[41] L. Agélas, D. A. Di Pietro, R. Eymard, and R. Masson.
An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes.
Int. J. Finite Vol., 7(1):1-29, 2010.

[42] O. Angelini, C. Chavant, E. Chénier, and R. Eymard.
A finite volume scheme for diffusion problems on general meshes applying monotony constraints.
SIAM J. Numer. Anal., 47(6):4193-4213, 2010.

[43] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods.
Math. Models Methods Appl. Sci., 20(2):265-295, 2010.

[44] R. Eymard, T. Gallouët, and R. Herbin.
Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces.
IMA Journal of Numerical Analysis, 30(4):1009-1043, 2010.

[45] R. Eymard, T. Gallouët, R. Herbin, and J. C. Latché.
A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case.
Math. Comp., 79(270):649-675, 2010.

[46] R. Eymard, T. Gallouët, R. Herbin, and J.-C. Latché.
Convergence of the MAC Scheme for the Compressible Stokes Equations.
SIAM Journal on Numerical Analysis, 48(6):2218-2246, 2010.

[47] R. Eymard and R. Herbin.
Approximation of the biharmonic problem using piecewise linear finite elements.
C. R. Math. Acad. Sci. Paris, 348(23-24):1283-1286, 2010.

[48] R. Eymard, D. Hilhorst, H. Murakawa, and M. Olech.
Numerical approximation of a reaction-diffusion system with fast reversible reaction.
Chinese Annals of Mathematics - Series B, 31:631-654, 2010.

[49] R. Eymard, D. Hilhorst, and M. Vohralík.
A combined finite volume-finite element scheme for the discretization of strongly nonlinear convection-diffusion-reaction problems on nonmatching grids..
Numer. Methods Partial Differ. Equations, 26(3):612-646, 2010.

EYMARD Robert 2018-09-04