[62] N. Bouillard, R. Eymard, R. Herbin, and Ph. Montarnal.
Diffusion with dissolution and precipitation in a porous media: Mathematical analysis and numerical approximation of a simplified model.
ESAIM: M2AN, 41(6):975-1000, 2007.

[63] F. Daim, R. Eymard, and D. Hilhorst.
Existence of a solution for two phase flow in porous media : the case that the porosity depends on the pressure.
Journal of Mathematical Analysis and Applications, 326(1):332-351, 2007.

[64] R. Eymard and T. Gallouët.
A Partial Differential Inequality in Geological Models.
Chinese Ann. of Math. Ser.B., 28(6):709-736, 2007.

[65] R. Eymard, T. Gallouët, and R. Herbin.
Finite volume schemes for nonlinear parabolic problems: another regularization method.
Acta Math. Univ. Comen., New Ser., 76(1):3-10, 2007.

[66] R. Eymard, T. Gallouët, and R. Herbin.
A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis.
Comptes rendus Mathématiques de l'Académie des Sciences, 344(6):403-406, 2007.

[67] R. Eymard, T. Gallouët, R. Herbin, and J.-C. Latché.
Analysis tools for finite volume schemes.
Acta Math. Univ. Comen., New Ser., 76(1):111-136, 2007.

[68] R. Eymard and R. Herbin.
A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non matching grids.
Comptes rendus Mathématiques de l'Académie des Sciences, 344(10):659-662, 2007.

[69] R. Eymard, R. Herbin, and J. C. Latché.
Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier-Stokes Equations on General 2D or 3D Meshes .
SIAM Journal on Numerical Analysis, 45(1):1-36, 2007.

[70] R. Eymard, R. Herbin, J.C. Latché, and B. Piar.
On the stability of colocated clustered finite volume simplicial discretizations for the 2D Stokes problem.
Calcolo, 44(4):219-234, 2007.

[71] R. Eymard and E. Tillier.
Mathematical and Numerical Study of a System of Conservation Laws.
J. of Evolution Equations, 7(2):197-239, 2007.

EYMARD Robert 2018-09-04