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1. Introduction

Given (M, g), a m-dimensional Riemannian manifold, and ⌦, a smooth bounded
domain inM , we denote by �1(⌦) the first eigenvalue of the Laplace-Beltrami operator
under 0 Dirichlet boundary condition. The critical points of the functional

⌦ 7�! �1(⌦) ,

under the volume constraint Vol(⌦) = ↵ (where ↵ 2 (0,Vol(M)) is fixed) are called
extremal domains. Smooth extremal domains are characterized by the property that
the eigenfunctions associated to the first eigenvalue of the Laplace-Beltrami operator
have constant Neumann boundary data [2]. In other words, a smooth domain is
extremal if and only if there exists a positive function u1 and a constant �1 such that

�
g

u1 + �1 u1 = 0 ,

in ⌦ with
u1 = 0 and r

n

u1 = constant on @⌦ ,

where n denotes the inward unit normal vector to @⌦. The theory of extremal domains
is very reminiscent of the theory of constant mean curvature surfaces or hypersurfaces.
To give some credit to this assertion, let us recall that, in the early 1970’s, J. Serrin
has proved that the only compact, smooth, extremal domains in Euclidean space are
round balls [6], paralleling the well known result of Alexandrov asserting that round
spheres are the only (embedded) compact constant mean curvature hypersurfaces in
Euclidean space. More recently, F. Pacard and P. Sicbaldi have proved the existence of
extremal domains close to small geodesic balls centered at critical points of the scalar
curvature function [5], paralleling an earlier result of R. Ye which provides constant
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mean curvature topological spheres (with high mean curvature) close to small geodesic
spheres centered at nondegenerate critical points of the scalar curvature function [8].

We propose the following :

Definition 1.1. — A smooth domain ⌦ ⇢ Rm is said to be an exceptional domain if
it supports positive harmonic functions having 0 Dirichlet boundary data and constant
(nonzero) Neumann boundary data. Any such harmonic function is called a roof
function.

Exceptional domains arise as limits under scaling of sequences of extremal domains
just like minimal surfaces arise as limits under scaling of sequences of constant mean
curvature surfaces. As explained above, there is a formal correspondence between
extremal domains and constant mean curvature surfaces. In this note, we try to
explain that there is also a strong analogy between exceptional domains and minimal
surfaces. More generally, we propose the :

Definition 1.2. — A m-dimensional flat Riemannian manifold M is said to be ex-
ceptional if it supports positive harmonic functions having 0 Dirichlet boundary data
and constant (nonzero) Neumann boundary data. Any such harmonic function is
called a roof function.

Our results raise the problem of the classification of (unbounded) smooth m-
dimensional exceptional manifolds. In trying to address this classification problem, we
provide a Weierstrass type representation formula for exceptional flat surfaces. When
the dimension m = 2, we give non trivial examples of exceptional domains which are
embedded in R2 and we prove a half space result for exceptional domains which are
conformal to a half plane.

2. A non trivial example of exceptional domain in R2

To begin with, observe that the property of being an exceptional domain is pre-
served under the action of the group of similarities of Rm (generated by isometries
and dilations). We now give trivial examples of exceptional domains in Rm :

(i) The half space {x = (x1, . . . , xm

) 2 Rm : x1 > 0} is an exceptional domain
in Rm since the function u(x) = x1 is a positive harmonic function with 0
Dirichlet boundary data and constant Neumann boundary data.

(ii) The complement of a ball of radius 1 in Rm is an exceptional domain since,
the function u defined by u(x) := log |x|, when m = 2 and u(x) := 1 � |x|2�m,
when m � 3 is positive, harmonic and has 0 Dirichlet and constant Neumann
data on the unit sphere.

(iii) The product ⌦⇥ Rk is an exceptional domain in Rm provided ⌦ ⇢ Rm�k is an
exceptional domain in Rm�k.
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In dimension m = 2, there exists (up to a similarity) at least another exceptional
domain. To describe this domain, we make use of the invariance of the Laplace op-
erator under conformal transformations. The idea is that there exists a (somehow
natural) unbounded, positive harmonic function U with 0 Dirichlet boundary condi-
tion on an infinite strip in R2. This function does not have constant Neumann data
but we can then look for a conformal transformation h which has the property that
the pull back of the harmonic function U by h has constant Neumann boundary data
on the boundary of the image of the strip by h.

To proceed, it is be convenient to identify R2 with the complex plane C. We claim
that :

Proposition 2.1. — The domain

⌦ :=
�
w 2 C : |=w| < ⇡

2 + cosh(<w)
 
,

is an exceptional domain.

To prove this result, we define the infinite strip

S :=
�
z 2 C : = z 2 (�⇡

2 ,
⇡

2 )
 
,

and the mapping
F (z) := z + sinh z .

Observe that ⌦ = F (S). The proof of Proposition 2.1 follows from the following two
results.

Lemma 2.1. — The mapping F is a conformal di↵eomorphism from S into ⌦.

Proof. — We can write

F (z)� F (z0) = (z � z0)

Z 1

0
(1 + cosh (tz + (1� t)z0)) dt .

In particular

(2.1) hz � z0, F (z)� F (z0)i = |z � z0|2
✓
1 +

Z 1

0
< cosh (tz + (1� t)z0) dt

◆
,

where h·, ·i denotes the scalar product in C. Now, observe that, for all x+ i y 2 S, we
have

< cosh (x+ i y) = coshx cos y � 0 .

This, together with (2.1), implies immediately that F , restricted to S, is injective.
We also have

|@
z

⇤(z)|2 = |1 + cosh z|2 = (coshx+ cos y)2 .

Therefore, @
z

F does not vanish in S and this shows that F is a local di↵eomorphism
and the mapping F being holomorphic, it is conformal.

We define the real valued function u on ⌦ by the identity

u(F (z)) = < cosh z ,

for all z 2 S. We have the :
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Lemma 2.2. — The function u is harmonic and positive in ⌦, vanishes and has
constant Neumann boundary data on @⌦.

Proof. — The function W defined in C by W (z) := < cosh z is harmonic. As already
mentioned in the proof of the previous Lemma, W (x+ i y) = coshx cos y and hence,
the function W is both harmonic and positive in S and vanishes on @S. The mapping
F being a conformal di↵eomorphism from S to ⌦, we conclude the function u is
both harmonic and positive in ⌦ and vanishes on @⌦. We claim that u has constant
Neumann data on @⌦. Indeed, by definition

u(F (z)) = 1
2 (cosh z + cosh z̄) .

Since F is holomorphic, di↵erentiation with respect to z yields

2 @
z

u(F (z)) =
sinh z

1 + cosh z
.

Therefore

|ru|2(F (z)) =
coshx� cos y

coshx+ cos y
,

where z = x + i y. On @⌦, y = ±⇡/2 and hence |ru| ⌘ 1. Since we already know
that u = 0 on @⌦, we conclude that u has constant Neumann boundary data.

The two previous Lemma complete the proof of the fact that ⌦ = F (S) is an
exceptional domain in R2 with roof function given by u.

Remark 2.1. — We suspect that this example generalises to any dimension m � 3,
namely that there exists a rotationally symmetric exceptional domain in Rm, for all
m � 3.

3. Toward a global representation formula

Let M be a exceptional flat surface with smooth boundary @M . Let M̃ be its
universal cover and @M̃ be the preimage of @M by the covering map M̃ �! M . In
the following, we exclude the non interesting case where @M = ;.

By assumption, M is a flat surface and hence M̃ is naturally endowed with a flat
Riemannian metric g and hence with an induced complex structure which is conformal
to the standard one. Also, there exists an orientation preserving isometric immersion
F : (M̃, g) �! (C, gC) (where gC is the canonical Euclidean metric on C) which
induces a smooth immersion of @M̃ . Observe that F is holomorphic and that

kdFk

g

= 1 ,

in M̃ [ @M̃ . We define the holomorphic (1, 0)-form

� := dF = @
z

F dz ,

Observe that � does not vanish and admits a smooth extension to M̃ [ @M̃ .
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We let u : M �! R+ be a roof function on M and, with slight abuse of notation,
we denote also by u : M̃ �! R+ its lift. The roof function u can be normalized so
that

(3.1) kruk
g

= 1 ,

on @M . We consider the harmonic conjugate function v : M̃ �! R (which is uniquely
defined up to some additive constant) which is the solution of

(3.2) @
z

(u� i v) = 0 (and hence @
z̄

(u+ i v) = 0 ) .

And we set
U := u+ i v .

Recall that U is a holomorphic function from M̃ into C. The property that u takes
positive values in M and vanishes on @M can be translated into the fact that U maps
M̃ to

C+ := {w 2 C : <w > 0} ,

and @M̃ to iR. Since � 6= 0 on M̃ there exists a unique holomorphic function h on
M̃ such that

dU = @
z

U dz = h� .

We deduce from the fact that u vanishes on @M̃ and from (3.1) that r
n

U = 1, if n
denotes the inward unit normal vector to @M̃ , and hence

(3.3) k@
z

Uk

g

= 1 on @M̃ .

Now, condition (3.1) translates into the fact that

k�k
g

= kdFk

g

= 1 = kdUk

g

,

on @M̃ . Clearly, this is equivalent to the fact that

|h| = 1 on @M̃ .

Therefore, we end up with the following data :

(i) An oriented simply connected complex surface M̃ with smooth boundary @M̃ .

(ii) A holomorphic function U , defined on M̃ , which takes values in C+ and which
maps @M̃ into iR.

(iii) A holomorphic function h, defined on M̃ , such that |h| = 1 on @M̃ and for
which the 1-form � defined by � := 1

h

dU does not vanish on M̃ .

By analogy with the theory of minimal surfaces, we call these data the Weierstrass
type representation formula for exceptional flat surfaces.

Conversely, given a set of such data, we can define the map F : M̃ �! C by
integrating dF = �. Thanks to (iii), this map is an immersion and its image is an
immersed exceptional flat surface with roof function given by

u = <U .
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In the next section, we will give some explicit examples of such constructions when
@M̃ is equal to @D \ {↵1, . . . ,↵n

}, where ↵1, . . . ,↵n

is a finite collection of points on
@D = S1.

Example 3.1. — We illustrate this Weierstrass type formula by giving some (rather
pathologic) example. We consider M = C+, the function U(z) = z and

F (z) =

Z
z

0
e� sinh ⇣ d⇣ .

Note that @
z

F is 2i⇡-periodic and this implies that F (z+2i⇡) = F (z)+C, where the
constant C is given explicitly by

C := i

Z 2⇡

0
e�i sin s ds .

Moreover we observe that, for x > 0,

F (x+ iy) = F (iy) +

Z
x

0
e� sinh(s+iy) ds ,

converges to +1 as x ! +1 if y = 0, but this quantity is bounded if |y�⇡| < ⇡

2 and
even admits a finite limit as x ! +1.

Hence, in addition to the regular boundary F (iR) (which is a smooth periodic
curve), the image of F has a singular boundary which is the set of points which are
the limits lim

u!+1 F (x + i y), as u tends to +1, for the values of y for which this
limit exists. The roof function tends to infinity along this singular boundary.

4. Examples of exceptional flat surfaces

Thanks to the Weierstrass type representation described in the previous section, we
can give many nontrivial examples of exceptional flat surfaces. We keep the notations
introduced in the previous section.

The construction makes use of an integer n 2 N \ {0} and the Riemann surface
D = {z 2 C : |z| < 1}. On D, we define the holomorphic functions

h(z) = zn�1 ,

and

U(z) :=
1 + zn

1� zn
.

Then, the 1-form � is given by

�(z) :=
2n

(1� zn)2
dz ,

Observe that both U and � have singularities at the n-th roots of unity. The function
F is then obtained by integrating � and the roof function u is then defined by u = <U .

(i) When n = 1, we can take

F (z) =
1 + z

1� z
.
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In this case, we simply have F (D) = C+ and we recover the fact that the half
plane is an exceptional domain. This exceptional domain is the counterpart of
the plane in the framework of minimal surfaces.

(ii) When n = 2, we can take

F (z) =
2z

1� z2
+ log

✓
z + 1

z � 1

◆
.

In this case, the exceptional flat surface we find can be isometrically embedded
in C and hence F (D) is an exceptional domain. In fact, F (D) corresponds (up
to some similarity) to the domain ⌦ which has been defined in Proposition 2.1.
This exceptional domain is the counterpart of the catenoid in the framework of
minimal surfaces.

(iii) Finally, when n � 3 the exceptional flat surface we find cannot be isometrically
embedded in C anymore. They are the counterpart, in this setting, of the
minimal n-noids described in [4].

Let us analyze this example further. The function U can be written as

U(z) = �

1

n

nX

k=1

z + ↵k

z � ↵k

,

where ↵ := ei2⇡/n. In particular, <U is nothing but a multiple of the sum of the
Poisson kernel on the unit disc with poles at 1,↵, . . . ,↵n�1. Next, observe that

dU = zn�1 2n

(1� zn)2
dz ,

so that the function h is cooked up to counterbalance the zero of dU and ensure that
� does not vanish in the unit disk, while keeping the condition |dU |

2 = |�|2 on @D.
This example can be generalized as follows : Consider n distinct points ↵1, . . . ,↵n

2

S1
⇢ C and a1, . . . , an > 0. We define

U(z) := �

nX

k=1

a
k

z + ↵
k

z � ↵
k

.

It is easy to check that <U is positive (since each function

z 7�! �

z + ↵
k

z � ↵
k

,

maps D to C+) and vanishes on @D \ {↵1, . . . ,↵n

}. We have

nY

k=1

(z � ↵
k

)2 dU = P (z) dz ,

where P is a polynomial which depends on the choice of the points ↵1, . . . ,↵n

and the
weights a1, . . . , an. Let us assume that P does not vanish on @D and let us denote
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by z1, . . . , z` the roots of P , counted with multiplicity) which belong to the unit disc.
We simply define

h(z) :=
`Y

j=1

z � z
j

z z̄
j

� 1
,

and the 1-form � by � := 1
h

dU . Integration of � yields a 2n dimensional family of
exceptional flat surfaces which are immersed in C.

5. A global Weierstrass type representation

In this section, we show that exceptional flat surfaces whose immersion in C have
finitely many regular ends and are locally finite coverings of C are precisely the ex-
amples presented in the previous section. We use the notations introduced in section
§3 and we set

cM := M [ @M .

We further assume that M is simply connected and that @M 6= ;. In particular, M
has the conformal type of the unit disk D, and without loss of generality, we can
assume that M is indeed equal to D and consider D̄ as a natural compactification
of M . We denote by F an orientation preserving, holomorphic, isometric immersion
F : (cM, g) �! (C, gC). Recall that

kdFk

g

= 1 ,

on @M . Some natural hypotheses will be needed :

(H-1) M has finitely many ends. This means that

@M = @D \ [

n

j=1Ej

= [

n

j=1Ij ,

where each E
j

⇢ S1 is a closed arc and I
j

⇢ S1 is an open arc.

(H-2) F is proper. This means that F (w) tends to infinity as w tends to [

n

j=1Ej

.

(H-3) Each end of M is regular. This means that the image of I
j

:= (✓�
j

, ✓+
j

) by F
is a curve �

j

which is asymptotically parallel to fixed directions at infinity. In
other words, there exist two unit vectors ⌧�

j

and ⌧+
j

2 S1
⇢ C such that

lim
✓2Ij , ✓!✓

±
j

F (ei✓)

|F (ei✓)|
= ⌧±

j

.

Observe that this is for example the case if we assume that �
j

have finite total
curvature.

(H-4) The mapping F is a locally finite covering. This means that there exists d 2 N⇤

such that, for any z 2 C, the cardinal of {⇣ 2 M : F (⇣) = z} is less than or
equal to d.

The main result of this section reads :
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Theorem 5.1. — Assume that M be a simply connected exceptional flat surface and
let F : M �! C be an isometric immersion. Further assume that (H-1), . . . , (H-4)
hold and we identify M with D. Then, there exist µ 2 R, n distinct points ↵1, . . . ,↵n

2

S1 and n constants a1, . . . , an > 0 such that

dF = ei µ
mY

k=1

z
k

z � 1

z � z
k

dU.

where z1, . . . , zm 2 D̄ denote the zeros (counted with multiplicity) of dU where U

U(z) := �

nX

j=1

a
j

z + ↵
j

z � ↵
j

.

in D̄.

The proof of the Theorem is decomposed into the following Lemmas and Proposi-
tions. We start by analyzing the ends E

j

and show that they reduce to isolated points
↵1, . . . ,↵n

. Next, we analyze the behavior of F near the points ↵
j

and show that F
does not have any essential singularity there. Then, we proceed with the analysis of
the function U and show that it has the expected form. The proof of the Theorem is
completed with the study of the function h.

As promised, we first analyze the sets E
j

. This is the contain of the following :

Lemma 5.1. — Under the assuptions of Theorem 5.1, there exists a finite number

of points ↵1, . . . ,↵n

2 @D = S1 such that cM = D̄ \ {↵1, . . . ,↵n

}.

Proof. — We need to show that each interval E
j

is reduced to a point. This essentially
follows from the fact that we can prove that the capacity of E

j

vanishes.
We argue by contradiction and suppose that, for some j, E

j

is an arc of positive arc
length. This implies that we can find some ` 2 (0,⇡/2) and some arc E ⇢ E

j

of length
`. Our problem being invariant under the action of homographic transformation of
the unit disk, without loss of generality, we can assume that E is the image of [� `

2 ,
`

2 ]
by s 7�! eis and, reducing ` if this is necessary, we can also assume that the opposite
arc �E (which is the image of [� `

2 ,
`

2 ] by s 7�! �eis) is contained in S1
\ [

n

j=1Ej

.
Recall that for any smooth function defined on (a, b) which satisfies f(b) = 1 and

f(a) = 0, we have

1 = f(b)� f(0) =

Z
b

a

f 0(s) ds 

 Z
b

a

(f 0)2(s) ds

!1/2
p

b� a .

If in addition, b� a  2, we conclude that

Z
b

a

(f 0)2(s) ds �
1

2
.
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Now, assume that we are given a smooth function f : D �! R such that f = 1 on E
and f = 0 on �E, using the previous inequality, we can write
(5.1)Z

D

krfk2
gC dx dy �

Z

D\{|x|<sin `/2}
|@

y

f |2 dx dy �

Z

|x|sin(`/2)

1

2
dx = sin(`/2) .

Given R > r > 0 we let � : C �! R be defined by

�(z) =

8
>>><

>>>:

0 if |z|  r

log |z|
r

log |z|
R

if r  |z|  R

1 if R  |z| ,

and we define f : D �! R by f := � � F . Since F is conformal, we can write
Z

D

krfk2
gC dx dy =

Z

D

krfk2
g

dvol
g

.

Now, using (H-4), we conclude that

(5.2)

Z

D

krfk2
g

dvol
g

 d

Z

C
kr�k2

gC dx dy = d
2⇡

log R

r

.

Fixing r > 0 large enough, we can ensure that f is identically equal to 0 on �E.
Using (H-2), we see that f is identically equal to 1 on each E

j

, and in particular on
E. Therefore, f can be used in (5.1) which together with (5.2) yields

2⇡ d � sin(`/2) log
R

r
,

independently of R > r. Letting R tend to infinity, we get a contradiction and the
proof of the result is complete.

Therefore, we now know that

E
j

:= {↵
j

} .

Without loss of generality we can assume that ↵1, . . . ,↵n

are arranged counterclock-
wise along S1. We agree that ↵0 := ↵

n

and ↵
n+1 := ↵1 and that, for each j = 1, . . . , n,

the arc I
j

is positively oriented and joints ↵
j

to ↵
j+1. We now analyze the singularities

of F close to ↵
j

.
Given j = 1, . . . , n, we denote by S(↵

j

, r) the circle of radius r > 0 centered at ↵
j

.
We define

�
j

:= D̄ \ S(↵
j

, r) .

which we assume to be oriented clockwise. The angle ✓
j

2 R at ↵
j

is defined by

✓
j

:= � lim
r!0

Z

�k

F ⇤d✓ ,

where d✓ := =

dz

z

. Observe that, thanks to (H-3), ✓
j

is well defined and we have

⌧�
j

= ei✓j ⌧+
j�1 .

With these definition in mid, we prove the
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Lemma 5.2. — Under the assumption of Theorem 5.1, the function

H
j

(z) := (z � ↵
j

)✓j/⇡ F (z),

is holomorphic in a neighborhood of ↵
j

in D̄ \ {↵
j

} and H
j

(↵
j

) 6= 0.

Proof. — Without loss of generality, we can assume that ↵
j

= 1. By right composing
F with the conformal transformation z 7�!

1�z

1+z

, we can replace D by C+. Now, we
define

G(z) := F (z)�⇡/✓j

Observe that G(0) = 0 by (H-2). Moreover, (H-3) together with the definition of ✓
j

implies that the image by G of a neighborhood of 0 in iR is a C

1-curve (and hence
analytic). In particular, there exists some conformal transformation T such that, for
some r > 0, the image by T �G of i (�r, r) is a straight line segment in iR. Then, it is
possible to extend T �G into some function G̃ which is defined on some neighborhood
of 0 in C by setting G̃(z) = T (G(z)) when = z � 0 and

G̃(z) := �T (G(�z)) ,

when = z  0. The resulting function G̃ in bounded in a neighborhood of 0 in C and
holomorphic away from 0. It is well known that the singularity is then removable and
hence it is holomorphic and hence G̃ is actually holomorphic in a neighborhood of 0.
In particular, we can write

G(z) = zk H(z) ,

close to 0 where H is a holomorphic function which does not vanish at 0. Going back
to the definition of G, this implies that

F (z) = (z � ↵
j

)�k ✓j/⇡ H
j

(z)

where H
j

is holomorphic in a neighborhood of ↵
j

and does not vanish at ↵
j

. But, the
definition of ✓

j

readily implies that k = 1. This completes the proof of the result.

As a corollary, we conclude that

(5.3) H(z) := F (z)
nY

j=1

(z � ↵
j

)✓j/⇡ ,

is a bounded holomorphic function in D. Moreover, since F tends to infinity as z
approaches ↵

j

, this implies that ✓
j

> 0.
We now make use of the fact that M is an exceptional domain and hence there

is a roof function u : cM �! [0,+1) and we can define the holomorphic function

U := u + i v, where v : cM �! R is the (real valued) harmonic conjugate of u. The
purpose of the next result is to show that U is precisely given by the formula used in
section§4.

Lemma 5.3. — Under the assumptions of Theorem 5.1, there exist n constants
a1, . . . , an > 0 such that

U(z) = �

nX

j=1

a
j

z + ↵
j

z � ↵
j

.



12 FRÉDÉRIC HÉLEIN, LAURENT HAUSWIRTH & FRANK PACARD

Proof. — We first observe that it is possible to extend the function U to all C \

{↵1, . . . ,↵n

} by defining V to be equal to U in D \ {↵1, . . . ,↵n

} and

V (z) := �U(1/z) ,

when z 2 C \D. The key observation is that, since <U = 0 on @D \ {↵1, . . . ,↵n

}, V
is continuous and in fact holomorphic on C \ {↵1, . . . ,↵n

}. Moreover V converges to
V (1) := �U(0) at infinity.

We proceed with the proof that the function V has no essential singularity at any
↵
j

, this is a simple consequence of Picard’s big Theorem. By definition, <V vanishes
on I

j

and is positive in D. Therefore, the outward normal derivative of <V on I
j

is
negative. This implies that the tangential derivative of =V on I

j

does not vanish and
hence that =V is strictly monotone on each I

j

. This shows that there exists some
neighborhood V of ↵

j

in C such that any element of iR is achieved by V at most
twice in V (that is, at most once on I

j

and at most once on I
j�1, and certainly not in

V \@D, since V takes values in C\ iR away from @D). Picard’s big Theorem [1] then
implies that ↵

j

is not an essential singularity of V . Hence ↵
j

is either a removable
singularity of V or a pole.

Since kruk
g

⌘ 1 on @M , this forces |@
z

U | = |@
z

F | on @M , and since |@
z

F | tends
to +1 at ↵

j

so does |@
z

U | and hence all ↵
j

are poles of V .
We are now interested in the zeros of V . Since <V takes positive values in D and

negative values in (C [ {1}) \ D, we know already that the only possible zeros of
V are on @D. Moreover, we have already seen that, along I

j

, the function V = i v
where v is strictly monotone. Furthermore since ↵

j�1 and ↵
j

are poles of V , |V | must
converges to +1 when one tends to ↵

j�1 or ↵
j

. Because of the continuity of v along
each I

j

then implies that v vanishes exactly at one point �
j

on each I
j

. Moreover,
this zero is simple, since if it would be a zero of order k > 1, this would imply that
the zero set of <V near �

j

contains k curves intersecting at �
j

. This would then force
<V = <U to vanish in D, which is in contradiction with our hypothesis.

Finally, we prove that V has only simple poles. We know that V extends meromor-
phically to a map on CP 1 = C [ {1} with no pole nor zero at infinity. Furthermore,
V has exactly n simple zeros and n poles, hence these poles must be simple. To sum-
marize, the function V can be written as a linear combination of the constant function
and functions of the form z 7�!

1
z�↵j

. Without loss of generality, this amounts to say

that V can be written as

V (z) = a�

nX

j=1

a
j

z + ↵
j

z � ↵
j

,

where a and the a
j

are complex numbers. Using the fact that, by construction,

V (1/z) = �V (z), we conclude that a 2 iR and also that a
j

2 R. Moreover, <U
being positive, this implies that the a

j

are positive real numbers. This completes the
proof of the result since U is defined up to the addition of some element of iR.

We are now in a position to complete our analysis of the function F . Since F is
an immersion dF 6= 0 on cM . Hence there exists a unique holomorphic function h on
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cM such that

(5.4) @
z

U = h @
z

F ,

on cM . Moreover, since kruk
g

⌘ 1 on @M , this implies that |h| ⌘ 1 on @M . In the
next result, we analyze the function h, this will complete the proof of Theorem 5.1.

Lemma 5.4. — Under the assumptions of Theorem 5.1, there exists a constant ei µ 2

R such that the function h defined by (5.4) has the form

h(z) = e�i µ

mY

k=1

z � z
k

z
k

z � 1
.

where z1, . . . zm are the zeros of @
z

U in D counted with multiplicity.

Proof. — The function h is holomorphic in D and satisfies |h| = 1 on @D \

{↵1, . . . ,↵n

}. We can extend h as a holomorphic function H which defined on
(C [ {1}) \ {↵1, . . . ,↵n

} by setting H(z) := h(z) for all z 2 D \ {↵1, . . . ,↵n

} and

(5.5) H(z) :=
1

h(1/z)
,

for all z 2 C\D. ClearlyH is locally bounded inD\{↵1, . . . ,↵n

}, its only singularities
in (C [ {1}) \D are poles which are the images by z 7�! 1/z of the zeros of h and
hence is meromorphic outside {↵1, . . . ,↵n

}. But, Lemma 5.2 and (5.3) imply that,
near ↵

j

, |H| is bounded by a constant times |z � ↵
j

|

�kj for some k
j

> 0. Therefore,
↵
j

is not an essential singularity of H and hence, H is meromorphic in C [ {1}.
Observe that |H(z)| = 1 on @D \ {↵1, . . . ,↵n

} and this implies that the points ↵
j

are not poles of H. Therefore, the singularities ↵
j

of H are removable. Also, we have

� |H|

2 = 4@
z

@
z̄

|H|

2 = 4 |@
z

H|

2
� 0 ,

and since |H| = 1 on @D, the maximum principle implies that |H|  1 in D.
Now, H being bounded in D, it does not have poles in this set and this also implies

that H has no zeroes in (C[{1})\D (because otherwise H would have poles in D by
(5.5). Therefore, if z1, . . . , zm 2 D denote the zeros of H (counted with multiplicity),
then the poles of H are given by 1/z1, . . . , 1/zm (also counted with multiplicity). It
is then a simple exercise to check that H is of the form

H(z) = C

mY

k=1

z � z
k

z
k

z � 1
,

for some constant C 2 C. Finally, the condition that |H(z)| = 1 on @D forces |C| = 1.
This completes the proof of the result.

6. A Bernstein type result for 2-dimensional exceptional domains

We prove the following Bernstein type result for 2-dimensional exceptional do-
mains :
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Proposition 6.1. — Assume that ⌦ is a 2-dimensional exceptional domain which is
conformal to C+ and let u be a roof function on ⌦. We further assume that @

x

u > 0
in ⌦, then ⌦ is a half plane.

Proof. — Since we have assumed that ⌦ is conformal to C+, there exists a holomor-
phic map  : C+

7�! ⌦. We then define

H := (@
z

u) � .

The function H is holomorphic in C+ and does not vanish (since we have assumed
that @

x

u 6= 0). Moreover, |H| ⌘ 1 on @C+. We can write

H = ei⇥ ,

where ⇥ is a holomorphic function defined in C+ which is real valued on the imaginary
axis. This means that

=⇥ = 0 when < z = 0 .

Since we have assumed that @
x

u > 0, we also conclude that <⇥ 2 (�⇡/2,⇡/2).
We can extend ⇥ as a holomorphic function ⇥̃ in C as follows : for all z 2 C such

that < z � 0 we set
⇥̃(z) := ⇥(z) ,

while, when < z < 0, we set
⇥̃(z) := ⇥(�z̄) .

It is easy to check that ⇥̃ is a holomorphic function : in fact, the real part of ⇥ is
extended as an even function of <z while the imaginary part of ⇥ is extended as an
odd function of <z. The fact that ⇥̃ is C

1 is then a consequence of the fact that
=⇥ = 0 on the imaginary axis and the fact that ⇥ being holomorphic, @

x

<⇥ = 0 on
the imaginary axis of C.

Observe that the real part of ⇥̃ is a bounded harmonic function, and, as such, it has
to be constant. The function ⇥̃ being holomorphic, we conclude that it is constant.
But this implies that the gradient of u is constant and hence the level sets of u are
straight lines. This implies that u only depends on one variable and hence it is a
a�ne function. This completes the proof of the result.

As a Corollary, we also prove the :

Corollary 6.1. — There is no exceptional domain contained in a wedge

⌦ ⇢ {z 2 C : < z �  |= z|} ,

for some  > 0.

Proof. — The proof is by contradiction. If ⌦ were such an exceptional domain, there
would exist on ⌦ a roof function u. One can apply the moving plane method [6], [3]
to prove that @

x

u > 0 and hence that @⌦ is a graph over the y-axis. Observe that,
since ⌦ is contained in a half plane, there is no bounded, positive, harmonic function
on ⌦ having 0 boundary data on @⌦ (otherwise one could use an a�ne function as a
barrier to obtain a contradiction). Certainly, ⌦[@⌦ is conformal to D̄ \E where D is
the unit disc and E is a closed arc included in S1. Necessarily, E is reduced to a point
since otherwise we can construct bounded, positive, harmonic functions on E which
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have 0 boundary data on S1
\E and these would lift to bounded, positive, harmonic

function on ⌦, with 0 boundary data, a contradiction. Therefore, we conclude that ⌦
is conformal to C+. The assumptions of the previous Lemma are fulfilled and hence
we conclude that ⌦ is a half plane, which is a contradiction.

7. Open problems

We have no non trivial example of exceptional domain in higher dimensions, Rm,
for m � 3 (beside the examples described in section 2). In dimension m = 2, it is
tempting to conjecture that (up to similarity) the only exceptional domains which can
be embedded in R2 are the half spaces, the complement of a ball and the example
discussed in section 2.
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Laurent Schwartz,

´

Ecole Polytechnique, 91128 Palaiseau, France

E-mail : frank.pacard@math.polytechnique.fr


	1. Introduction
	2. A non trivial example of exceptional domain in R2
	3. Toward a global representation formula
	4. Examples of exceptional flat surfaces
	5. A global Weierstrass type representation
	6. A Bernstein type result for 2-dimensional exceptional domains
	7. Open problems
	References

