by ¢

R e

whose solution is explicitly given by

9(¢) = 5(115) </<§ —VS’(S) <§>1+6ds+/coo %/(S)d.s) (>0, (4.18)

with {y a constant to be determined. From (3.13), §/(1 + ) > 0 and since we require g to

be a positive function, (p must be 0 or oo depending on the sign of §. Nevertheless, in both
cases, direct computation shows that ¢’ and then ¢’ are negative. Since we require the dual
function v® to be convex, equation (4.17) imposes § > 0 which corresponds to assumption
3.1. Therefore {y = 0 and g coincides with (3.17) which is well-defined under Assumption
3.2, see (3.16). Therefore the function ¢(z) is implicitly defined by the relation

z = ﬁ </0g0(z) _‘/;(3) <§>1+5 ds + /;:) #/(S)ds> ,2>0. (4.19)

Step 6: Deducing the dual function v®.

Now, combining (4.16), (4.19) and the boundary condition vy (¢(2), 2) = —2, we compute

) [(E9) e g [T () e [TV ()

for z > 0, which reported in (4.16), leads to

) = —az- 2L <w;z>>1+“’ /(]W’ VG <¢iz)>l+5ds

e ([, 526 T [ o
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Starting from this expression of vy, the ordinary differential equation (4.8) directly leads

to the expression of v® announced in Theorem 3.1. In order to deduce the value function

« o

u®, we simply need, for any z > 0, to invert the function vy

inverting the function h(.,z) defined in (3.20).

(.,2), which corresponds to

Remark 4.1 In the particular case of the power utility function, uj inherits the homo-

geneity property of U, so that ¢(2) = ¢(1)2P~!. Therefore, we can skip step 5 and ¢(1) is
explicitly determined by the boundary condition vy (¢(1),1) = —1.
5 The verification argument

This section is devoted to the proof of Lemma 3.2 and Theorem 3.1.

5.1 A general version of the verification theorem

We recall the definition of the operator L:

Lu = pu— sup {U(C)+ L%} where L% = 19202um + (0o — Chuy .
C>0,0€R 2

We first derive a general verification theorem adapted to our maximization under draw-
down constraint problem.

Theorem 5.1 Let 1 be a C° (Do) N C*! (Dy,) function.
(i) If o satisfies L1y > 0 and —1,(z,z) > 0, then ¢ > u®.
(ii) Assume in addition that

(a) L1 =0, Y(az,z) =U(0)/B and —1),(z,2z) = 0;
(b) there exist K >0 and 0 < py < 6/(1 + d) such that

P(zr,z) < K <1 + 2P0 (x — az)(l_a)p°> , (2,2) € Dy;

(¢) Ly = By —U(C) +£é’§¢ where C(z,z) = (x — az)é(x, 2), 0(x, 2) = (¢ — az)7(x, 2),

and the stochastic differential equation
dXt = —C(Xt, Zt)dt + O'é(Xt, Zt) (th + )\dt) t> O,

has a unique strong solution (X, Z) for any initial condition (Xo, Zo) = (x,2) € Dy satis-
fying

T
/ Xy, Zy)dt <00 a.s.  and  ||7(X,Z)|]|e0 < 0.
0
Then v = u®.
Proof.  We first observe that £ > 0 implies

By = V(ve) = U(0), (5.1)
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since V is a decreasing function and V(oo) = U(0). For (z, 2) € D, \D4, we have u®(x, z) =
U(0)/3, and therefore the statement of the theorem is trivial. From now on, we fix a pair
(x,2) € Dyg.

(i) Let (C,6) be an arbitrary admissible consumption-investment strategy in A, (z, z), set
(X,Z) = (X=90, Z2%%CF) the solution of (2.18) with initial condition (Xo, Zo) = (z,2),
and define the sequence of stopping times

Ty = inf{t>0 : Xt—aZt<n_1}.

By 1t6’s formula, we obtain
T ATn
e_ﬁT/\an (XT/\Tn7 ZT/\Tn) - w(% Z) + MT + / e_ﬁth(Xta Zt)dZt
0

TNATh
+ /0 e Pt [ﬁc“"%/} — w} (X¢, Zy)dt
where
T ATy,
Mr = / e_ﬁt9t0¢w(Xt’ Zy)dWy T=0.
0

Since —1),(z,2z) > 0, Z is an increasing process and dZ; = 0 whenever X; < Z;, it follows
that the integral term with respect to Z is non-negative. Using in addition the fact that
Lip >0, we get

T ATy
Y(x,2) > e PN (Xrar,, Zras,) + / e PU(Cy)dt — My . (5.2)
0

Recall that v, is continuous on D,. Then, it follows from the definition of 7, that the
stopped process ¥, (X, Z) is a.s. continuous on [0,7 A 7,,]. Since fOT 02dt < oo, this implies
that M is a local martingale. By the lower bound (5.1) on 1, it follows from (5.2) that M
is uniformly bounded from below. Then M is a supermartingale. Taking expected values
in (5.2), and using again the lower bound (5.1) on ¢, this implies that

TNATn
T;Z)($7Z) > E |:/0 A e_ﬁtU(Ct)dt—F%e_ﬁT/\Tn} )

By the monotone convergence theorem together with Remark 2.21, this implies that

Y(x,2) > E {/ e PtU(Cy)dt + % 6_57‘”] =E {/ e_ﬁtU(Ct)dt} ;
0 0
which proves that ¢(x, z) > u®(x, z) by the arbitrariness of (C,0) € A,(z, z).
(ii) For simplicity, we denote (Cy,0y,¢,7;) = (C,0,¢ 7)(Xy, Z;), for any t > 0. By the
same argument as in (2.10), we have

_ o t t ~ \2
(X, — aZy) 2207 = exp{— / o dWy — / @ + <—)\a7~rr+ (0’7;) >dr}. (5.3)
0 0
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In particular, this implies that the sequence of stopping times

Ty = inf{t>0 Xy —aZ <n!or Zt>n} — 00 a.s.
Since we have 8¢ — U(C) — Eévé¢ =0, it follows from It6’s lemma that
) ~ ~ TAF, ~ ~
Y(x,2) = e PNy <XTA;n,ZTA;n> +/ e PU(Cy)dt — My (5.4)
0
where
TAF, ~ o
Ny = / e Blold,)(X,, Z)dW,, T >0.
0

Since v, is continuous on D,, and the stopped process (X Z ) takes values in a compact
subset of Dy, it follows that the process (X, Z) is uniformly bounded on [0,7,]. Using
the boundedness of the process 7, we deduce that M is a martingale, and

P(z,2) = E {e_ﬁTM’W/J (XT/\%MZT/\%,L)} +E [/OTA% €_ﬁtU(C't)dt] : (5.5)

We introduce the notation p, := (1 — a)pg where pg is defined in (ii-b) and recall from
(3.13) that p, < /(1 + 7). From (5.3) together with condition (ii-b) of the theorem, we
have

e Py(Xy, ) <K <1 + Ny exp {— /tﬂ + Da <Er — o7+ (1 — pa) (JZT)2> dr})
0

for any t > 0, where N is the Doléans-Dade exponential of fg opaTsdWs. We next compute
that

~ \2
Ns = B'i‘pa <Es_)\0'7~78+(1_pa)(0-7;3)>

/\2 O'ﬁ's 1 ? 1
> 7{’7+pa ((1—pa)<T_1_pa> _(1—pa)>}

A2 Pa
> 204 — >0
> 5 {7 T n>0,

since po, < /(1 + 7). Therefore, it follows that
E [6_6TM”¢ (XTA70 s ZTA%n)} < KE [E_BTM" + e_"TA%”NTA%n} : (5.6)

Furthermore, by the Cauchy-Schwartz inequality, E [e_”T/\%" NTA%n] is bounded from above,
for any € > 0, by

TAn e/(1+e) "
E [eXp {(1 +e7h) <—nT Ao+ s/ Icrpafrs|2ds> H E [N, |70
0

where N€ is a martingale, the Doléans-Dade exponential of fg(l +€)pa 0TsdWs. Since T is
uniformly bounded, by taking e small enough, we finally deduce from (5.6) that

E [e—ﬁT/\%nw <XTA€—M Zﬂﬁ)] < K <E [e—ﬁT/\%n] 1E [e—nT/\i—n]E/(l—l-s)) ‘
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Therefore, sending respectively n and T to infinity in (5.5), the dominated and the monotone
convergence theorem provide

W(z,2) = E[/ooe_ﬁtU(ét)dt}.

0

In view of (i), this implies that ¢ = u®.

5.2 Proof of Theorem 3.1

We now turn to the proof of Theorem 3.1 by verifying that the explicit expression reported
in there fulfills the conditions of the verification theorem 5.1. One of these conditions will
indeed require the proof of Lemma 3.2. We first need to establish additional properties of
the function f.

Lemma 5.1 Let Assumptions 3.1 and 3.2 hold. Then f € C' (D,) and we have

T,z z T+l = (s B
g = (Gs) o) (oo 7)o

for (z,z) € Dy.

Proof.  We recall from lemma 3.1 that, for any z > 0, f(.,2) is a decreasing C! function
on (az, z] whose derivative is given by (3.21). Furthermore, by construction, we have

fh(y,2),z] =y, fory>p(z), and h[f(z,z2),2] = x, for (z,z) € D,. (5.8)

Now, from the definition of h, see (3.20), h € C**({(y, 2),y > ©(2)}) and we have

+1
0 < hay2) = a(w(@)v +1> <alltq), yzeE. (9

Therefore, h and f are increasing in z. Hence f is decreasing in x, increasing in z and
¢ : 2+ f(z,2) is decreasing. In order to prove that f € C'(D,), we shall prove that f is
differentiable in each variable with continuously partial derivatives.

1. In this step, we show that f € C%(D,), which implies that f, € C°(D,) by (3.21). We
take (z,z) € D, and study separately the cases where x < z and = = z.
o If z < z, for I’ small enough, (z,z +1') € D, and we deduce from (5.9) that

Wf@,z41),2) =2 = bf(z,2+0),2) = W22+ 1), 2+1) < a(l+9)0" 7= 0.

Therefore, since f(z,z +1") > ¢(z) from the monotonicity of f, combining (5.8) and the
continuity of f(.,z), we obtain

flz,z+1)— f(z,2) = f(h(f(x,z+1),2),2) — f(z,2) s 0. (5.10)

Moreover, we remark that, for £ small enough, (z + 1,z +1') € D, and we have

fl@+lz+10) = f(z,2) = folz,z+ 1)1+ f(z,2+1) — f(z,2) (5.11)
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for some z; € [x,x + {]. Now, since f is monotonic in both its variables, we deduce from
(3.21) that f and f, are bounded on any compact subset of D,, containing (z, z). Therefore,
combining (5.10) and (5.11), we deduce that f is continuous at point (z, z).

o If x = 2, we have, for any [ and I’ satisfying (z + 1,z +1') € Dy,

f+lLz+10) = folz,z+ 1) =)+ o(z+1"), forsome z € [z+1,z+1].

Therefore similar arguments as above combined with the continuity of ¢ lead to the conti-
nuity of f on D,.

2. We now prove that f is differentiable with respect to z with continuous partial derivatives.
Take (z,z) € D, and !’ such that (z,z + ') € D,. Combining f(z,z) > ¢(z + ') with
(5.8), we deduce

Pzt ) f@ ) = 5 @z 41— f(f(,2), 2 + 12+ 1)
= Jala, 2 4 1) g (7). ) — h(F(,2), 2 + 1)),
for some xy € [, +1I']. Since f, € C°(D,) and h,(f(z,2),.) is continuous, we obtain

% {f(x7z + h/) - f(x7z)} - _fx(x7z) hz(f(xﬂz)7z) :

h'—0

Finally, combining (3.21) and (5.9), simple computations lead to (5.7) and f, inherits the
continuity of f on D. O

We are now ready for the proof of Lemma 3.2 which states that the functions C and 6
defined in (3.22) are Lipschitz on D,,.

Proof of Lemma 3.2. Remark from lemma 5.1 that § and C' are in C'(Dy,).
1.We first study 6 and, since fz and V' are negative functions, we have

0,(z,2) = g <’y +1-— %‘f;((;’zz)) Vo f](a:,z)) < %(’y—i— 1), (z,2) €Dy. (5.12)

Notice that, combining the definition of f and (3.21), we get
20 _ (o) >”” /M Vie) (s >”5 w5+ [ Fe2) v(s) (2 >”” ds
’Yf:c(x7z) f(x,z) 0 S 90(2) p(2) B f(a:,z)

/of(m SNt z)>1+6 ds. (2,2) € Da. (513)

S

IN

since p(z) < f(z,z) and v < §. Now, since V' is a negative increasing function, we deduce

[z, 2) v f(:v,Z)l s o\ BN
fa(z,2)[V' o fl(2, 2) - ﬁ/o s <f(x,2)> = B(1+6) >0 (5.14)

by Assumption 3.1. Combining this inequality with (5.12), we deduce that the function 6,

is bounded on D,. Similarly we compute that, for (z,z) € Dy,

e = (o g 2 e2)
0.(r.2) = U( e+ 3

Vo siws) = ~Satr+1),
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since f, and —V” are positive functions. Combining (3.21) and (5.7), we compute

1+~ -1
fle,2) 1 <7< = ) ) +1) e 2 L_S&D 515

fo(x, 2) a f(z,2) folw,z) = aly+1) fula,2)

for (x,z) € D,. We then deduce from (5.14) that 0. is bounded from above and that 6 is a
Lipschitz function on D,. Since, for any z > 0, 8(0+, z) = 0 = (0, z) , the function 6 is in
fact Lipschitz on D,.

2. We now study C whose derivatives are given by

Co(z,2) = —fulz,2)[V" o fl(x,2) > 0 and C.(z,2) = —f.(z,2)[V" o f](zx,2) <0,

for (z,z) € D,. We deduce from (5.13) that

: 5 : 102 i) (s N\
Cyp(z,2) < ;f(x,z)[V o fl(z,2) </0 <f(x,z)> ) , (x,2) € Dy, (5.16)

S

so that C, is bounded according to Assumption 3.3. Combining (5.15) and (5.16), we obtain
a lower bound on € and therefore C' is a Lipschitz function on Dy. O

Before stating the proof of Theorem 3.1, we first isolate two particular properties of the
candidate value function denoted 4% and defined in Theorem 3.1 by

! (x —az) + S /OO
B f(z,2)

Vs(;) ds> , (x,2) €Dy,  (5.17)

0 (x,2) = f(o,z T
a(z,z) : f(7)<7

and 4% = U(0)/3 on D, \ D,.

Lemma 5.2 Let Assumptions 5.1 and 3.2 hold. Then 0 is a C° (Dg) NC*! (Dy) function
satisfying

ud(x,z) = f(x,2z) and ug(z,z) =0, (r,2) € D, . (5.18)

Proof.  Under Assumptions 3.1 and 3.2, f € C'(D,), see lemma 5.1. Therefore 4® €
C! (D) and by direct differentiation in (5.17), it follows from (3.21) that 4% = f. Then 4%
is a C%! (D) function and we compute from (5.7) that

+1
W (z,2) = af(z,z) (( p(2) )“’ _1> . (2,2) €D, (5.19)

f(z, 2)

which leads to (5.18).
We now prove that 4® € C° (ﬁa). Since V' is a negative function, we derive from (3.21),

 Jfalz,2) 1
fws) = (rDE-az)’

Integrating this inequality on the interval [z, z], we obtain, up to the composition with the

(x,2) € D, .

exponential function,

f(@,2) > o)1 =)V (2 —az) 0+ (2,2) e D, . (5.20)
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Remark now that, combining (5.17) with the definition of f, we derive, by an integration
by part argument,

()= (ﬁfl)f /OW) ve) <m>d +1 / ’Z()) v (ﬁ)d (5.21)

for (z,z) € D,. Since the function V' is decreasing, it is bounded from below by V(c0) =
U(0), which plugged in (5.21) leads to ® > U(0)/8. Fix now zp > 0, ¢ > 0 and Cy a
compact subset of RT containing zp. Remark that there exists a constant M such that
[V(y) = U(0)| < Be/2 for y > M.

Now, since ¢ and V are continuous functions and therefore bounded on compact sets, we

deduce from (5.21) the existence of a constant K > 0 satisfying
. K \7 U0 e
u“(x,z) < +—+ =,

0 = (7g) + 5543

Observe now from (5.20) that there exists n > 0 such that, for any (z,2) € D, with z € Cy
and |z — az| < n, we have f(x,2) > K(¢/2)'/7 which leads to

(r,2) €Dy, z€(Cy.

U(0) N U(0)
— < 4%z, z) < —=+e€
g (@:2) 6
Therefore 4 € C° (ﬁa) and the proof is complete. O

Lemma 5.3 Let Assumptions 3.1 and 3.2 hold. Then, there exists K > 0 such that

u(z,z) < K (1 + 2% (x — az)(l_a)p) ,  (z,2) € Dy.

Proof.  First remark that this property is straightforward for (z, 2) € D, \D,. According
to lemma 5.2, we compute

N — x.2) = 4% x. 2 LHLL’—O(Z l
ux(a:,z)—f(a) (’)<7( )—’_ﬁ/f

< Vi)

() S

-1
ds) . (5.22)

for (z,2) € D,.

1. We first derive (5.19) for a power utility function U, and denote @y the candidate value
function. As detailled in section 3.5, f(z,z) rewrites as (F~!(z/z)(x — az))?~! on D, so
that (5.22) leads to

"o "o v+l (1L=p? 1 (@ -

Vi (z,2) = iy (z, 2) ( (x —az) + ———F (—) (x — a2)> , (z,2) € Dy,
g Op z

where Vi, denotes the partial derivative of 4, with respect to z. Since F ~1is an increasing

function and F~1(1) = b,/(1 — a) where b, is defined in (3.28), simple computations

combined with (3.13) lead to

Vi (2, 2) - (1—a)p

ug(z,z) — r—az

, (r,2z) € D, . (5.23)
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Integrating this inequality on the interval [z, z], we obtain, up to the composition with the
exponential function

u 2,2 — o)z (1=a)p
aZE;p zi > <(;—a)z > . (z,2) €D,. (5.24)

Since 4 inherits the homogeneity property of Uy, ug(z, z) = ug(1,1) 2P, for any z > 0, and
we deduce from (5.24) the existence of K > 0 such that

iy (z,2) < K2P(x — az)1=P  (z,2) e D,. (5.25)
2. We next consider the case where the utility function is given by US = K1+ Up) where
KV is the constant defined in (3.15). Observe that UI(,) satisfies the required Assumptions
3.2 and 3.3. Simple computations show that the corresponding marginal utilities fg and f,

associated to the candidate value function 4 and 4 are related by fz(r) = K°f,. Combining
(5.17) and (5.25), we easily derive

a(x,z) = K1+ 1%(z,2) < KK°(1+ 2P(z —az) "), (z,2) € D,. (5.26)

3. We finally consider the general case. We recall from (3.15) that U < Uz()) so that their
Fenchel transforms satisfy also V' < V;DO. In this step, we shall prove that 4% < 4F which
combined with (5.26) concludes the proof.

Set Ve:=V + e(VpO — V), for 0 < e <1, and denote (V) ¢¢, f€ and 4*° the associated
functions defined in section 3.4. Observe first that all these functions are differentiable in
e. We intend to prove that 4™ is an increasing function of € on [0, 1], which implies the
required result as V0 =V and V! = Vpo.

For ease of notation, we denote Y the operator defined for (V, f,¢) € C1(R*T R*) x Rt x
R* by

5 I+v  ro 148 I 14+ ~
s §() 7[R [ G) s

By an integration by part argument on (3.19), ¢ is implicitly defined, for € € [0, 1], by

1
TV, o, ¢(2) = %(1—@2', 2> 0.

Denoting V. the differential operator with respect to €, we deduce

(1+9) V:'DE (T[VE,QDE,goe] — % /OO Mds) = Y[VVS e ], (5.27)

€ e s
Similarly f€ is defined, for € € [0, 1], by
I+~

T[V67f67906](x>2) = (:E—OéZ), (m,z) € Dg,

and differentiation with respect to € combined with (5.27) leads to

% 1 [ Mds) = Y[V.VE, f€, 0] — BT[VEVG, ©°, 0] (5.28)

1 _
(1+7) 5. s 110

(T[ve, o]+
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Combining the definition of f€ and (5.17), we rewrite u®*€ as

ave = <T[Ve,fe,<,pE / V > 0<e<1.
Differentiating this expression with respect to €, we compute from (5.27 ) and (5.28) that
Vea*e 1 o0—7 V. Ve(s)
= TV VS 0] = ———=T[V VS, + ——ds
Je T4y | - arase ot g e s

A A RO <i>”‘5 1 [ VV(s)
_ﬁ<1+6><fﬁ> /0 Z \o) ®tp).

7-6 V. V(s) g v ve(s) ( s >1+V
d 2} 4
M) /w st L %

B +7) 52 ¥°
for any € € [0,1]. We now observe that all the above integrals are positive since V V¢ =
V;DO —V >0. Since v < § and f€ > 0, this shows that ©®* is non-decreasing in €. O

We are now ready for the

Proof of Theorem 3.1. We will simply check that the candidate value function 4%
defined in (5.17) satisfies the hypothesis of Theorem 5.1. First, from lemma 5.2, 4% €
C? (D) N C*! (D,). Combining (3.21) and (5.18), we easily check that 4 satisfies (ii-
a) in Theorem 5.1. Remark also that condition (ii b) in Theorem 5.1 is exactly given by
lemma 5.3. By construction, the functions (C,6) defined in (3.22) satisfy (3.4) so that

= Bu* - U(C) + + £OOqe. Now, Lemma 3.3 ensures existence and uniqueness of a
solutlon (X,Z) to the SDE (3.23) for any initial condition (z,z) € D, and, since ¢ and
7 defined in (3.24) are bounded functions, 4“ satisfies (ii-c) in Theorem 5.1. Therefore

102

1% = u® and simple computations lead to the expression of the dual function of v®. O
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