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Consider a separable metric space (X, d) equipped with a probability measure µ which is not a
Dirac mass at a point. In this note we study the following isoperimetric inequality

µs(∂A) ≥ J (µ(A)) A ⊂ X Borel (1)

where J : [0, 1] → R+ is symmetric around 1/2 and where the surface measure is defined by the
Minkowski content µs(∂A) = lim infε→0

µ(Aε\A)
ε with Aε = {x ∈ X : d(x,A) < ε}. For any function

f : X → R we define the modulus of the gradient of f by |∇f |(x) = lim supd(x,y)→0
|f(y)−f(x)|
d(x,y) with

the convention that |∇f |(x) = 0 as soon as x is an isolated point of X. We define similarly on the
product space Xn equipped with the distance dn(x, y) =

√∑n
i=1 d(xi, yi)2 and the n-fold product

measure µn = µ⊗· · ·⊗µ, the modulus of the gradient of f : Xn → R. A function is said to be “locally
Lipschitz” if its Lipschitz constant is finite on every ball of X (or Xn). We assume that the product
structure is of Euclidean type for the gradient, i.e., for any locally Lipschitz function f : Xn → R,
µn almost surely, |∇f |2(x) =

∑n
i=1 |∇xif |2(x) where |∇xif | is the modulus of the gradient of the

function X 3 xi 7→ f(x) with (xj)j 6=i fixed. This is for example the case when X = Rk and µ is any
absolutely continuous probability measure with respect to the Lebesgue measure.

Isoperimetric Inequalities are related to some Sobolev-type inequalities and to the concentration
of measure phenomenon. Thus it has a lot of applications in high dimension (e.g. semi-group con-
traction properties, convergence to equilibrium of Markov processes etc.). It is therefore interesting to
understand how Inequality (1) evolves on the product Xn. We refer to Refs. 1, 2, 3 and 4 for survey
papers on the isoperimetric inequalities for probability measures and a more complete bibliography of
the field and to Refs. 5 and 6 for an introduction to Sobolev-type inequalities and their applications.

When J(s) = hµ min(s, 1 − s) then (1) is the celebrated Cheeger’s isoperimetric inequality:
µs(∂A) ≥ hµ min(µ(A), 1 − µ(A)) and hµ > 0 is the Cheeger’s constant. See also Refs. 7 and 8.
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Cheeger9 proved that the constant hµ is related to the spectral gap of the Laplacian on compact Rie-
mannian manifolds. See Refs. 10, 11 and 12 for more references and related results. In this particular
case, Bobkov and Houdré13 proved that if the above Cheeger’s isoperimetric inequality holds on X,
then the same isoperimetric inequality holds on Xn with hµn ≥ hµ/(2

√
6). In this work we extend

their result in the following way:

Theorem 0.1. Assume that for any Borel set A ⊂ X:

µs(∂A) ≥ J (µ(A))

for some J : [0, 1]→ R+ symmetric around 1/2. Assume that s 7→ J(s)/s is non-decreasing on (0, 1
2 ).

Then, for any integer n ≥ 1,

µns (∂A) ≥ n

2
J

(
h

4
√

6n
min(µn(A), 1− µn(A))

)
∀A ⊂ Xn Borel.

When X = R and dµ(x) = e−Φ(|x|)dx with Φ convex, the optimal function J in (1) is known14

to be I = F ′µ ◦ Fµ, with Fµ(x) := µ(−∞, x), and is concave. Since J(0) = 0, s 7→ J(s)/s is non-
increasing. Hence our result does not apply to log-concave distributions. For results in this direction,
see Refs. 15, 16, 17, 18, 19 and 20. When Φ is concave, it is known21 that the optimal J in (1)
is J(t) = min(I(t), 2I(min(t, 1 − t)/2)) (I as above). It follows easily22 that s 7→ J(s)/s is non-
decreasing on (0, 1

2 ). Hence typical examples of application of our result are sub-exponential laws
dµp(x) = e−|x|

p

/(2Γ(1 + (1/p))), p ∈ (0, 1), Cauchy-type distributions dmα(x) = α
2(1+|x|)1+α , α > 0

and more generally κ-concave probability measures (κ ≤ 0). In all these cases our result is optimal,see
Refs. 22,23.

Note that the standard Cheeger’s inequality, corresponding to J(s) = hµ min(s, 1− s), enters the
framework of Theorem 0.1 and leads to a weak version of Bobkov and Houdré’s result. Namely, with
the notation above, we get that hµn ≥ hµ/(8

√
6). We are off by a factor 4, for technical reasons. This

can anyway be improved to hµn ≥ hµ/(4
√

6), see Remark 0.1 below.
Isoperimetric inequalities for product of heavy tails distributions are also obtained in Ref. 22.

However our result is by nature very different from Ref. 22 and more intrinsic in the sense that we
start with an isoperimetric inequality on X and derive from it an isoperimetric inequality on Xn.
Also our approach, based on Bobkov’s ideas,24 is very elementary.

The proof of Theorem 0.1 relies on Sobolev-type inequalities which are known to be equivalent to
isoperimetric inequalities. Indeed, it is easy to prove (see e.g. Ref. 25) that (1) is equivalent to the
following weak Cheeger inequality: for any f : X → R locally Lipschitz,∫

|f −m(f)|dµ ≤ β(s)
∫
|∇f |dµ+ s Osc(f) ∀s ∈ (0, 1/2) (2)

where m(f) is a the median of f under µ and Osc(f) = sup f − inf f . More precisely (1) implies
(2) with β(s) = sups≤t≤ 1

2

t−s
J(t) , and (2) implies (1) with J(t) = sup0<s≤t

t−s
β(s) for t ∈ (0, 1

2 ) and
J(t) = J(1− t). Unfortunately, the weak Cheeger inequality (2) does not behave in a proper way on
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product spaces, due to the L1 norm of the gradient. Bobkov proposed an alternative functional form
of (and equivalent to) the isoperimetric inequalities:

I

(∫
fdµ

)
≤
∫ √

I(f)2 + C2|∇f |2dµ (3)

where I : [0, 1] → R+ and f : X → [0, 1]. Such inequalities enjoy the tensorisation property and
was used by Bobkov26 as an alternative proof of the Gaussian dimension free isoperimetric inequality
of Sudakov and Tsirel’son27 and Borell28 and in Ref. 24 as shorter proof of Bobkov-Houdré’s result
mentioned above. See also Refs. 15, 29, 30, 31 and 32 for related results. Since our result are dimension
dependent we shall prove a weak form of (3):

Theorem 0.2. Let I(t) = 4t(1 − t), t ∈ [0, 1]. Assume that for any Borel set A ⊂ X, µs(∂A) ≥
J (µ(A)) for some J : [0, 1]→ R+ symmetric around 1/2. Let C = 4

√
6 and β(s) = sups≤t≤ 1

2

t−s
J(t) for

s ∈ (0, 1
2 ). Then, for any n ≥ 1, any locally Lipschitz function f : Xn → [0, 1] and any s ∈ (0, 1

2 ),

I

(∫
Xn

fdµn
)
≤
∫
Xn

√
I(f)2 + 4C2β2(s)|∇f |2dµn + CnsOsc(f). (4)

Theorem 0.1 will easily follow from Theorem 0.2 by approximating indicator functions of sets by
locally Lipschitz functions taking values in [0, 1].

Our starting point is the following one dimensional functional inequality, derived from (2).

Lemma 0.1. Let Φ(x) =
√

1 + x2 − 1, x ∈ R. Assume that for any Borel set A ⊂ X, µs(∂A) ≥
J (µ(A)) for some J : [0, 1] → R+ symmetric around 1/2. Let β(s) = sups≤t≤ 1

2

t−s
J(t) for s ∈ (0, 1

2 ).
Then for all locally Lipschitz functions f : X → R with m(f) = 0,∫

X

Φ(f)dµ ≤
∫

Φ (4β(s)|∇f |) dµ+ 2sOsc(f) ∀s ∈ (0, 1/2). (5)

Proof. By the above discussion (see (2)), the assumption µs(∂A) ≥ J (µ(A)) implies that all locally
Lipschitz functions f : X → R with m(f) = 0 satisfy∫

X

|f |dµ ≤ β(s)
∫
X

|∇f |dµ+ sOsc(f) ∀s ∈ (0, 1/2). (6)

Now consider a bounded function f , locally Lipschitz, with m(f) = 0. Set f+ = max(f, 0) and
f− = max(−f, 0). Then m(f+) = m(f−) = 0 and thus m(Φ(f+)) = m(Φ(f−)) = 0. Hence, applying
twice (6) to Φ(f+) and Φ(f−), we have for all s ∈ (0, 1

2 )∫
X

Φ(f+)dµ ≤ β(s)
∫
X

Φ′(|f |)|∇f |χ{f>0}dµ+ sOsc(Φ(f+)),∫
X

Φ(f−)dµ ≤ β(s)
∫
X

Φ′(|f |)|∇f |χ{f<0}dµ+ sOsc(Φ(f−)).
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Summing up we arrive at∫
X

Φ(f)dµ ≤ β(s)
∫
X

Φ′(|f |)|∇f |dµ+ s (Osc(Φ(f+)) + Osc(Φ(f−)))

≤ β(s)
∫
X

Φ′(|f |)|∇f |dµ+ sOsc(f) (7)

where in the last line we used the fact that Φ(x) ≤ |x| and thus that

Osc(Φ(f+)) + Osc(Φ(f−)) = Φ(sup f) + Φ(| inf f |) ≤ sup f + | inf f | = Osc(f).

Now, using the Young inequality xy ≤ Φ(2x) + Φ∗(y/2) with x = β(s)|∇f |/h and y = Φ′(|f |), where
Φ∗(y) = supu{uy − Φ(u)}, we have

β(s)
∫
X

Φ′(|f |)|∇f |dµ ≤
∫
X

Φ (2β(s)|∇f |) dµ+
∫
X

Φ∗ (Φ′(|f |)/2) dµ. (8)

A simple computation gives that Φ∗(y) = 1 −
√

1− y2 for |y| ≤ 1. Hence, since |Φ′| ≤ 1, we have

Φ∗(Φ′(x)) = 1−
√

1− x2

1+x2 =
√

1+x2−1√
1+x2 ≤ Φ(x) for any x ∈ R. In turn, using the convexity of Φ∗, we

get ∫
X

Φ∗
(

Φ′(|f |)
2

)
dµ ≤ 1

2

∫
X

Φ∗(Φ′(|f |))dµ ≤ 1
2

∫
X

Φ(f)dµ.

Plugging this bound into (8), it follows from (7), after simplifications, that∫
X

Φ(f)dµ ≤ 2
∫
X

Φ
(

2β(s)
h
|∇f |

)
dµ+ 2sOsc(f).

This ends the proof since 2Φ(x) ≤ Φ(2x) for x ≥ 0, by convexity of Φ.

Proof of Theorem 0.2. Let Φ(x) =
√

1 + x2−1, let n = 1 and consider a locally Lipschitz function
f : X → [0, 1]. By Lemma 0.1 applied to

√
24(f −m(f)) we have for any s ∈ (0, 1

2 )∫
X

Φ(
√

24(f −m))dµ ≤
∫
X

Φ
(

4
√

24β(s)|∇f |
)
dµ+ 2

√
24sOsc(f).

Now observe that for |t| ≤ 1, Φ(
√

24t) ≥ 4t2. Hence,∫
X

Φ(
√

24(f −m))dµ ≥ 4
∫
X

(f −m)2 ≥ 4 Varµ(f) = I

(∫
X

fdµ

)
−
∫
X

I(f)dµ.

Let C = 2
√

24 = 4
√

6. For any s ∈ (0, 1
2 ) it follows that

I

(∫
X

fdµ

)
≤
∫
X

[Φ (2Cβ(s)|∇f |) + I(f)] dµ+ CsOsc(f)

=
∫
X

[√
1 + (2Cβ(s)|∇f |)2 − 1 + I(f)

]
dµ+ CsOsc(f)

≤
∫
X

[√
I(f)2 + (2Cβ(s)|∇f |)2

]
dµ+ CsOsc(f)
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since u = I(f) ≤ 1 and the function u 7→
√
u2 + v2 − u is non-increasing in u ≥ 0 (for any v).

Inequality (4) follows in dimension n = 1 and from Lemma 0.2 below, in any dimension.

Lemma 0.2. Let I : [0, 1] → R+. Assume that for some constants a, b > 0 and all locally Lipschitz
function f : X → [0, 1] we have

I

(∫
X

fdµ

)
≤
∫
X

√
I(f)2 + a2|∇f |2dµ+ bOsc(f).

Then, for any n ≥ 1 and any locally Lipschitz function f : Xn → [0, 1]

I

(∫
Xn

fdµn
)
≤
∫
Xn

√
I(f)2 + a2|∇f |2dµn + bnOsc(f).

Proof. The proof is by induction. Let f : Xn+1 → [0, 1]. For simplicity we decompose any element
of Xn+1 as (y, x) ∈ Xn ×X. Let g(x) =

∫
Xn

f(y, x)dµn(y). Then we have,

I

(∫
Xn+1

fdµn+1

)
= I

(∫
X

g(x)dµ(x)
)
≤
∫
X

√
I(g(x))2 + a2|∇g|2(x)dµ(x) + bOsc(g).

Note that Osc(g) ≤ Osc(f). Also |∇g|(x) ≤
∫
Xn
|∇xf |(x, y)dµn(y) for any x ∈ X, where |∇xf | is the

modulus of the gradient of x 7→ f(y, x) with fixed y ∈ Xn. Furthermore,

I(g(x)) = I

(∫
Xn

f(y, x)dµn(y)
)
≤
∫
Xn

√
I(f)2(y, x) + a2|∇yf |2(y, x)dµn(y) + bnOsc(f)

where |∇yf | is the modulus of the gradient of y 7→ f(y, x) with fixed x ∈ X. Hence, using the following
Hölder-Minkowski inequality

√
(
R
u)2+(

R
v)2 ≤

∫ √
u2 + v2, where the integral is over Xn with respect

to dµn(y), with u =
√
I(f)2 + a2|∇yf |2 + bnOsc(f) and v = C|∇xf |, we end up with

I

(∫
Xn+1

fdµn+1

)
≤
∫
X

∫
Xn

√(√
I(f)2 + a2|∇yf |2 + bnOsc(f)

)2

+ a2|∇xf |2dµndµ+ bOsc(f)

≤
∫
Xn+1

√
I(f)2 + a2 (|∇yf |2 + |∇xf |2)dµn+1 + b(n+ 1) Osc(f)

where in the last line we used the following inequality,
√

(α+ β)2 + γ2 ≤
√
α2 + γ2 +β, valid for any

α, β, γ ≥ 0, that we applied to α =
√
I(f)2 + a2|∇yf |2, β = bnOsc(f) and γ = a|∇xf |. This ends

the proof.

The next result is a more general version of Theorem 0.1 (without the assumption on J(s)/s).

Corollary 0.1. Assume that for any Borel set A ⊂ X, µs(∂A) ≥ J (µ(A)) for some function J :
[0, 1]→ R+ symmetric around 1/2. Let β(s) = sups≤t≤ 1

2

t−s
J(t) for s ∈ (0, 1

2 ) and H(t) = sup0<s≤t
t−s
β(s)

for t ∈ (0, 1
2 ). Then, for any n ≥ 1 and any Borel set A ⊂ Xn,

µns (∂A) ≥ n

2
H

(
1

2
√

6n
min(µn(A), 1− µn(A))

)
.
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Remark 0.1. When J(s) = hµs, then H(t) = hµt. In this case, using the notation of the introduction,
we get that hµn ≥ hµ/(4

√
6). This is Bobkov-Houdré’s result13 (see also Ref. 24) with a worst constant

(off by a factor 2).

Proof. Fix n ≥ 1 and a Borel set A ⊂ Xn. Thanks to Theorem 0.2 and the inequality
√
a2 + b2 ≤

|a|+ |b| we have for any locally Lipschitz function f : Xn → [0, 1] and all s ∈ (0, 1/2),

I

(∫
Xn

fdµn
)
≤
∫
Xn

√
I(f)2 + 4C2β2(s)|∇f |2dµn + CnsOsc(f)

≤
∫
Xn

I(f)dµn + 2Cβ(s)
∫
Xn
|∇f |dµn + CnsOsc(f),

where I(t) = 4t(1 − t), t ∈ [0, 1] and C = 2
√

24. Approximating the indicator function χA of A by
locally Lipschitz functions on Xn with values in [0, 1] (see [13, Lemma 3.5]), we get that

4µn(A)(1− µn(A)) ≤ 2Cβ(s)µns (∂A) + Cns ∀s ∈ (0, 1/2).

Since 2t(1− t) ≥ min(t, 1− t), we end up with

sup
s∈(0,1/2)

2 min(µn(A), 1− µn(A))− Cns
2Cβ(s)

≤ µns (∂A).

This leads to the expected result after some rearrangements.

Theorem 0.1 is a direct consequence of the previous corollary together with Lemma 0.3 below
that compares H to J under the extra assumption that the function s 7→ J(s)/s is non-decreasing on
(0, 1/2) (we omit the proof).

Lemma 0.3. Let J , β and H as in Corollary 0.1. Assume furthermore that the function s 7→ J(s)/s
is non-decreasing on (0, 1/2). Then, for all t ∈ (0, 1

2 ), H(t) ≥ J
(
t
2

)
.

Proof. Since s 7→ J(s)/s is non-decreasing, we have

β(s) = sup
s≤t≤ 1

2

t− s
J(t)

= sup
s≤t≤ 1

2

t

J(t)
t− s
t
≤ s

J(s)
sup
s≤t≤ 1

2

t− s
t

=
s(1− 2s)
J(s)

≤ s

J(s)
.

Therefore, choosing s = t/2 we get H(t) = sup
0<s≤t

t− s
β(s)

≥ sup
0<s≤t

(t− s)J(s)
s

≥ J (t/2).

Note that by similar reasoning it is also possible to prove (under the assumptions of Lemma 0.3)
that H(t) ≤ 2J (2t) for t ∈ (0, 1/4).
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