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Summary of the thesis

This thesis is devoted to the solution of some problems of various nature about the min-
imal surfaces.

The study of minimal surfaces in R? started with Lagrange in 1762. He studied the prob-
lem of determining a graph over an open set W in R?, with the least possible area among
all surfaces that assume given values on the boundary of W.

In 1776, Meusnier supplied a geometric interpretation of the minimal graph equation: the
mean curvature H vanishes. Nowadays it has become customary to use the term minimal
surface for any surface satisfying H = 0, notwithstanding the fact that such surfaces often
do not provide a minimum for the area.

In all of the questions I dealed with in this work, one minimal surface plays the key role.
It is the Costa-Hoffmann-Meeks surface, the most famous minimal surface. The discovery
of the Costa surface was responsible for the rekindling of interest in minimal surfaces in
1982. In that year C. Costa showed the existence of a complete (i.e., it has no boundary)
minimal surface of finite topology. It has genus 1 and three ends. D. Hoffman and W. H.
Meeks III showed the embeddedness of this surface (i.e. it does not intersect itself). Until
that moment the only other known embeddable complete minimal surfaces in R?® were the
plane, the catenoid and the helicoid. They were discovered over two hundred years ago,
and it was conjectured that these were the only embedded complete minimal surfaces.
Later D. Hoffman and W. H. Meeks III generalized the work of C. Costa showing the
existence of a family of complete embedded minimal surfaces with three ends and genus
k > 1. We denote by M} the surface of genus k. It is known as Costa-Hoffman-Meeks of
genus k.

An important property of the minimal surfaces is the non degeneracy. The non degen-
eracy is defined in terms of the space of the Jacobi functions on the surface, that is the
functions which belong to the kernel of the Jacobi operator. This operator is defined as
the linearized of the mean curvature operator.

J. Pérez and A. Ros showed that the set of the non degenerate properly embedded min-
imal surfaces with finite total curvature and fixed topology in R3, has a structure of
finite dimensional real-analytic manifold. As application they showed that for M, with
2 < k < 37, there exists a family of minimal surfaces with three horizontal ends that
are obtained by infinitesimal deformations by M. This result is based on a work of S.
Nayatani which assures the non degeneracy of the Costa-Hoffman-Meeks surface only if
its genus assumes the values described above. In his work S. Nayatani computed the
dimension of the kernel and the index (i. e. the number of the negative eigenvalues) of



the Jacobi operator about My but only if 1 < k£ < 37. He showed that the dimension of
the kernel equals 4. From that it follows the non degeneracy of Mj. In chapter 1 I show
that it is possible to extend the result of S. Nayatani for bigger values of k. To be more
precise I show that for £ > 38 the dimension of the kernel and the index of the Jacobi
operator about My, are respectively equal to 4 and 2k + 3. That allows us to state that
the surface M} is non degenerate also for k > 38.

The non degeneracy of the surface M, is one of the essential ingredients of the proof due
to L. Hauswirth and F. Pacard of the existence of a new family of examples of minimal
surfaces. Thanks to result described in 1, their construction extends automatically to
higher values of k. The same result is used in the other sections of the thesis. Without
it the constructions that I will describe briefly in the following, would hold only for £ < 37.

In chapter 2 following J. Pérez and A. Ros, I show the existence of a family of immersed
minimal deformations of M for £ > 1 having three embedded ends. In difference with
M;., the generic element of this family does not enjoy any property of symmetry. In fact,
the admitted deformations are: the rotation about a vertical axis, the translation and
dilation of any of the three ends of the surface. In addition, it is possible to bend the two
catenoidal type ends and change the type of the middle end obtaining a catenoidal type
end.

Here it is the statement of the main result.

Theorem 1. For each possible choice of the limit values of the normal vectors of the three
ends, there is, up to isometries, a 1-dimensional real analytic family of smooth minimal
deformations of My, for k > 1, letting the middle planar end horizontal.

The last two chapters of the thesis are devoted to the construction of new families of
examples of minimal surfaces. Their construction is based on a gluing procedure which
involves the surface M.

In chapter 3 I show the existence in the space H? x R, where H? denotes the hyperbolic
plane, of a family of minimal examples inspired to Mj. The statement of the main theorem
is

Theorem 2. For all k > 1 there exists in H? x R a minimal surface of genus k with three
horizontal ends: two catenoidal type ends and a middle planar end.

I glue the image by a homothety of parameter 2¢, with e sufficiently small, of a compact
part of M} along its three boundary curves to two minimal graphs that are respectively
asymptotic to an upper half catenoid and a lower half catenoid defined in H? x R and to
a minimal graph asymptotic to H? x {0}.



The chapter 4 is devoted to the construction of two new families of examples of periodic
minimal surfaces with genus bigger than 1. This result has been obtained in collaboration
with Laurent Hauswirth and M. Magdalena Rodriguez Pérez.

We denote by K = {M, 4 3}sa,ps the family of minimal surfaces called Karcher-Meeks-
Rosenberg examples or toroidal halfplane layers. They have been classified as the only
doubly periodic minimal surfaces in R* with genus one and finitely many parallel Scherk-
type ends in the quotient. We denote by M, , 5 the lifting of {M, o 5}s.0s to S x R? by
forgetting its non horizontal period.

The construction is based on a gluing procedure which involves a compact part of the
surface M with the catenoidal type ends slightly bent, which is glued with a minimal
graph about a strip of finite breadth along its middle boundary curve, to one half of
M, . g, (one time with o = 0 and a second time with § = 0) along the upper boundary
curve and a Scherk type surface along the lower boundary curve.

We obtain two families of properly embedded minimal surfaces in S' x R? with genus
k > 1, infinitely many parallel Scherk-type and two limit ends.



Chapter 1

Index and nullity of the Gauss map
of the Costa-Hoffman-Meeks surfaces

Introduction

In the years 80’s and 90’s the study of the index of minimal surfaces in Euclidean space
has been quite active. D. Fisher-Colbrie in [8], R. Gulliver and H. B. Lawson in [10]
proved independently that a complete minimal surface M in R?® with Gauss map G has
finite index if and only if it has finite total curvature. D. Fisher-Colbrie also observed
that if M has finite total curvature its index coincides with the index of an operator Lg
(that is the number of its negative eigenvalues) associated to the extended Gauss map G
of M, the compactification of M. Moreover N(G), the null space of Lg, if restricted to
M consists of the bounded solutions of the Jacobi equation. The nullity, Nul(G), that is
the dimension of N(G), and the index are invariants of G' because they are independent
of the choice of the conformal metric on M.

The computation of the index and of the nullity of the Gauss map of the Costa surface
and of the Costa-Hoffman-Meeks surface of genus g = 2,...,37 appeared respectively in
the works [30] and [29] of S. Nayatani. The aim of this work is to extend his results to
the case where g > 38.

In [30] he studied the index and the nullity of the operator L associated to an arbitrary
holomorphic map G : ¥ — S?, where ¥ is a compact Riemann surface. He considered
a deformation Gy : ¥ — S? t € (0,+00), with G; = G (see equation (1.2)) and gave
lower and upper bounds for the index of Gy, Ind(G;), and its nullity, Nul(G;), for ¢ near
to 0 and +oo and ¢ = 1. The computation of the index and the nullity in the case of the
Costa surface is based on the fact that the Gauss map of this surface is a deformation
for a particular value of ¢ of the map G defined by mo G = 1/¢/, that is its stereographic



projection is equal to the inverse of the derivative of the Weierstrass p-function for an
unit square lattice. S. Nayatani computed Ind(G;) and Nul(G,) for t € (0, +00), where G
is the map defined above. So the result concerning the Costa surface follows as a simple
consequence from that. He obtained that for this surface the index and the nullity are
equal respectively to 5 and 4.

In [29] S. Nayatani extended the last result treating the case of the Costa-Hoffman-Meeks
surface of genus g but only for 2 < g < 37. He obtained that the index is equal to 2g + 3
and the nullity is equal to 4. Here we will show that these results continue to hold also
for g > 38.

J. Pérez and A.Ros in [34] call a minimal surface non degenerate if the bounded Jacobi
functions about the surface are induced by the isometries of the ambient space. As con-
sequence of the works [29] and [30], the Costa-Hoffman-Meeks surface was known to be
non degenerate with respect to this definition, but only for 1 < g < 37.

The result of S. Nayatani about the nullity of the Gauss map of the Costa-Hoffman-Meeks
surface is essential for the construction due to L. Hauswirth and F. Pacard [11] of a family
of minimal surfaces with two limit ends asymptotic to half Riemann minimal surfaces and
of genus g with 1 < g < 37. Their construction is based on a gluing procedure which
involves the Costa-Hoffman-Meeks surface of genus ¢ and two half Riemann minimal sur-
faces. In particular the authors needed show the existence of a family of minimal surfaces
close to the Costa-Hoffman-Meeks surface, invariant under the action of the symmetry
with respect to the vertical plane zo = 0, having one horizontal end asymptotic to the
plane z3 = 0 and having the upper and the lower end asymptotic (up to translation)
respectively to the upper and the lower end of the standard catenoid whose axis of revo-
lution is directed by the vector sinf e; + cosfes, 0 < 0y with 6, sufficiently small. That
was obtained by Schauder fixed point theorem and using the fact that the nullity of the
Gauss map of the surface is equal to 4. In [11] the authors refer to this last result as a
non degeneracy property of the Costa-Hoffman-Meeks surface. It is necessary to remark
that here the choice of working with symmetric deformations of the surface with respect
to the plane x5 = 0, has a key role. Because of the restriction on the value of the genus
which affects the result of S. Nayatani, it was not possible to prove the existence of this
family of minimal surfaces for higher values of the genus.

So one of the consequences of our work is the proof of the non degeneracy of the Costa-
Hoffman-Meeks surface for ¢ > 1 in the sense of the definition given in [34] and also, only
in a symmetric setting, in [11]. So we can state that the family of examples constructed
by L. Hauswirth and F. Pacard exists for all the values of the genus. Moreover our result
allows us to show in chapter 2 the existence of a family of minimal deformations of the
Costa-Hoffman-Meeks surface for each value of the genus.
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1.1 Preliminaries

Let M be a complete oriented minimal surface in R3. The Jacobi operator of M is
L=-A+2K

where A is the Laplace-Beltrami operator and K is the Gauss curvature. Moreover we
suppose that M has finite total curvature. Then M is conformally equivalent to a compact
Riemann surface with finitely many punctures and the Gauss map G : M — S? extends
to the compactified surface holomorphically. So in the following we will pay attention to a
generic compact Riemann surface, denoted by ¥ and G : ¥ — S? a not constant holomor-
phic map, where S? is the unit sphere in R? endowed with the complex structure induced
by the stereographic projection from the north pole (denoted by 7). We fix a conformal
metric ds? on ¥ and consider the operator Lg = —A + |dG|?, acting on functions on X.

We denote by N(G) the kernel of Lg. We define Nul(G), the nullity of G, as the dimension
of N(G). Since L(G) = {a - G|a € R?} is a three dimensional subspace of N(G), then
Nul(G) > 3. We denote the index of G, that is the number of negative eigenvalues of L,
by Ind(G). The index and the nullity are invariants of the map G: they are independent
of the metric on the surface ¥. So we can consider on ¥ the metric induced by G from
S2.

N. Ejiri and M. Kotani in [6] and S. Montiel and A. Ros in [25] proved that a non linear
element of N(G) is expressed as the support function of a complete branched minimal
surface with planar ends whose extended Gauss map is GG. In the following we will review
briefly some results contained in [25] used by S. Nayatani in [30].

We will use some definitions and concepts of the algebraic geometric. They are recalled
in subsection 1.5.1.

Let v be the meromorphic function defined by m o G. Let p; and r; be respectively the

poles and the branch points of . We denote by P(G) = Y7 n;p;, S(G) = Yt myr;
respectively the polar and ramification divisor of . Here n;, m; denote, respectively, the
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multiplicity of the pole p; and the multiplicity with which ~ takes its value at r;. We
define on the surface X the divisor

D(G) = S(G) —2P(G)
and introduce the vector space H(G) (see [25], theorem 4)

H(G) = {w € H" (ks + D(G)) | Res,w = 0,1 < i < p,

Re/(l — %, i(1+9%),27)w =0, Va € HI(E,Z)} :

where ky, is a canonical divisor of ¥ and H; (3, Z) is the first group of homology of . Sup-
pose that the divisor D has an expression of the form ) njv; — > myu;, with n;, m; € N.
An element of H%'(D) can be expressed as fdz, where f is a meromorphic function on ¥
with poles of order not bigger than n; at v; and zeroes of order not smaller than m; at ;.
Equivalently, if gdz, where ¢ is a meromorphic function, is the differential form associated
with the divisor D, the product fg must be holomorphic.

For w € H(G), let X(w) : X\ {ry,...,7,} — R3 be the conformal immersion defined by

X(w)(p) = Re /p(l — 7% i(1+7%), 27)w.

Then X(w) - G, the support function of X(w), extends over the ramification points
1,...,7, smoothly and thus gives an element of N(G). Conversely, every element of
N(G) is obtained in this way. In fact the map

i:HG) — N(G)/L(G)
w —  [X(w)-G] (1.1)

is an isomorphism. This result, used in association with the Weierstrass representation
formula, gives a description of the space N(G). To obtain the dimension of N(G) it is
sufficient to compute the dimension of H(G). Since the dimension of L(G) is equal to 3,
then Nul(G) = 3 + dim H(G).

We denote by A; a one parameter family (0 < ¢t < +00) of conformal diffeomorphisms of

the sphere S? defined by
ToAjor w=tw, weCU{oo}.

We define for 0 < ¢t < oo
Gt == At oG. (12)

10



S. Nayatani in [30] gave lower and upper bounds for the index and, applying the method
recalled above, for the nullity of Gy, t € (0, 00), a deformation of an arbitrary holomorphic
map G : ¥ — S?, where ¥ is a compact Riemann surface. In the same work, choosing
appropriately the map G and the surface Y, he computed the index and the nullity for
the Gauss map of the Costa surface. In fact the extended Gauss map of this surface is a
deformation of G for a particular value of £. We describe briefly the principal steps to get
this result.

Firstly it is necessary to study the vector space H(G}). A differential w € H% (ks + D(G))
with null residue at the ramification points, is an element of H(G,) if and only if the pair
(ty,w) defines a branched minimal surface by the Weierstrass representation. If one
sets v = 1/’ then there exist only two values of ¢, denoted by ¢ < t”, for which the
condition above is verified and moreover dim H(G;) = 1. In other words, thanks to the
characterization of the non linear elements of N(G;) by the isomorphism described by

(L.7),if t = ¢, ¢", Nul(G;) = 4. As for the index, if t = ¢/,¢" then Ind(G;) = 5. Since Gy
is the extended Gauss map of the Costa surface, one can state:

Theorem 3. Let G be the extended Gauss map of the Costa surface. Then

Nul(G) =4, Ind(G)=>5.

The same author in [29] treated the more difficult case of the Costa-Hoffman-Meeks sur-
faces of genus 2 < g < 37. That is the subject of next section.

1.2 The case of the Costa-Hoffman-Meeks surface of
genus smaller than 38

In this section we expose some of the background details at the base of section 3 of the
work [29]. S. Nayatani provided them to us in [31].

We denote by M, the Costa-Hoffman-Meeks surface of genus g. Let X, be the compact
Riemann surface

Sy = {(z,w) € (CU{oo})” |w'™! = 29(" — 1)} (1.3)

and let Qy = (0,0), PL = (1,0),P- = (—1,0), P, = (00,00). It is known that M, =
Yo\ {Ps+, P_, Py}

The following result describes the properties of symmetry of M, and >,.
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Lemma 4. (/14]) Consider the conformal mappings
/{(z,w) = (E,QI)) /\(z,w) = (_Zapw)a (14)

where p = ot of (CU{oo})?. The map k is of order 2 and X is of order 2g+2. The group
generated by k and X\ is the dihedral group Dagio. This group of conformal diffeomorphisms
leaves M, invariant, fizes both Qo and P and extend to X,. Also k fizes the points Py
while X interchanges them.

We set v(w) = w. Let G : £, — S? be the holomorphic map defined by
moG(z,w) = vy(w). (1.5)

We denote by r;, ¢ = 1,...,p, the ramification points of v and by R(G) the divisor
>t 1. Theorem 5 of [25] shows that the space N(G)/L(G), that we have introduced
in previous section, is also isomorphic to a space of meromorphic quadratic differentials.
This alternative description of N(G)/L(G) that we present in the following, was adopted

by S. Nayatani in [29]. We start defining the vector spaces H(G) and H(G).

~

_HMB::{aelﬁﬂ@kg+lﬂG»|R&%§%::Qizlw.wp}, (1.6)

9
dry

where ky, is a canonical divisor of ¥. We remark that the elements of H%?(2ky + R(G))
are quadratic differentials (see subsection 1.5.1). Since hereafter we will work only with
quadratic differentials, we can set H°(-) = H%2(-) to simplify the notation. If we sup-
pose that the divisor 2ks + R(G) has an expression of the form ) njv; — > myu;, with
nj,m; € N, an element of H°(2ks 4+ R(G)) can be expressed as f(dz)?, where f is a mero-
morphic function on ¥ with poles of order not bigger than n; at v; and zeroes of order
not smaller than m; at u;. Equivalently, if g(dz)?, where g is a meromorphic function,
is the differential form associated with the divisor 2ky + R(G), the product fg must be
holomorphic.

H(G) = {a c HG)| Re/(l —2i(1 +72), 29)

«

:QVaeHﬂXZ@,

For o € H(G), let X(0) : £\ {ry,...,r,} — R? be the conformal immersion defined by

P . o
X(0)p) = Re [ (=707, 20)
Then X (0)-G, the support function of X (o), extends over the ramification points ry, ..., 7,

smoothly and thus gives an element of N(G). Conversely, every element of N(G) is ob-
tained in this way. In fact the map

(1.7)



is an isomorphism. So to obtain the dimension of N(G) it is sufficient to compute the
dimension of H(G). We recall that the dimension of L(G) is equal to 3, so Nul(G) =
3+ dim H(G).

Since the extended Gauss map of the Costa-Hoffman-Meeks surfaces is a deformation in
the sense of the definition (1.2) of the map G, we need to study the space H(Gy). From
(1.6) and (1.2) it is clear that H(G) = H(G;) and

H(G,) = {a € H(G,)] Re/

«

(1 — 292, i(1 + t247), 2m)% =0, Va € Hl(Zg,Z)} .

Long computations ([31], see subsection 1.5.2 for some details) show that a basis of the
differentials of the form o/dvy, where 0 € H(G) = H(G,), and whose residue at the
ramification points of y(w) = w is zero, is formed by

k—1
1 2" dz _
w,(f): o with k=0,...,9—1,

— N2 kA2 k-1
w? = (K )7 — kA) (i) dz with k£=0,...,9,

k (22 — A2)? w w’
3 _ (k=2)22 —kA®) r2\b-1dz N B
wy = w22 — A7) <w> ) with k=0,...,9—1,
where A = ﬁ.

Now we put attention to the space H(G;). We recall that we are interested in the com-
putation of its dimension. By the definition of H(G;), a differential o € H(G;) belongs

to H(Gy) if and only if Yoo € H(X,, Z) the differential form w = Z = 7 satisfies

[o=t [ e, (1.8)

Re/v(w)w = 0. (1.9)

If these two conditions are satisfied then (v, w) are the Weierstrass data of a branched min-
imal surface. Of course, it is sufficient to impose that these equations are satisfied when «
varies between the elements of a basis of H;(2,,Z). The convenient basis of Hy(X,,Z) is
constructed as follows. Let 3(t) = 1 +¢?™, 0 <t < 1. Let 5(t) = (B(t), w(B(t))) be a lift
of § to X, such that, for example, B(O) = (%, w(0)), with w(0) € R. As stated in lemma 4
the group of conformal diffeomorphisms of ¥, is isomorphic to the dihedral group Dogo.
The collection {\ 0B3,0=0,...,29— 1}, where A is the generator of Dy, o of order 2g+2,

13



is a basis of Hy(2,,Z).

Now we must impose (1.8) and (1.9) for o = M o 3, with [ = 0,...,2¢ — 1. To do that we
collapse (3 to the unit interval. In other terms we deform continously 3 in such a way the
limit curve is the union of two line segments lying on the real line. We set

g—1

g—1 g
w = c,(:)w,il) + Z c,(f)w,(f) + Z c,(f)w,(j),
0 0 0

where c,(;) e C.

Taking into account these assumptions, it is possible to show that the equation (1.8), if
the genus ¢ is 2, is equivalent to the following system of four equations (see subsection
1.5.3)

fo=—1hg
Ji=0
_ 1.10
m=—t’q (1.10)
p2 = —t*qo.
If g > 3 there are the following additional 2¢g — 4 equations to consider
fr = =10y k12
— 1.11
{ Dog—kr2 = —t*hy, (1.11)

where k =2,...,9g— 1 and

<9+2)2 (3) . ™
_\9T =4 T
fo= 20+ 1) ¢y’ sin P Ko,

W, @+2)(g+2+k) @)\ . ((k+D7 1
_ ~ 7 | K =1.....9—1
fk < Ck 2(9 1) Ck; S111 q 1 k> ) g )

2)2 —
ho = —(g +2) c(()g) sin (—W ) Jo,
2(g+1) g+1

(1) (g+2)(g+2—k) 3)\ .. (k—1)7
-~ 7 =2, ... -1
hk = (Ck + 2(9 1) Cp. Sin g 1 Jka k 5 » g y

2)k k
pk:—ucg)Sil’l< T )Ik, kzl,...,g,
2(g+1) g+

14



2)(2g+ 4 — —2
(9+2)29+4-F) o in(M)gﬁ k=0,1,3,...,9,

= 2(g+ 1) k g+1
and
1T (i) T (1 5)
"or(-wm)
g—m-—+2 F(é_ﬁ)
K = Jina,
L. m—2

- 29 —m+4 "
The equation (1.9) if the genus g is 2, is equivalent to the following system of two equations
(see subsection 1.5.3)

{ =0 (1.12)

ey = €.

If g > 3 there are the following additional g — 2 equations to consider
dy = €g—kt2 (1.13)

where k =2,...,9— 1, and

k 2 k
dy, = (c,(cl)—wcf’)) sin(g m )[k, k=1,...,9—1,

2(g+1) +1

(9+2)(g+2—k) 9 . ((k=Dm
— ~ 7 k=20,2,....q.
209 + 1) ¢’ sin P Jk, 0, 2, , g

We are lookin% for the values of ¢ such that the previous systems have non trivial solutions
in terms of cl(»J . Only for these special values of ¢ it holds dim H(G;) > 0 or equivalently
Nul(Gy) > 3.

We start with the analysis of the system (1.10). This system admits non trivial solutions
if and only if £ assumes three values denoted by ¢4, 5, t3. Obviously they are functions of g.
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If we set s = gﬁ then we can write

S— | ——

+
N|® [No]w

1—

Ly 1+s ['(1—2s) F3/2—s/2)
gLoK, 1 1—3 D(1+2s) T(1/2 +s/2)°

We recall that if g > 3 there are other equations to consider. They are

no
[\D
Q
|~
OJ
||
plies
/,;‘
|
V)
’1 =
Ve VN
—_
+
Nl [No]w
S— | N

fr = _t2(jg—k—t2
Pg—ki2 = —t2hy,
di = €g—j+2

where k = 2,...,g — 1. Thanks to the particular structure of the equations, it is possible
to study separately for each set of three equations the existence of solutions. Fach set
of three equations admits non trivial solutions if and only if the following matrix has
determinant equal to zero

—K; (g+2+ kK, (g+2+k)tLy 1o
t2Jk (g + 2 — k‘)tQJk (g +2— k)fg_]H_Q
p —kI —kJy g2

After the change of variable [ = g — k + 1 so that 2 <[ < g — 1, it is possible to show

that the determinant is
—(g + 2)(at* + bt* + ¢), (1.14)

with
a= (29 =1+ 3) 111 Jg-111 L1

b==2(g =1+ 1)J1Jg 111Ky 11
C = (l + 1)[g,l+1[l+1Kg,l+1.

We are interested in finding the positive values of ¢ such that
at* 4+ bt* + ¢ = 0. (1.15)

To simplify the notation we introduce the following three functions

(TR +5\ T =)
F(”)‘(r@ >> M1t

N ol

16



L@%:(m1+@) M(l—v) 1

ri-%) f+v) I(v)

The discriminant b? — 4ac of the equation (1.15), seen like an equation of degree two in
the variable 2, is negative if and only if X = b?/4ac < 1. It is possible to show that

21 [—1\, [l+1
rorat (g+1>[(g+1)[(g+1)' (1-16)

S. Nayatani in [31] showed that if 2 < g < 37, then X < 1 and as consequence the equation
(1.15) has not any solution since its discriminant is negative. Then dim H(G;) > 0 only
for t = t4,t9,t3. Summarizing we can state (see [29] for other details):

Theorem 5. If2 < g <37 and t € (0,+00), then

4 if t=t, 1
3 elsewhere.

Since the extended Gauss map of the Costa-Hoffman-Meeks surfaces is exactly G,, it is
possible to state that the null space of the Jacobi operator of M, has dimension equal to
4 for 2 < g < 37.

Other values of ¢ for which Nul(G;) > 3 are admitted only if g > 38. In [29] S. Nayatani
conjectured these values were bigger than t3. The proof of the conjecture and its conse-
quences will be showed in sections 1.3 and 1.4.

1.3 The case g > 38

Thanks the previous observations it is clear that if we assume ¢ > 38 It is possible to
prove that X is a decreasing function in the variables

) [+1 [ —1
7y_ ’Z:
g—l—l g+1 g+1

with 2 <1 < g—1. We recall that we have set s = g—il. We know that for [ = 2 and g = 37
the discriminant of the equation (1.15) is negative. For these values of | and g the vari-
ables z,y, z, s are respectively equal t0 Zpae = 2Smazs Ymaz = 3Smazs Zmaz = Smaz = 1/38.

17



Then we will study the solutions of (1.15) for ¢ € [0, 4,,4.] (We call these admissible values)
where ¢ denotes x, ¥, z, s because for bigger values of the three variables the discriminant
continues to be negative and so the equation (1.15) does not admit solutions. Numerical
tests show that the value i,,,,, become smaller as g is bigger. Since it is not possible to
explicit the dependence of i,,,, on g we shall work with constant quantities.

All the solutions of (1.15), that we denote by t4(l, g), satisfy t3.(I,g) = T} & Ty, with

)
T = = F(@)1(:) (1.17)

and

\/ L )[%)-EL()[(). (1.18)
<

l
We will prove that, for 0 % < T 38, with 2 <1< g—1and g > 38, it holds

t3(s) <t*(l,9). (1.19)
We need study the behaviour of the functions F, I, L, F? I? that appear in (1.17) and
(1.18). This aim is pursued by the use of first order series of these functions.
The Mac-Laurin series of the functions F(x), G(2), L(y), F*(x), I*(z) for admissible values
of x,y, z are

F(z) =1+ Rp(diz)z, I(2) =1+ Ri(d22)z, L(y) =14 Ri(dsy)y, (1.20)
F?(2) =1+ Rp2(c12)w, I*(x) =1+ Rp(com)z,
where ¢;,d; € (0,1). So we can write
F(ZE)[(Z) =1+ RFI(xa Z)? Fz(x)IQ(z) =1+ RFQIQ(xa 2)7 L(y)[(Z) =1+ RLI(y7 Z),

with
Rpi(z,2) = Rp(diz)x + Ri(dez)z + Rp(dix)Ry(dyz)x 2,

Rpzp2(x,2) = Rp2(c1z)x + Rp2(c22)z + Rp2 (1) Ry2(co2) 2,
Rpi(y, 2) = Roldsy)y + Ri(daz)z + Ri(dyz) Rp(dsy)zy.

In the following ¢(x) the digamma function. It is related to I'(x), the gamma function,
by

¥(a) = o (InT(x)).

For the properties of this special function we refer to [1].
The following proposition gives useful properties of the functions just introduced.

18



Proposition 6. If z € [0, Zyaz), 2 € [0, 2maz], and y € [0, Ymaz|, the following assertions
hold:

1. Rp(x)

© % NS ;™ W
3
—~
-
~
\_/
/\
\_/
I
|
S
=}
Ne)
ot

. W(x) = Rpz2(z) <0

~
S

W!(z) >0, so Rp2(x) is an increasing function

~
~

LW (z) < 0
Wize(@) >0

. Af we set Y(z) = aW(x), then Y)(z) <0
Y (2) 20

N~
IS

~
E

15. Y1, (2) <0,

Proof.
1. Rp(x) = Fl(z) = F(x)VYp(x), where

\mx)=—¢<1—x>—¢<1+x>+w(———) +¢( 2)

We observe that
1
Z (2k 2%k 2%k
2 (ﬁ ) (5) _w( )(1)) v
=0

Since Wp(0) = 2¢ (1) — 2¢(1) = —4In2, (1) < 0 and PP (1) = (2% —
Dy (1) < 0, if k > 1 (see formulas 6.4.2 and 6.4.4 of [1]), we can conclude that
Up(z) < 0 and it is a decreasing function. Since F'(z) > 0 then Rp(x) < 0 and
F(x) is a decreasing function.
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2. Ri(z) =1.(z) = I(2)V;(z), where

\III(Z):¢(1—z)+¢(1+z)—¢<1—§)—¢(l+g>.

We observe that

Uiz =23 @W@(n (1 - %) 2%,

k=1

Since 9 (1) < 0 for k > 1 then ¥;(z) < 0 and it is a decreasing function. Since
I(z) > 0 then R;(2) <0.

3. Rp(y) = L,(y) = L(y)¥L(y), where V1 (y) = —V(y). Then ¥ (y) > 0 and it is an
increasing function. Since L(y) = 1/I(y) > 0, then Ry (y) > 0.

4. The derivative of Rp is F” (z) = F(2)(V4(z)+ (V). (z)). Since ¥p(x) < 0 and it is
a decreasing function, W2 (x) > 0 and increasing. It holds U2 (x) > ¥%(0) = 161n*2.

(Vr),(z) = 22 ﬁ (%wﬂk) (%) _ ¢(2k)(1)) 21

1

All the coeflicients of the series are negative (see the point 1) so (V) (z) < 0 and it
is a decreasing function. In particular (Vr)! (z) = (Vr)! (Zmaz) = —0.19--- . Since
F(z) > 0 and it is a decreasing function we can conclude that

F;.;(:U) > F(xmax)<qj%’(0) + (qu);;($max)) =6.4---.

5. The derivative of Ry is I” (z) = I(2)(¥%(z) + (¥;).(2)). Since ¥;(2) < 0 and it
is a decreasing function (see the point 2), ¥?(z) > 0 and increasing. It holds
U2(2) < U¥(2p02) = 1.5+ - 1076,

() 230 g (1- L) e

: £ (2 — 1) o2k '

1

All the coefficients of the series are negative so (V;),(z) < 0 and it is a decreasing
function. In particular (V;).(z) = (V;).(2maz) = —0.095- - . Since I(z) > 0 and it
is a decreasing function we can conclude that

],/z/z = ](Zmaz)(ql?(()) + (\PI);(Zmax)) =—-0.095---.
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6.

10.

11.

Since Rr < 0 and R; < 0, it holds that
RF](ZE, Z) 2 RF(d1$)ZE + R](ng)Z,

where d; € (0,1). In the point 4 we have proved that Rp is an increasing function
and we have computed the minimum value of its derivative. Moreover it is also
clear thanks to the point 5 that this value is always bigger than the maximum of
the absolute value of the derivative of R;. Now it is sufficient to remember that the
variables ¢ and z are not independent. We can conclude that Rpg; is an increasing
function. Then Rp; > Rp(0)x + R;(0)z = Cu.

. We recall that Ry;(y,2) = L(y)I(z) — 1, L(t) = 1/I(t) and

Il -1

= > — =7z
Y g+1 g+1

We want to prove that L(y)I(z) —1 > 0 or equivalently L(y) > 1/1(z). But thanks
to the point 3, L is an increasing function, so
1

L(y) > L(z) = ek

. Rp2(2) = (I?).(2) = 2I*(2)¥(z). From the proof of the point 2, ¥;(z) < 0 and it is

a decreasing function. Since 27?(z) > 0, then also Rj2(z) < 0.

W(z) = (F*),(z) = 2F*(2)Vg(z). In the point 1 we have observed that ¥p(z) is a
negative and decreasing function. Since 2F?(z) > 0, then also W (z) is a negative
function.

W!(z) = F? (49%(x) + 2(¥x).(z)) . Since Ur(z) < 0 and it is a decreasing function,
UZ(x) is a positive and increasing function. In the proof of the point 4 we observed
that (Up). () < 0 and it is a decreasing function. Since 2(Vp)! (Z4,) = —0.38 - - -
and 4V2(z) > 4V%(0) = 641n*2 = 30.74 - - - , we can conclude that W/ (z) > 0.

The explicit expression of W) is

W2, = S F2(0) (16Wh(x) + 2405 () (W), (2) + AT ) ()

In the proof of the point 1 we observed that Up(z) is a negative and decreasing
function. So 16V (x) < 16W%(0) = —10241n*2 = —341.--- . Thanks to the proof
of the point 10 we know that (Vr) () < 0 and it is a decreasing function. In
particular 0 > (Vp)! (z) = (Vp),(Zmae) = —0.19- -+ . We can conclude that

24T (1) (W), (2) < 2400 ) () U (Taa) = 122
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12.

As for the last summand, it is negative. In fact

(\DF // 22 2k 2 (ﬁ (2k) (5) _ ¢(2k)(1>) 72k=2
k=1
Since all the coefficients of the series are negative, we get
A(Vp)" (2) < 4(Tp)" (0) = —12¢(3) = —14.4- -,

where ((-) denotes the Riemann zeta function.

Summarizing we can conclude that
1605 (x) + 240 p(2) (V) (2) + 4(Pp)ie(7) <

< 16W3(0) + 24V £ (Zmae) (Y r) s (Timaz) + 4(UE)" (0) = —342.7- - .
That assures W/, < 0.

The explicit expression of W/ is

W///

Txrxr

1
- ZF?@) (6405 + 1925 (Vp), + 48((Vp), ) >+

64V p(Vr)ze + 8(VF)opa) -

rxrr

We start observing that, since U is a negative decreasing function,

6404 (2) > 6474 (0) = 64(41n2)* = 3782. - -

Since (V)" (z) is a not positive and decreasing function (point 10), then 1920% (¥ )",
enjoys the same property. In particular

192U (U5 > 192U (2m0e) (Y E ), (Timae) = —282.- -+ .

From the previous observations it follows that 64U (V)" > 0, 48((¥x),)* = 0
and they are increasing functions.

As for the last summand which appears in the expression of W' we observe that

Txrx?

- 1 1
e =23 Gy (Game® (3) - o) o,

=1

It is a not positive and decreasing function. We can conclude that

S(U)" (2) = 8(Up)" (Tmas) = —19.9 - |

Trxr Txrxr
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Summarizing we can state W' (x) > 0. Furthermore from our observations it fol-
lows that

Wa,t/;:m(x) < (16\1111{“<xmax) + 24((\I[F);>2(mmam)

+16@F(xmax>(qu)g:c($max>) <Cw
with Cy = 1125.

13. It holds that Y] (x) = W(z) + « W/ (x). From the points 9, 10 and 11 we know that
W (x) is a negative increasing function and W) (z) is positive and decreasing for
x € [0, Tyaz)- So we can write W (z) < W(2pmee) = —4.1--- and W) (z) < W/(0) =
641n°2 = 30.7--- . Then Y/(z) < W(Zmaz) + Tmae W.(0) < 0.

14. It holds that Y/ (x) = 2W/(z) + « W/ (x). From the points 10, 11 and 12 we know
that W/ (x) is a positive decreasing function and W/ (x) is negative and increasing.
So we can write W/(z) = W/ (Tmae) = 22.--- . and W/ () > W” (0) = —641n*4 —
6¢(3) = —177.--- . Then Y)(z) =2 2W/(Zmaz) + TmazW_.(0) > 0.

15. It holds that Y (z) = 3W/ () + « W) (x). From the points 11 and 12 we know

that W/ (x) is a negative increasing function and W) (x) < Cy is positive. Then
Y (2) < 3W! (Tmaz) + TmazCw < 0.
O
Proposition 7. For all the admissible values of x,y, z it holds that

1+ ClPx

T, < :
2 1—1

where C = —41n 2.

Proof. The epression of T3 is given by (1.18). We rewrite it in the following way

T, = Z_Ll\/mw (@) 2(2) — (@ — DL(y)I(2).

If 1 + R(z,y, z,1) is the Mac-Laurin series of the function under the square root then we
can write

1 -
= l——l\/l + R(z,y, 2,1),

where R(x,y,2,1) = >(Rp2(c12)x(1 + Rp2(c22)z) + Rp2(c22)z) — (12 — 1)Rps(y, 2), and
1,02 € (0,1). Thanks to the points 7,8,9 and 10 of proposition 6, we know that Ry (y, z) >

0, Rp2(x) < 0 and that Rp2(z) is a negative increasing function, so Rp2(c1z) < Rpz2(x).
We can conclude that, if we set

15

R(x,2,1) = PRpz(2)x(1 + Rp2(cp2)2),
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R(x,y,2,1) < PRpz(c12)x(1 + Rp2(c22)2) < R(z, 2,1),

T = l—lwl_i_Rle 1_1\/1—1—sz

1+f 1+f ‘]]?/—_(f)mhcmx»

where ¢ € (0, 1). If we apply this result to the function f(x) = R(z, z,1), we get

then

We know that

15

N

1+ R(z,2,1) 1 Ri(t, z,1)
= 1+ R(0,2,1) + -
-1 l—1< O AR

where ¢ € (0,1). We observe that R(0, z,l) = 0. Then

1 Ri(t, 2,1
2 < — |1 + t( 5 ) |t:c:r;$ .
[—1 2y/1+ R(t,z,1)

The proof will be completed after having proved the following result. O

Proposition 8. For all the admissible values of t, vy, z,

Ré(tazaw < 2
1+ R(t, 2,0)

Y

where C = —41n 2.

Proof. We set H(z,1) = I*(1 + Rj2(c22)z) < [? and Y (t) = Rp=(t)t. From the expression
of R(t,z,1) = H(z,1)Y(t), it follows that R}(t,z,1) = H(z,1)Y/(t). Furthermore we can

write

R(t, z,1) B H(z,1)Y/(t)
1+ R(t,z1)  2/1+H(z )Y ()

We know from proposition 6 that Y (¢) < 0 and Y/(t) < 0, then R}(t,2,1) = H(z,1)Y/(t) >
I12Y/(t), and

1 1
= — .
11 R0 21+ Y ()

We can conclude that

Rit,z0) V()
1+ R(t,z1)  2/1+BY()
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We shall show that this last function is increasing with respect to the variable ¢. The
derivative with respect to the variable ¢ of this function is

Y/ 2
CRYIVIEEY - Pt A
2 1+2Y

D(t,1) =

We want to show that D(¢,1) > 0. We start observing that 1 +[?Y > 0. So it is sufficient
to prove that the quantity

B(t.1) = 2}/(1 + PY) — 2(Y)?
is always not positive. It holds that
Y{(t) = Rpa(t) + t(Rp2)i(t)

and

Vi (t) = 2(Rp2);(t) + t(Rp2) 3 (t).-
Then Y (0) = 0, Y/(0) = Rp2(0) = 2C and Y//(0) = 2(Rp2)}(0) = 8¥p(0)* = 8C*.
Furthermore we observe that { > 2. So

E(0,1) = 16C* — 41*C* < 0

and the equality holds if | = 2. The next step is to show that Ej(¢,l) < 0. It is possible
to find the following relation

Ei(t1) = Yii(1+ 1Y)

Observing that 1 + Y > 0 and Y}/ < 0 (see the point 15 of proposition 6), we can
conclude that D(¢,1) > 0. We have showed that

Y@
2\/1+ Y (t)

is an increasing function. It gets the minimum for + = 0 and its value is —C1?. Then

Ry, z,1)

— > —Cl?,

2/1+R(t, 2,1)

and the proof is completed. O]

As for the first summand which appears in the expression of ¢, that is 77, the following
result holds.
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Proposition 9. For all the admissible values of x, z, it holds that

[

where C = —41n 2.
Proof. We recall that

[ l
T, = l_—lF(x)I(z) = m(l + Rpi(z, 2)).

Thanks to the point 6 of proposition 6 we have Rp;(x,z) > Cz. Then the result is

immediate. O
The following result gives the estimate of 2.

Proposition 10. For all the admissible values of x,y, z
t2 > 1—Cla,
where C' = —41n 2.
We recall that t2 = Ty — T5. Thanks to propositions 7 and 9 we get

2 > Z_Ll(l + Cx) + l_%(—l — Cl’z) =

Cl Cl? —C1

1

Now we turn our attention to the function t3. We recall that S0 = 55

Proposition 11. For s € [0, S;az]
7
ta(s) <1+ 35

Proof. We recall that

Vo 4 T(1+s)\ T(1-2s) (T(3/2—5/2)\’
ts(s) =T(s) = (1 s) (r(1 _ s)> (14 2s) (F(1/2 + 8/2)> '
It holds that 1
T.(s) = (- S)T(S)B(S),

where

B(s)=2+(1—5)(—2¢(1 —2s) = 2¢(1 +25) + 3¢(1 — s) + 3¢(1 + s)—

~(5-3)-v(3+3))

To complete the proof we need the following result.
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Proposition 12. If s € [0, Syaz) then 1 < B(s) < 3.

Proof. We observe that for s € [0, $,n4.]
3 s 3 3 1 s 1
°_2 °Y—0036-.-. <yl YA 9
0<1/1<2 2><¢(2> 0.036- - -, 2< 1/1<2+2)< ¢(2><

We can conclude that
1 S 3 s
1< — . — P 2.
<-(3+3)-v(5-3) <

Furthermore

v (1)
(1l —s)+P(1+s)= 2% oh)] sk
from which it follows that
¢(2k)(1)
D(s) = =2¢(1 —2s) = 2¢p(1 +25) + 3¢(1 — s) + 3YP(1 + 5) = QZ ol 52 (3 g2k,
k>0 :

If k > 1 then 3 — 22**! < 0 and ¥ (1) < 0 (see formula 6.4.2 of [1]) then
2¢(1) = —2vgn = D(0) < D(s) < D(Spaz) = —1.146 - - - |
where ygy = 0.577 - - - is the Euler-Mascheroni constant. So

1< B(s) <24 (1 — )2+ D(8maz)) < 44 D(Smaz) < 3.

Since B(s) > 0 then T'(s) is an increasing function and we can deduce that
1 3
= T(s)B(s) <
L1089

The Mac-Laurin series of order 1 of T'(s) is 1+77(cs)s, where ¢ € (0,1). So it is immediate
to conclude that

T'(s) T($mae) < 7/2.

1 — Smax

7
T(s)<1—|—§s.

We want to remark that with more work it is possible to show that
T(s) <1—Cs.

The following proposition shows that the eventual solutions of the equation (1.15) are
always bigger than ts.
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Proposition 13. t3(s) <t_(l,g) for g > 1.

Proof. From our observations, it is sufficient to show that #3(s) < t%(l,g) holds for
g = 38. The propositions 10 and 11 assure that

2 >1 — Clz,

7
ta(s) <1+ 25

We recall that x = [ls and 2 <[ < g — 1. Then the result is obvious. O

1.4 The index and the nullity of the Costa-Hoffman-
Meeks surfaces

We start recalling some results described in previous sections. We denoted by Gy, t €
(0, +00), a deformation of the map G defined by (1.5). Thanks to theorem 5 Nul(G;) > 3
only if ¢ assumes special values. If 2 < g < 37 these values are tq,1s,t3. If g > 38 there
are additional values. They are the positive solutions of the equation (1.15). We denoted
them by t+(l,g), where 2 < I < g — 1, and for definition ¢, > t_. In previous section
we have proved that the inequality t3(s) < t_(l,g) holds. S. Nayatani showed in [29]
that t3 > t5 for ¢ > 2. We can conclude that no one of the 1+ can be equal to t5. As
consequence Nul(Gy,) continues to be equal to 4 also for g > 38, because dim H(GYy,) is
equal to 1 for all g > 2.

We recall that M, denotes the Costa-Hoffman-Meeks surface of genus g. Since the ex-
tended Gauss map of M, is exactly Gy,, and taking into account the result of S. Nayatani
about the Costa surface (theorem 3) showed in [30] we have proved the following result.

Theorem 14. The null space of the Jacobi operator of My has dimension equal to 4 for
all g > 1.

Using the definition of non degeneracy given in [34], we can also rephrase this result giving
the following statement.

Corollary 15. The surface M, is non degenerate for all g > 1.

Now we turn our attention to the results relative to the index of the map G;. We recall that
¥, denotes the compactification of M,. S. Nayatani proved in [29] the following result.

Theorem 16. Let G : 3, — S? be the holomorphic map defined by (1.5). If 2 < g < 37,

then
20 +3 if t <ty to <t <ts t>ts,

Ind(Gt) = 29 +4 Zf t1 <t <to,
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For t = ty,ts,t3 we have Nul(G,) > 3, that is the kernel of L, contains at least one non
linear element. The eigenvalue associated to this function is zero. The proof of theorem
16 is based on the analysis of the behaviour of these null eigenvalues under a variation of
the value of t. Let’s suppose that t # t1, t5, t3 but remaining in a neighbourhood of one of
these values. For example we choose t;. Then the eigenvalue E that before the variation
was associated to a non linear element of N(Gy,), is not more equal to zero. To compute
the index, it was necessary to understand which is the sign assumed by FE, respectively
for t > t; and t < t;. Similar considerations are applicable to the eigenvalues associated
with to and t3. See [29] for the details.

If g > 38, we have just proved that the other values for which Nul(G;) > 3 are bigger
than 3. The presence of these additional values ¢4 does not influence the value of Ind(G})
if £ < t3. In other terms theorem 16 continues to hold for g > 38 if we consider 0 < ¢t < t3.
Taking into account also the result of S. Nayatani about the Costa surface (g = 1) showed
in [30], we can give the following statement

Theorem 17. For all g > 1 the index of the Gauss map of M, is equal to 2g + 3.

1.5 Appendix

This section contains some additional details of the computations made by S. Nayatani.

1.5.1 Divisors and Riemann-Roch theorem

Here we introduce some definitions and concepts of the algebraic geometry. See for ex-
ample [5].

Let X, be a compact Riemann surface of genus g. A divisor on %, is a finite formal sum
of integer multiples of points of ¥,

D= Z nzx, Nz € Z,n, =0 for almost all =x.

The set of the divisors on ¥, is denoted by Div(X,). The degree of a divisor is the integer
deg(D) = > n,.

Let C(X,) be the field of the meromorphic functions on X, and let C(X3,)* be its multi-
plicative group of nonzero elements. Every f € C(X,)* has a divisor

div(f) = S va(f)e,
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where v, (f) denotes the order of f at z.

Let w be a nonzero meromorphic differential n-form on ;. Then w has a local represen-
tation w, = f,(2)(dz)"™ about each point z of X, where z is the local coordinate about z
and f,(z) € C(X,)*. So we can define in a natural way v,(w) = vy(f,) and also associate
a divisor with a differential form:

div(w) = Z ve(w)e.

A canonical divisor on ¥, is a divisor of the form div(w) where w is a nonzero meromor-
phic differential form.

Let D € div(X,). We denote by H*™(D) the vector space of the meromorphic differential
n-forms w such that
div(w)+ D > 0.

In other terms, if D = div(n), with n differential form with local representation 7, =
g:(2)(dz)™, then the elements of H%"(D) are the differential forms w having a local rep-
resentation w, = f,(2)(dz)" with f, € C(X,) vanishing to high enough order to make the
product f - g holomorphic. We set dim H*"(D) = ¢(D).

We are ready to state the following result.

Theorem 18 (Riemann-Roch). Let ¥, be a compact Riemann surface of genus g. Let
ks, be a canonical divisor on X. Then for any divisor D € Div(%,),

(D) = deg(D) — g+ 1+ l(ks, — D).

The next result gives information about the canonical divisor and a simpler version of
Riemann-Roch theorem for divisors of large enough order.

Corollary 19. Let ¥,4,9, D, ks, as above.
o deg(ks,) =292,
o [fdeg(D) > 2g — 2 then l(ks, — D) = 0. Equivalently {(D) = deg(D) — g + 1.

1.5.2 The determination of a basis of differential forms with null
residue at the ramification points

The ramification points (or branch points) of y(w) = w are the zeroes of
297122 — A?)
({2 — 1)

dw
- = 2
7 (9+2)

)
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with A = 9%7 where g denotes the genus. They are given by Qg = (0,0), Py = (00, 0),

P, =(A,B,) and S,, = (—A,C,,) for m =0,...,g, where B,,,C,, denote, respectively,
the m-th complex value of 77/A9(A%2 —1) and **/(—A)9(A2 — 1). We have set Pp =
(£1,0). We recall that

H(G) = {0 € H(2ks, + R(G))| Resm% —0,i=1,... ,u} , (1.21)
where ks, is a canonical divisor of ¥, and R(G) = > r; where r; are the branch points
of y(w) = w. In our case it is given by R(G) = Qo + Ps + Y5 _o(Pm + Si). Furthermore
it holds H(G) = H(G,).

As for the canonical divisor ky, , we consider ks, = (g — 1)P + (g — 1)P-. We observe
that deg(ks,) = 2g — 2 like stated by corollary 19.

To study the space H (G¢) we need understand which are the members of the space
H°(2ks,+R(G)). Taking into account the definitions of ks, and R(G), then 2ks, +R(G) =
20— 1) P +2(9—1) P-4+ Qo+ P+ D7 _o P+ _y Sm. We deduce that the quadratic
differentials o that are in H%(2ks, + R(G)) can have two possible structures:

2wl (%>2, (1.22)

w

1 (dz2\?
ka]zj:A (5) . (1.23)

In fact from the definition of HY, it follows that the quadratic differentials to consider can
have a pole of order 0 (differentials of the type (1.22)) or of order 1 (differentials of the
type (1.23)) at P,, and S, for k = 0,...,g. Furthermore we observe that the quadratic

differential (%) 2 has

e a zero of order 1 at Q)

e a zero of order 1 at P

e a zero of order 2(g — 1) at P, and P_.
The quadratic differential ﬁ (Cfu—z)2 has

e a zero of order 1 at Q)

e a zero of order 2(g — 1) at P, and P_

e a zero of order g + 2 at P
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N

e a pole of order 1 at P, if we consider sign or at S, if we consider the sign ”+"7.

We will determine separately the interesting differential forms of type (1.22) and (1.23).
To find the differential forms of type (1.23) it is convenient to introduce an auxiliar divisor.

D=Qo+ (g+2)Px+2(g—1)Py +2(g —1)P_.

We observe that the elements of the vector space HY(D) after the multiplication by the
factor z + A are members of H°(2ks, + R(G)). It is necessary to remark that to obtain a
basis of H(2ks,+R(G)), we will not take into account the differentials of H%(2ks, +R(G))
that can be constructed from an element of H°(D) as described above. Otherwise the
number of the founded differential forms exceeds the dimension of H°(2ks, + R(G)), that
we can compute as follows. We observe that deg(2ks, + R(G)) = 6g. Then thanks to
corollary of Riemann-Roch theorem 19 we conclude that dim H°(2ks, + R(G)) = 59 + 1.
So the basis we are looking for counts 59+ 1 elements. From the observations made above
we can deduce that between the forms of type (1.22), we will consider the ones which
satisfy the following conditions.

k(g+1)+jg9 =2 -1,

—k(g+1)—j(g+2) > —1
These relations assure that the selected differentials of type 2w’ (%)2 , are holomorphic,
respectively, at the points @)y, P+ and P,,. These differentials can be classified in three
families. Each family is characterized by particular values of [ and k. That is

1. j=—g+1,...,0,1and k = —7,
2. j=2—-2g,...,—g and k = —7,
3. j=2—-2¢9,...,—gand k= —j — 1.
As for the forms of type (1.23) we shall consider only the ones which satisfy
k(g+1)+jg > —1,

—k(g+1) = jlg+2) > —(9+2)
These relations assure that the selected differentials of type z*w? Zi T (%)2 , are holomor-
phic, respectively, at the points @)y, P+ and P,. We obtain that j = —g+1,...,0,1 and
k=—j+1.
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Since we are looking for a basis of a vector space we can replace each couple of differentials
_f (dz)2 f

(%) 73 (%)2 by an appropriate linear combination. We observe that

1 1 M = =53
4+ — 22— A
z2—A z+A {

1
M2 = 2 _42-

So in the following we will work with the forms fn, (%)2 and fn (%)2 , where f = zFuw’
as described above.

The 5g + 1 quadratic differentials we have found forms a basis of H(G,). The last step
is to divide each elements of this basis by dw. After simple algebraic manipulations, we
obtain the following 5g + 1 differential 1-forms:

wk dz

zk__lm for k:—l,O,...,g—l,

w—lf% for k=-1,0,...,9—1,

HrmEy for k=-1,0,...,9—1, (1.24)
2 for E=1,...,9—1,

e
2 dz for k=1,...,9—1.

W (- A7)
Now it is necessary to select the 1-forms having residue equal to zero at the points Qq, P,
and S, with m = 0,...,g. Thanks to the properties of symmetry of the surface it is suffi-
cient to verify the null residue condition at the points Qq, P, = (A, eott oty A9(A?2 —1)).
In fact from the coordinates of the points P,, and S,,, we can deduce that for each
Q €{Pn,Sm,k=0,...,g} there exists n € {0,...,2g + 1} such that @ = \"(Py), where
A is the conformal diffeomorphism described in lemma 4. So we can state that the residue
of an arbitrary form w at the point () is related to the residue at P; by

Resgw = Resp, (A" 1) *w.

Applying this result to the differential forms of the list (1.24) and using the the definition
(1.4) of A, it is easy to obtain that Resgw is equal to Resp,w times a power of +p. So if
Resp,w = 0 then Resgw = 0.

Thanks to algebraic manipulations inspired by the simpler cases where g = 2, 3, it is pos-
sible to find 3¢ linear independent differential forms satisfying the null residue condition.
They constitute the wanted basis.

k—ld
w,(gl)zzk—z for k=1,...,9—1,
wk w

@2 Zk_l((ki — 2)2’2 — kAz)
wy’ =

Wk (22— A2)? dz for k=0,...,9,
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w@>zzzk’%(k-2) — (k)A%)
b whtl(22 — A2)?

dz for k=0,...,9—1.

1.5.3 The equations equivalent to the condition of existence of
a branched minimal surface.

Let w; and w, two meromorphic differential forms on ;. We write w; ~ ws if there exists
a meromorphic function f on ¥, such that wy = w; + df. It is possible to prove that:

@  klg+2) 2

k=0, ...
“k 2g+1) wh e d

e (g+2)(g+k+2) i
¢ 2Ag+1)  wh

Using these relations we get:

dz for k=0,...,9—1.

E+1 2)k k
/w,gl) = —2isin —( i >7TKk, /w,(f) = _(g+ ) 2 sin — I,
5 g+1 3 209+1) g+l
2 2—k k+1
/w;(f) _(g+2)(g+ ) o sin B+ )WK]“
5 2(g+1) g+1
k 2 2—k k-1
/7w,(€) — 2isin — I, /7 ,(62) l9+2)(g + )Qisin< )WJk,
5 g+1 g 2(9+1) g+1
/ (3) 2>k2isin b Iy
+1) g+1"
+2)(29+4 -k k—2
/'y w,g)—2281n ) / ,g +2)29 + )Qisin( )ka,
i +1 2(g+1) g+1
+2)(g+2—k) (k—1)m

2 3 _ (g .
w 27 sin ————J;..
47 g 2(g+1) g+1 *

We recall that we must impose that w = Y97 ¢Vl 4579 ) #) L 57071 3,08 Gpere

c,(;) € C, satisfies
/w = t2/ 72 (w)w, Re/w(w)w =0

fora = Mofforl =0,...,2g—1. Now it is convient to introduce some additional notation.
Let
| Re O
L_[ . 1] (1.25)



where Ry is the rotation in the plane by 6 = g /(g + 1).
If we denote ®(w) = (1 —+2,i(1 +~?),2y)w, then it is possible to prove

/ )= /ﬁ Nb(w).

Since we want to apply this last relation to the differential form w, it is convenient to
remark that:

N D(w) = (~1)FpF LD (WD),
N0 = (1) p ML (W),
N D(w?) = (~1)Fp LD (W),

where p = ¢'3%7. Then the equations
Re/ (1 -2 i(1 +29*))w=0, for [=0,...,29— 1,
)\ZOB

are equivalent to:

Im [Z{(—n'fp-'f}lfk - 2{(—1>kp-<k-1>}lpk] -

t2jm[ Z {( kz}h + Z { k—k 1)}1 ]
k=0,k1 k=0,k#2
Re |3 {(=1)" "} +Z{ ’“’”}p]
—#2Re Z {(_ k} Ry + Z { k 7k 1) }lqk] ’
k=0,k#1 k=0,k£2

[ =0,...,29—1. These last equations can be arranged as in the systems (1.10) and (1.11).
The equations

Re/ 2tyw =0, for [=0,...,29—1,
)\loB

are equivalent to:

[m[z_:{(— Yo F Y, + Z{ ’““}ek]:o,

k=0,k#1

[ =0,...,2g—1. These last equations can be arranged as in the systems (1.12) and (1.13).
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Chapter 2

About a family of deformations of
the Costa-Hofflman-Meeks surfaces

2.1 Introduction

C. Costa in [3, 4] described a genus one minimal surface with two ends asymptotic to the
two ends of a catenoid and a middle end asymptotic to a plane. D. Hoffman and W.H.
Meeks in [14], [15] and [16] proved the global embeddedness for the Costa surface, and
generalized it for higher genus. We will denote the Costa-Hoffman-Meeks surface of genus
k > 1 by M,. For each k > 1 is a properly embedded minimal surface and has three ends
of finite total curvature.

J. Pérez and A. Ros in [34] studied the space M of minimal surfaces of finite total curva-
ture, genus k and r ends, properly immersed in R? and with embedded horizontal ends.
Given M € M, the infinitesimal deformations of M are generated by the elements of the
J(M), the space of the Jacobi functions u on M, that is functions such that Lu = 0, where
L denotes the Jacobi operator of M, which have logarithmic growth at the ends. They
showed that dim J(M) > r + 3. They denoted by M* ={M € M : dimJ(M) = r + 3}
the subspace of non degenerate surfaces and founded that it is an open subset of M and
a (r 4+ 3)-dimensional real-analytic manifold.

The dimension of the space J(M) just introduced is known for M = My for k > 1. In
fact thanks to the works [29] and [30] of S. Nayatani, dim J(M}) = 6, since r = 3, but
only for 1 < k < 37. Now this result has been extended also for k& > 38 (see chapter
1). The elements of J(M}) are the Jacobi fields associated to the horizontal translations,
the rotation about the vertical direction and three functions (one for each end) whose
form in a neighbourhood of an end is alog |w|, being a the logarithmic growth. Thus, the
one parameter family of deformations of these surfaces described by D. Hoffman and H.
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Karcher in [13], contains all the embedded surfaces nearby M; with a symmetry group
generated by k vertical planes, up to dilations preserving the vertical direction.

In this work, following [34], we show the existence of a bigger family of immersed minimal
deformations of M), for £ > 1 having three embedded ends. These surfaces do not enjoy
any property of symmetry. In fact we admit the possibility to rotate, translate and dilate
any of the three ends of the surface and, in addition, to bend the two catenoidal type
ends and to change the type of the middle end from a planar type end into a catenoidal
type end (we recall that the planar end can be thought to be as a catenoidal type end
with null vertical flux). Admitting a bigger number of deformations of My, one has, as
consequence, the rise of dim J(My). Actually it rises from the value 6 of [34] to 8.

To be more precise we will prove the following result.

Theorem 20. For for each possible choice of the limit values of the normal vectors of
the three ends, there is, up to isometries, a 1-dimensional real analytic family of smooth
minimal deformations of My, for k > 1, letting the middle planar end horizontal.

Our result is a consequence of the moduli space theory and of the implicit function theo-
rem. We do not treat the case where also the middle planar end is not horizontal because
it can be reconduced to the previous one by an isometry.

The family of surfaces described in the statement of the theorem here, contains the 1-
parameter family of deformations of M;, for 1 < k < 37, obtained by L. Hauswirth and
F. Pacard in [11] bending the top and the bottom end and letting horizontal the middle
planar end. All the surfaces of this family are not embedded and are symmetric with
respect to the vertical plane x5 = 0 that in particular contains the axis of the catenoidal
type ends (it is assumed to be the same for the two ends). The parameter is the angle
between this axis and the vertical direction. This family is used in the same work to
construct some new examples of minimal surfaces by a gluing technique.

One important property of the Costa-Hoffman-Meeks surface, is the non degeneracy. In
section 2.3.2 we will prove that M, is non degenerate for all k& > 1 with respect to the
definition given in [34].

In [11] F. Pacard and L. Hauswirth studied the mapping properties of the Jacobi operator
of Mj, acting on the space of the C?’O‘ functions defined on M), and that are invariant under
the action of the symmetry with respect to the plane x5 = 0. In particular if f € Cg’o‘(M k),
then f = O(e%) on the catenoidal type ends. The mapping properties of the Jacobi op-
erator (denoted by Ls) acting on functions of C;**(M;) depend on the choice of §. The
authors give another definition of non degeneracy. They define the surface My to be non
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degenerate if the operator Ls is injective for all § < —1.

Thanks to the works [29] and [30] of S. Nayatani and result of chapter 1, the space
K C J(Mjy) of the bounded Jacobi functions, is known to be generated by the functions
(N,e1), (N,ey) and (N, es3), (N,e3 x p), where N denotes the normal vector field about
M, and (ey, e, e3) is the canonical basis of R3. These functions are associated to 4 isome-
tries of the ambient space: the three translations and the rotation about the es-axis. In
[11] the authors remark that the Jacobi function (NN, e3 x p) associated to the rotation
about the es-axis and the translation along the es-axis do not respect the mirror symme-
try described above, that is they are not invariant with respect to the action of the map
(21, 22, x3) — (21, —x2,x3). So they did not taken into account them and could conclude
that M} are non degenerate, in the sense of their definition.

The surfaces of the family described in our work do not enjoy any property of symme-
try, since we admit to bend the catenoidal type ends in arbitrary directions. Then the
Jacobi functions described above must be taken into account. Since the Jacobi function
(N,es x p) belongs to the space C?’Q(Mk) for § = —k — 1 < —2, the property of non
degeneracy does not hold any more. Actually the operator Ls acting on C(?’O‘(Mk) is no
more injective for all § < —1. As consequence, we can state that for all £ > 1 the Costa-
Hoffman-Meeks surface M, is degenerate in the sense of the definition given in [11].

2.2 Preliminaries and notation

We denote by X : M, — R3 the conformal minimal immersion of the Costa-Hoffman-
Meeks surface M), in R3. If g and 1 are the Weierstrass data of M}, we can write:

1 1
X(z) = <§/9‘1n—§/gn,Re/n) cC xR =R

The meromorphic function g is the stereographic projection from the north pole of the
Gauss map N : M, — S2. The total curvature is finite and M), is conformally diffeomor-
phic to M\ {p¢, Py, pm }, being M, a compact surface and p; three points. The Weierstrass
data extend in a meromorphic way at each puncture p;. In particular the Gauss map of
X(z) is well defined at p;. The points p; are identified with the ends and a neighbourhood
of a puncture will parametrize the corresponding end. In the following we will refer to
various quantities related to the three ends of the surface using the index t for the top
end, the index b for the bottom end and the index m for the planar end. The Gauss map
N takes the limit values (0,0,1) at the ends p; and p, and (0,0, —1) at the end p,,.
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We parametrize the ends p; in the graph coordinate z = x; +ixe on Df(¢;) = {x € C;0 <
|z| < €} by the immersions

Xi(x) = (i, —a; In || + hz(a:)) €cCxR=R?

for i = t,b, where h; is a smooth real valued function on D}(¢;). The quantities a; and
hi(0) are called the logarithmic growth and the height of the end. We can observe that,
for the null flux condition, a; = —a,. The Gauss map for an end with logarithmic growth
a is given by (see p. 182, [34])

N(z) = Q"7 (—aZ + #2Voh, 1), (2.1)
where @ = 1+ |z]*(a® + |z|?|Voh|* — 2a(z, Voh)) and 2V h means the product of the

complex number Z? with the gradient Voh respect to the flat metric ds? of the z-plane.

As for the planar end p,,, we will use the following parametrization

Xm(x):<1,hm<x>> on D (en).

T

So its logarithmic growth is zero.

2.3 The deformation of the surface and its Jacobi
operator

In this section we describe how we deform the surface M, and we give the expressions of
the immersions in R? of the three ends of the deformed surface. In subsection 2.3.1 we
introduce the Jacobi operator of M} and we study its kernel and its range.

We deform the surface My, in the following way. Using a smooth cut-off function we glue
X : Mp\(D;UD;UDz,) — R? with the parametrizations of the three ends with a different
value of the logarithmic growths (that we denote with ay, ap, a,,). Furthermore we rotate
the ends p; and p,, that is we change the directions of their axes of revolution. We denote

with F'(0);,6,;) the frame defined by the following unit vectors:

€1 (6171‘7 Qgﬂ‘) = COS 9172'61 + sin 9171' sin 0271‘62 + sin 6171‘ COS 0271'63, (22)

62((91,1‘, 9271‘) = COS 9271'62 — sin 9271'63,
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63(9171', 02,’) = —sin 91’161 + cos 91,1‘ sin 92’162 + cos 91,1‘ COS 92’2‘63,

where (ej, €9, e3) denotes the canonical base of R3.

The immersions of the rotated catenoidal type ends on D} (e;) are given by

T x
X010, () = #61(91#’, 02,i) — ﬁeﬂel,ia ;) + (—a; In|x| + hi(z))es (01,4, 02,),

for i = t,b. As for the planar end, we consider on D, (¢,,) in the canonical frame (ey, €9, €3)
the immersion

1
Xmoo(r) = (;7 —Q In || + hm(x)) .

We define y = (a, ap, @, 014,016, 024, 02p). Thanks to the deformation we obtain a family
of immersions that we denote with X, : M), — R?, not necessarily minimal and depending
smoothly on y. Now let N(y) € C*°(My, R®) be a vector field such that (N(y), N) =1 on
M \(Df U Dy) and
]v(y) _ 63(91,¢, 92,1')
(N, e3(01,i,024))

on Dy for i = t,b. We remark that we do not modify the normal vector field on D}, because
we keep the the middle planar end horizontal. Let A be a neighbourhood of (a, @, 0)

(the logarithmic growths of the ends of M), U a neighbourhood of zero in C**(Mj). For
y € A X [—¢,¢]* and a function u € U, we consider the family of immersions

X, +uN(y) : Mj, — R, (2.3)
Such a family depends analytically on (y, u).

Let A € C*°(My) be a positive function which in terms of the graph coordinate is defined
by
= D; (&), Di(e), D (€m)
A _ z[3 on Ly (€), Ly y Ym\€m)s 9.4
(@) { 1 on M\(D!(2¢) U D (2¢) U D, (2€,)). (24)

We know from [34] that ds* = (1/))ds{ is a Riemannian metric on M. We denote the
associated area mesure by dA. If H(y,u) is the mean curvature function of the immersion
X, + uN(y), we consider the operator H(y,u) = AH(y,u). Since at the ends p, and py,
the rotation does not change the value of the mean curvature, we can apply lemma 6.4
proved in [34] at each end to conclude that the operator

H:AxU— C"(M,)

is real-analytic.
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2.3.1 The Jacobi operator

We define § = (a,a, 0,0,0,0,0) and ¢ = (at,ab,am,él,t,égvt,élvb,égvb). and consider a
smooth curve

Y1) = (a(t), ap(t), am(t), 01,4(1), 02,4(1), 01,5(2), 02,(1), (), (2.5)

with |t| < ¢, passing by (7,0) with acceleration 7/(0) = (¢, 4/(0)).

To introduce the Jacobi operator we need consider the continuous family of smooth de-
formations X, + u(t)N(y(t)) : My — R? of the Costa-Hoffman-Meeks surface. Denote

by H(t) the mean curvature of X 4+ u(t)N(v(t)).

If w= <%|t:0 (Xy(t) + u(t)ﬁ(v(t))) , N} is the variation field, we have:

d 1 1 ,
G0 = 5Tw = (Adsgw + |A|dsgw) (2.6)

where | A,z denotes the norm of the second fundamental form computed with respect to

the metric ds3. L is the Jacobi operator of M. It can be ”compactified” to obtain the
operator L = Az +M|3§2 = AL on M. The function X\ is defined by (2.4). It is related
to the differential of H(t) = AH (t) by a relation similar to (2.6).

In the following we will give the expression of a Jacobi function. To express it we need
introduce additional notation. Let fi, fo, f3 be the functions defined by:

X

ﬁ@OZEFWwQ—P@mM+MWMMﬁ%

folw,i) = %w, es) + (—a; || + hi(z)) (N, e3),

fg(JI, CL1> = —al 111 |LL’|<N, 63)

in Df(¢;) for i =t,b,m and f,(z,i) = 0, n = 1,2,3, in M;\D;}(2¢;).We recall that a, a,
are the logarithmic growths of the top and of the bottom end of M}, and being the middle
planar end horizontal, we assume a,, = 0.

Proposition 21. The Jacobi functions about My, have, in Dj(¢;), the following expression
Orif1(x, ) + Oz fa(x, ) + f3(z,di) +

fori=t,b,m, with 0y ,, = 03, =0, a,, =0 and u; € C**(D;(e;)).
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Proof. A Jacobi function is defined by
G (X TR GW)) N 27)
— u : :
dt jt=0 ") 7 ’
We start observing that X, in D} (¢;) is given by
T1

e e1(014(1),024(1)) — ‘ ,2 e2(014(1),024(1)) + (—as(t) In [x] + hi(z))es(01:(1), 02:(1)),

for i = t,b and in D} (e,,) by
1
(—, —am(t) In |x| + hm(x)) .
T

We recall (see (2.5)) that a;(0) = a; with a,, =0, 7/(0) = (y,4/(0)).

To obtain %| —oX~(t) We need compute

d _ Oeilp, @) dp | Deily,¢) do

and to evaluate it for ¢ = 0. We will apply the result in the case ¢(t) = 61 ;(t), ¢(t) = O2,(1).
So we suppose that ¢(0) = ¢(0) = 0. To this aim it is useful to observe that from the
equation (2.2) and the following ones we obtain

der(p, 9) ([ Oea(p,9) _
- = €3,
Op lo=¢=0 ¢ lp=¢=0

(861(@, ¢)) _ (662(907¢)> =0
0¢ lp=¢=0 dp lp=¢=0 ,

<863(¢7¢)) = —¢ <863<907¢>> = e,.
O lp=¢=0 ’ 0¢ |p=¢=0

Then it is easy to obtain
€1(0) = ¢'(0)es,
€2(0) = —¢/(0)es,
¢3(0) = —¢'(0)er + ¢'(0)ez
Then in Dj(¢;)

d ’ /
%HZOX’Y@) ’ |2912<) | |2( 621() )+

+(=ai(0) In |z[ + hi(2)) (=6} ,(0)er + 05, (0)e2) + (—a;(0) In |z[)es
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Reordering the summands we get

d

<%|t:0Xfy<t>7 NY = 0, ,(0) f1(,3) + 05,(0) fol, ) + flw, ).

As for the last term of (2.7), we recall that u(0) = 0 (see (2.5)) and, on D} (¢;), we defined

(
. e3<(91 z( ) 92 l( ))
N(y(t) = (N, e5(01.4(t),024(1)))

Then %u(t)ﬁ(y(t)), evaluated in ¢ = 0, is equal to

w(O)N(4(0)) +u(0) N (7(t)) =0 = w'(0).
If u; denotes the restriction of v’(0) to Dj(¢;) for i = t, b, m, then the result is obvious. [

The following lemma shows the existing relation between the logarithmic growths and the
Jacobi operator.

Lemma 22. Let U,V € C>*(My) be the functions defined in D} (e;), for i € {t,b,m}, by

Ui(z) = 01 f1(2,7) + 02, fo(x,0) + f3(z, a;) + ui(x)

and
Vi(z) = prifi(z, i) + paifaz,i) + fa3(2,b;) + viz),

with 0;;,0;; € R and ap = 0,0, = ©jm =0, j = 1,2, and u;,v; € C>*(D;(¢;)). Then we
have

/ (ULV — VLU)dA = / (ULV —VLU)dA =
My, My,

— 91 Z “ Vul <@“ VUl —|— 2w Z b uz Cli’Ui(O)],

ie{t,b} ie{t,b,m}
with ©; = (91,1', 92,1), D, = ((,01,1', 902,i) and V- = (8961', 8x2')-

Proof. In the following we will need use the Green identity, so we must use the conformal
coordinate z = re!® around the ends py, p, and p,,. Thus for the catenoidal type ends, we
have ~ )
a; si(z

= (1 24zt ==

S 2P + 2(2)

with s;(0) = % € R, where a;, a, are the logarithmic growths of the top end and of the

bottom end of Mj,.

1
x
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As for the planar end
$m(2)
z

1
x
where s,,(0) = ¢. We can assume that ¢ = 1.

Since we want to find the expressions of U and V near the ends in terms of coordinates
(r,a), it is useful to observe that from (2.1) for a generic end with logarithmic growth a
it holds that:

[SIES

(N,es) = Q3 = (L+[a(@® + || Voh|? — 2alz, Voh))) 2,

(N,e1) = (N, e3)Re(—az + 72Vh),
(N, e3) = (N, e3)Im(—az + 7°Vh).

Then in a neighbourhood of each end we can write:

(Nyes) = (1+0(2]2) 2 = 14 O(|z]?), (2.8)
(N,e1) = (1+O(|z*)) (—az1 + O(z%)) = —az1 + O(|z]?), (2.9)
(N,e3) = (14 O(|z]*)) (azs + O(2%)) = azs + O(|z[*). (2.10)

In the coordinates (r,«) U; and V; have the following expression:
Ui(r) = 61 f1(r, i) + b2, f2(r,3) + f3(r, i) + u(r),

Vi(r) = o1 fi(r,i) + @2, fa(r i) + f3(r, b;) +vi(r)

where -
fi(r,i) = Gicosa + O(rlnr),
2r
fa(r,i) = aisima + O(rlnr),
r

fa(r,a) = —alnr + O(r).

If D;(0,7) are conformal disks and M(r) = M\(Uicge,p,myDi(0,7)), then the conformal
invariance of the integral implies:

I(r) = /M(T) (ULV — VLU)dA = / (Ua_v _ Va_U) dso —

oM (r) on on
ov; oU;
L / (Ui__‘/i_) 2], (2.11)
ie{t,p,m} 7 ODi(0r) or or
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where dA is the area mesure associated to dsg, n is the exterior conormal field to the
immersion along OM (r) and |dz| = rda. To get the lemma it will be sufficient to let r go
to zero.

Of course we have for i € {t,b,m} :

O _,y ON() , 050) | Ofslra) | dulr)

or O or - 0a or or or
and a similar expression for %‘f :

oV, _ Ofi(r) Ofo(r) | Ofs(r.bi)  Ouilr)

ar P oy T2 or * or or

As for the functions u; and v;, we will adopt in the neighbourhood of the origin an
expression of the form (we recall that z = z; + 129 = re'®):

[l =1(0) + 7 cos a(d.,1)(0) + 7sin a(3.,1)(0) + O(r?). (2.12)

Now we proceed with the evaluation of each summand that appears in (2.11). For i €
{t,b,m} we have (to simplify the notation, we will omit the dependence on r and 17)

lim (Uz% — VaU ) |dz| =
r—0 D (0,7) or or

' of f 0v; Ou;
}}g(l) </{z|:r} (‘plzuz(z)ﬁ 01,5 ( 8_ ( O1if1 — 5 801,if1) +

+ (@2,1‘“11(3)% O v; (2 )+ (%r 0. fo — ar <P2zf2)

(w2502 — ) 2500 1 (W - 05 ).

We define (the expression of [ is given by (2.12)):

G(l) = lim 1210z =
O Sy 0T
. . 9 @; COS (v
- llr% (1(0) 4 r(cos a(0:,1)(0) + sin a(9.,1)(0)) + O(r?))- 52 +O(nr) | rda =
=0 J{jel=r)
~ 2
— _lim G885 X . 1)(0)da = ——~a;(.,1)(0)
O ey 2 2
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and in a similar way:

: 9f
T(l) = lim l(r)—==|dz| =
=0 ey O
. . 9 a;sin o
- 111% (1(0) 4 r(cos (0., 1)(0) + sin a(9s,1)(0)) + O(r?))- 52 +O(Inr) ) rda =
"R Hzl=r}
2
— _lim G X h 1)(0)da = ——~a,(9.,1)(0)
=0 ety 2
Then we can conclude that for i € {¢,b,m} :
: 9
lim (gpl,iui(z) — 9171U1(2>>—>’d2| =
=0 Sel=r) or

146 () = 01,G(0) = S (01.(0:,0) (0) = 1,4(0:4)(0).
In the same way we get

0
lim (pa,iui(z) — b2,0i(2)) 8—];2|dz| =

70 S{Jel=r}
.
2T (ui) = 02T (v5) = 5i(02,1(02,0:)(0) = ¢2,4(0:,1i)(0)).
We define another couple of functions:

R(l) = lim o

fildz] =
=0 J{jz=r} OF

a; COS &

lim (cos a(8,,1)(0) + sin a(9.,1)(0) + O(r)) - <

=0 J{|z|=r}

+ O(rln r)) rda =

r
~ 2

. a; Cos” v
lim _

T
li [ ST 0.D0)da = 5(0.(0)

and
F(l) = lim Oz =

=0 {jzj=ry OF

a; sin «

lim (cos a(9.,1)(0) + sin a(,,1)(0) + O(r)) - (

=0 J{lz=r}

+ O(rln r)) rda =

2r
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. a; sin® a
lim T ——

(.
lig [ ES0uD0)da = 5a(0.0(0)

Then we find:
= {Izl=r} <%01”ﬁ - %¢l’ifl> 1=
O1:R(ve) = praR(s) = Sas(01,(0:,00)(0) — 01,(0:,u)(0)).
Analogously:

lim (—92,z‘f2 - —902,z‘f2> |dz| =
{lzl=r}

r—0 or r

Oz F' (Vi) — ol (u;) = g&z‘(92,i(322%‘)(0) — ©2,i(02,u;)(0)).

As for the fifth summand, we have

. A df3(b:) . df3(ai) _
P%{kﬂc“” or VT ) Idl =
- hII(l) ((uz(()) + 1 cos a(9.,1;) (0) + 7sin a(9.,u;)(0) + O(r?)) %—
R {lzl=r)
— (vi(0) + 7 cos (0., v;) (0) + rsina(9.,v;) (0) + O(r?%)) %) rdo =
To finish we show that
lim uz% vi% |dz| =
r—0 {|z|=r} or or
In fact:
lim U Ov; |dz| = lim ((ui(0) + O(r))(cos (0, v;)(0)+
=0 Jjzf=ry 0T =0 J{jz)=r}

sina(0,,v;)(0) + O(r))) rda = 0.

A similar result is true for the other summand.

If we collect the previous results, we find that for ¢ =t,b,m :

lim (UZ% — %%> |dz| =
r—0 aD;(0,r) 87“ 87”
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=7 [(01,:(021i)(0) = 01,:(02,v:)(0)) + (92,4(02,1i) (0) — 02,:(02,v:)(0))]
with 0, = @jm = 0 for j =1, 2.

In conclusion we have:

lim (ULV = VLU)dA = 7a; Y [01,4(0:,1;)(0) — 01,3(0-,v:) (0)]+
R M) ic{t,b}

T, Z [02,i(02,ui)(0) — 62,4(0-,0:)(0)] + 27 Z [biu;i(0) — a;v;(0)].

ie{t,b} ie{t,b,m}

We must do a change of variables to return in the graph coordinate. It is sufficient to
observe that ~

—= 2 o)

r 2z +
at each catenoidal type end. Then we get

0..u;(0) dzagglui(O) 0.,ui(0) = 28y, us(0)

i a;

and the same equations involving the functions v;. After a change of sign we can conclude

/ (ULV — VLU)dA =
My,

2m Z [1,i(02,u;)(0) — 61,:(0,v;)(0)]+

e{t,b}
+2m Z [90271'(822“1)( ) 0 z(azzvz + 2T Z b Uz CLZUZ( )]
ie{tvb} Ze{t b m}
Reordering the terms, we get the statement of the lemma. O]

2.3.2 The properties of the kernel and of the range of the Jacobi
operator

Let B = B(M,;) C C**(Mj,) the space of functions v such that their expression in a
neighbourhood of p;, with ¢« = ¢, b, m, is

O1,if1(z,7) + Oz fo(x, i) + fs(x, a;) + vi(x), (2.13)
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in the graph coordinate x (here we use the same notation of the lemma 22) with v; €
C%*({|z| < €}). We recall that a,, = 0,6;,, =0 for j = 1,2.

We are interested to study the kernel and the image of the ” compactified” Jacobi operator
L : B(M) — C%*(M,). We define the following subspaces of the Banach space B :

J=J(M) =ker(I), K=K(M)=JnC*(AL), Ko=Ko(M) = L(B)".

The elements of the space K are the Jacobi functions on M} bounded at the ends. From
the previous definitions it follows that

L:B(M)=J&J" — L(B)® K.
Lemma 23. In the situation described above, it holds that:

1. Ky ={v € K;0,,v;(0) =0, fori =1,2,j =tb, andv;(0) = 0, for j =t,b,m} =
{(N,es x p)}

2. dimJ =7+ dimK, = 8.
Proof.

1. Given v € K, we have v € K if and only if fM—kvEUdfl = (0 VU € B. Here we con-
tinue to use the notation of lemma 22. Then we suppose that U on a neighbourhood
of the end p;, 7 = t, b, m has the following expression:

Qpl,ifl(xa 7’) + 902,7Lf2(x72.) + fg(ﬂf, bl) + Ul(.flf),

with a,, =0, ¢;m =0, 7 = 1,2. Then by the lemma 22 we get

/ Ufmdfl—/ ULvdA =
My, My,

=21 Y [(®s, Vui(0)) — (O, Vui(0)] + 27 > [aus(0) — biv;(0)]

ie{t,b} ie{t,b,m}

for each w;. This is equivalent to

21 Y (0, Vui(0)) + 27 Y bwi(0) = 0.

ie{t,b} ie{t,b,m}
This gives Ky. Now we have to determine the Jacobi fields that are the generators of

the space K. Thanks to the works [29] and [30] of S. Nayatani and result contained in
1, for all £ > 1, the bounded Jacobi fields are associated to the following isometries

49



of the ambient space: the three translations along the coordinate axes and the
rotation about the vertical axis e3. The space K is generated only by the Jacobi
functions which satisfy the conditions just proved. Making use of (2.8), (2.9) and
(2.10) with the appropriate values of the logarithmic growths, we want to determine
which of the following functions belongs to Ky : (IV, e3), (N, e1), (NN, e2). We find the
following relations:

a:rj (N, e3)(pi) =0, aijVa e1)(pi) = —a;01,, 8xj<N, e2)(pi) = 02,5,

with j = 1,2. So we can conclude that these functions do not belong to the space
K.

Now we consider the Jacobi function associated to the rotation about the vertical
axis, that is (IV,e3 X p) = det(es,p, N), where p = (s, 2, s3) denotes the position
vector. We observe that its expression is given by

1. = V1) = s o + O(Jaf) - (‘W) (—ais + O(la])) = O(a).

Then it is clear that K| is generated by this Jacobi function.

. We consider the space V' C B of the functions defined on the disks D (¢;) by
O1if1(z, i) + 02 f2(2, 1) + f3(7, ai)

It is a 7-dimensional space: in fact a function in V' is determined by the values of
the following parameters: a, ay, G, 014, 014,02+, 02p. The spaces B and V' can be
decomposed in the following way:

B=Va&cC*™ V=Vagl,

where Vi = {f € V :_Ef € L(C*)} and V3 is a supplementary space. Then we
have L(B) = L(V,) & L(C**). Since Ky = L(B)* and K = L(C**) we deduce

dimKy = codimL(B) = codimL(C**) — dimL(V5) =

dimK — dimV, = dimK — dimV + dimV/,

that is
dimK, = dimK — 7 + dimVj. (2.14)

Now we consider the restriction to J = ker(L) of the projection 7 : B — V. It is
clear that ker(m ;) = K = JNC**, then given a function f € J such that f =v+u
with v € V and u € C%“, we have

0=Lf=Lv+ Lu
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and 7(f) = v € V1. Furthermore, for any v € V; there exists v € C*> such that
Lv = LV, that is v — v’ € J. Then 7(J) = V; and

dimJ = dim ker(7;) + dim Im(7m;) = dimK + dimV. (2.15)
From the equations (2.14) and (2.15) we get

dimJ =7+ dimK, = 8.

]

Remark 24. In [3}] a minimal surface is defined to be non degenerate if the space K
of the Jacobi fields induced by the isometries of the ambient space contains the space K.
Thanks to the result of lemma 23 we can conclude that the Costa-Hoffman-Meeks surface
M. is non degenerate for all k > 1 with respect to this definition.

2.4 The proof of the main result

We consider again the immersion X, + uN(y) (see (2.3)) and its mean curvature function
H(y,u), where y = (at, ap, G, 614, 01,024,025). We denote with ez(y) the unit vector
defined in D} (¢;), for i =t,b,m, by e3(61,,02,) for i = ¢,b and by e3(0,0) for i = m. We
denote with dsz,u the metric induced by X, + uN (y). In the following, the subindex -,
denotes that the corresponding object is computed with respect to the metric dsf/?u. We re-
call that A and U denote, respectively a neighbourhood of (ay, a, 0) and a neighbourhood
of zero in C**(My,).

Lemma 25. The mean curvature function H(y,u), with (y,u) € A x [—¢,€]* x U, is

orthogonal to (Ny.u, €3(y) X pyu), where Ny, is the Gauss map of X, +uN(y) and p,, is
the position vector.

Proof. Given € > 0 small we consider a compact domain M(e) of Mj, obtained by
removing the disks D;(e) which parametrize the ends. We have:

2/ " H(y, u)(Nyu,es(y) X pyu)dAy. =
M(e

- / Ay det(Nyu, X, +ul (y), es(y))dA, . =
M(e)

_ / det(ny.u, X, + uN (1), e3(y))dsya,
OM (e)

where 7, ,, is the exterior conormal field to X, + uN(y).
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We parametrize dMy(e) by three disjoint copies of the boundary of a disk of radius €. On
this boundary we assume z = ee™, ¢ € [0, 27]. In each neighbourhood of the ends we will
use the appropriate frame to simplify the computation. That is, in the neighbourhood of
the end p;, | =t,b,m, we will adopt the frame F(6,,6,,;) with 6, ,, = 65, = 0. We set

- , 1
uly) = (X, + ¥ )ee) = (T
with v; = —a; In |z| + hy(x). Then
Ny, uidSyu = _O/E,l X Ny, di,

where a; = (_71, (ix,ngl)) , for | = t,b,m, is the derivative of a.; with respect to v,
i = v/—1 and V; denotes the gradient computed with respect to ds2, the flat metric of
the a-plane. It is possible to prove that (see p. 194 [34])

NyuidSyu = Kial) + (Of) + 0(62),0(6)):| di.

Then
/| | det(X, +uN(y), e3(y), My.u)dsyu =
1 1 O(é?
/ det ((—,vl> ,(0,1), (—,az> + < ) 4 0(62)70(6))) dip.
1e{t,b,m} ¥ |z1=¢ * . v
It is easy to conclude that this expression converges to zero as € goes to zero. O

And to finish, here it is our main result.

We set ¢ = (0, ay,a,0,0,0,0,0,0) and we consider the function v € B given by (2.13).
We recall that § = (a, a, 0,0,0,0,0).

Theorem 26. For each possible choice of the limit values of the normal vectors of the three
ends, there is, up to isometries, a 1-dimensional real-analytic family of smooth minimal
deformations of My, for k > 1, letting the planar end horizontal.

Proof. We consider the map
F:RxAx|[—ee*xU — C"(M,;)
(r,y,u) — H(y,u) + 1{(Nyu, e3(y) X pyu)-

where N, ,, is the Gauss map of X, + uN (y). The map F is real analytic. Since the values
r =0,y = y,u = 0 parametrize the Costa-Hoffman-Meeks surface My, the differential of
F at c,

DF, : R® x B(M;) — C**(M,)
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is given by

DF.(r,y,u) = éL(Uy +u) + T<Ny,ua es(y) X py,u>'

Since L(B)* = K, we have KerDF = {0} x J. The differential for (r,y,u) = c is surjective
and its kernel has dimension 8. Using the implicit function theorem we find a neighbor-
hood W of ¢ in R® xU such that V = F~1(0)NW is a real analytic 8-dimensional manifold.
Thanks to the orthogonality between the mean curvature function and (N, e3(y) X py.u)
proved in the lemma 25, we can conclude that V contains only minimal immersions, hence

V C {0} x Ax[—€,€* xU.

To complete the proof, it remains to observe that up to now we have considered the
choice of the parameters a;, ay, @, 014,02+, 01, 02 arbitrary. But it’s necessary that the
null flux condition is satisfied. In our case the flux is given by the sum of the flux of
three catenoidal ends. So we have that the sum of three vectors must be the null vector.
The direction and the length of each vector are respectively given by the direction of axis
of revolution and by the logarithmic growth of the respective catenoidal end. It’s easy
to understand that these three vectors belong to a same vertical plane, that is we must
have always 65; = 035. The common value of these angles determines the orientation
of this plane (see (2.2)). Furthermore the flux triangle described by the three vectors
is uniquely determined by three of the remaining parameters (the logarithmic growths
at, ap, 4, and the angles 614,60,,). It is clear that the choice of the limit values of the
normal vectors (in other words of the angles 6;4,6,,) of the three ends determines in
unique way, up to a dilation, the flux triangle. So we can conclude that for each possible
choice of the flux triangle, there exists a smooth 1-parameter family of minimal surfaces
that are deformations of the surface M. O

53



Chapter 3

A Costa-Hoffman-Meeks type
surface in H? x R

3.1 Introduction

In the last years the study of the minimal surfaces in the product spaces M x R with
M = H?,S? has been becoming more and more active. The development of the theory
of the minimal surfaces in these spaces started with [36] by H. Rosenberg and continued
with [25] and [26] by W. H. Meeks and H. Rosenberg. In [32] B. Nelli and H. Rosenberg
showed the existence in H? x R of a rich family of examples including helicoids, catenoids
and, solving Plateau problems, of higher topological type examples inspired by the theory
of minimal surfaces in R3.

C. Costa in [3, 4] and D. Hoffman and W.H. Meeks in [14], [15] and [16] described in R?
a minimal surface of genus k > 1 with two ends asymptotic to the two ends of a catenoid
and a middle end asymptotic to a plane. We will denote the Costa-Hoffman-Meeks surface
of genus k > 1 by M,.

The aim of this work is to show the existence in the space H? x R of a family of surfaces
inspired to My. We shall prove the following result

Theorem 27. For all k > 1 there exists in H? x R a minimal surface of genus k with
three horizontal ends: two catenoidal type ends and a middle planar end.

The construction is based on a gluing procedure. We consider a rescaled version of a
compact part of a Costa-Hoffman-Meeks type surface, such that it can be contained in a
cylindrical neighbourhood of {0,0} x R C H? x R of sufficiently small radius. Actually
it’s possible to prove that, in the same set, the mean curvature of such a surface with
respect the standard metric of H? x R, up to an infinitesimal term, can be expressed in
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terms of the euclidean one. The main result is proved by a gluing procedure (see for
example [11]) usually adopted to construct in R new examples starting from known min-
imal surfaces. In particular we glue the surface described above along its three boundary
curves to two minimal graphs that are respectively asymptotic to an upper half catenoid
and a lower half catenoid defined in H? xR and to a minimal graph asymptotic to H? x {0}.

The author wishes to thank L. Hauswirth for invaluable conversations.

3.2 Minimal graphs in H? x R

In this work we shall consider the disk model for H?. Let z, x5 denote the coordinates in
H? and x5 the coordinate in R. Then the space H? x R is endowed with the metric

 dai + dx3

d 2
g F

+ da3,

where . ]
F:Z(l—x%—ngz Z(l—T2)2.
We denote with H, the mean curvature of the graph of the function u over a domain in

H2. Tts expression is
2H, = Fdiv <L> , (3.1)

1+ F|Vul|?

where div denotes the divergence in R?. For the details of the computation see [32].

Let ¥, be the graph of the function u. In this section we want to obtain the expression
of the mean curvature of the surface ¥,,, that is the normal graph of the function v
over ¥, and close to it. We shall show how it follows from (3.1) that the linearized mean
curvature operator, that we denote with L,, is given by:

Vu - Vv ) (3.2)

Fdiv L — FVu
VIt VP VA + FIVaPy

Furthermore we shall give the expression of H,,, the mean curvature of the graph of the
function u + v, in terms of the mean curvature of X, that is H,. In the following we shall
restrict our attention to two cases: the plane, that is u = 0, and (in section 3.6) a part of
catenoid defined on the domain {(r,6) € H2|r € [r., 1)}, where r, = €2 /2.

Here we shall show that:

2H,y = 2H, + Lyv + FQ,(VFVu,VFV?), (3.3)
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where @, is an operator with bounded coefficients if r € [re, 1) which satisfies

Q.(0,0) = VQ,(0,0) = 0.

To show this, we start observing that:

1 1 P Vu- Vo

V14 FIV(u+o)? - V1+ F|Vu]? B (1+ F|Vul?)3 + Qua(v). (3.4)

The operator @, 1(v) has the following expression

—F|Vol? 3F2(Vu - Vo + 1| Vo|?)?
(14 F|V(u+w)2)** 1+ F|V(u+tw)]?)?’

(3.5)

with ¢ € (0,1), and it satisfies @1(0) = VQ1(0) = 0. To prove (3.4) it’s sufficient to set

1

18 = VI+ FIV(u+ to)]?

and to write down the Taylor’s series of order one of this function and to evaluate it
int = 1. That is f(1) = f(0) + f'(0) + 3 f"(¢), with ¢ € (0,1). We insert (3.4) in the
expression that defines 2H,,,, to get

Fdiv ( Vit ) FV( Vu Vv U+ U)Qu,1(v)> =

—_— — u—+v +V
V14 F|Vu|? >\/(1+F|Vu|2)3 (

2H, + Fdiv ( Vu- Vv ) + FQu(VFVv, VEV).

Vv poa
VIt VP V@ + EVaPP

Since we assume that >, is a minimal surface, we will consider H, = 0.

3.3 The linearized operator about the hyperbolic plane

Now we restrict our attention to the case of the minimal surfaces close to H? x {0}, that
is the graph of the function u = 0. In this case we obtain immediately from (3.2) that
Ly,—o = FA,uq, where A,y denotes the Laplace operator in the euclidean metric. In this
section we will study the mapping properties of the operator £ = A.,. In the following
we will use the polar coordinates r, 6. In particular our aim is to solve in an unique way
the problem:

{Ew:f in St x [ry, 1)

Wp=ry, = @
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with 7o € (0, 1), considering a convenient normed functions space for w, f and ¢, so that
the norm of w is bounded by the one of f.

Since o 5 e
r2L = (7“2— +r—+ —)

has separated variables, let us firstly consider the operator
Lg - 639,

which acts on 27-periodic even functions. It is uniformly elliptic and self-adjoint. In
particular, Ly has discrete spectrum ()\;);>o = #*. Each eigenvalue ); has multiplicity one.
We denote by e;() the eigenfunction associated to \;, normalized so that

/O%(e,(e))?de ~ 1.

The Hilbert basis {e;};en of the space of 27r-periodic even functions in L?(S!) induces
the following Fourier decomposition of L? functions g = ¢(6,r) which are 27-periodic and
even in the variable 0,

9(0,7) = gi(r) ei(0).

i>0

From this, we deduce that the operator £, can be decomposed as £ = Zi>0 L;, being

P ==X\ = —i (3.6)
Now we can prove a lemma which assures that £ is injective.

Lemma 28. Given 0 < 19 <1y < 1, let w be a solution of Lw =0 on S' X [ro,71] such
that w(-,ro) = w(-,r) =0. Then w = 0.

Proof: We can decompose w = ;- w;(r) e;(#). Since the potential P; of the operator
L; is negative or zero for every i > 0 (see (3.6)) and the operator L; is uniformly elliptic,
the maximum principle holds. Then we get the lemma 28 from the hypothesis on the
boundary conditions. O
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3.3.1 The mapping properties of the Laplace operator
Definition 29. Given ¢ € N, a € (0,1), u € R and the closed interval I, we define

[ X"
C,.o (S x I)

to be the space of functions w := w(0,r) in Cﬁ;’j(Sl x I) for which the following norm is
finite
lwlleea = (1 = r*)  wllceaisixry.

Proposition 30. Given u >0, ro € (0,1), there exists an operator

Gry: Cp(St x [ro,1)) — C2*(S* x [ro,1))
f — w = Gro(f)

satisfying the following statements

(i) Lw=f on St x [ry,1),
(ii) w="0 on S* x {ro},

(111) Hw”cﬁ"“(51x[ro ) S CHchﬁ’“(slx[ro,n)a for some constant ¢ > 0 which does not depend
on ry.

Proof: As consequence of the lemma 28, the operator £ = A,,y is injective. Hence,
Fredholm alternative let us assure that there exists, an unique w € C*(S* X [ro,m1]),
with w(#,r) satisfying:

{ Apaw = f on St x [rg,r] (37)

w(-, 1) = w(-,r) =0,
We want to prove the following assertion.
Assertion 31. For every 0 <ro <7, <1, f € Cp*(S' x[ro,m1]) andw € C2*(S* x[ro, 71])
satisfying (3.7), it exists a constant ¢ such that
Hchg’a(Slx[Toaﬁ]) S C”fHCS’Q(Slx[TOﬂ“ﬂ)'

We suppose by contradiction that the assertion 31 is false, that is it does not exist a
universal costant for which the previous estimate holds. Then, for each n € N, there exist
Tin > Ton and fpn,w, satisfying (3.7) (with 7,, 710, fn, w, instead of ro, 7y, f,w) such
that

||fn||C2’a(sl><[7“0,n77‘1,n}) =1 and ||wn||CB’Q(SI><[7'O,7L7T1,7LD — +OO, when n — oo.
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Since Q,, := S X [ron, 71, is @ compact set, A4, :=  sup (1 —7?)7#|w,| is achieved
SlX[TO,narl,n]

at a point (0,,,7,) € ST X [ron, 71.n). We define

1 —pr2)#
wy(0,r) = %wn(ﬁ,rm),
”wn“cgva(ﬂn)
and a 2) .
~ — f,"n -
fn(07T) = fn(eﬂﬂrn)a

B ||fn||c27a(Qn)

for all (0,r) € S* x I,,, with I,, = [ro.n/7n, T1.n/7n). Clearly, A, < [wnl|eoe g, and

p (L= (rra)?) =" [wn (6, rra)|

B0, 7)] < (1= 72) T

< (1 =1~

honllza g,

On the other hand, (1 —7%)7#|Vw,| < [|[Wn|lcze(g1s,) < . Thanks to Schauder

AN
Tl o g

estimates, we obtain

lwnllczeq,) < <an||cgv“(9n) + 11 = TQ)_“wnHOO(Qn)> =c(1+ An).

Hence,

1+ [l (€2,)

V.| <c(l—r?)* <c(l—r?)m

Hwang’“(Qn)

The sets I,, converge to a nonempty interval /.. Since the sequences (w,,),, and (Vw,), are

uniformly bounded, Ascoli-Arzela theorem assures that a subsequence of (,), converges

on compact sets of ST x I, to a function w., that vanishes on S! x 01.

We note that sup (1 — %) #|w,| =
SixIy Hwn”cﬂ’a(ﬂn)

Ap — 00, Hwn”cﬁ’“(Q ) < Hwanﬁ*“‘(Qn) < d(1+ Ay) then

= , which does not converge to zero. In fact

n

A, S A, 1 -0
= '
Hw"HCS’O‘(Qn) T d(1+A)

In particular, it holds

0< sup (1—73)""|wy| < 1. (3.8)
SixIs

In the same way it’s possible to prove that a subsequence of (f,,), converges on compact
sets of St x I to the function f., = 0 since, if n — oo,
1

sup (1 — r2)’“|fn| =T — 0.
SixI, n
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Then the limit function ws, must satisfy the differential equation
AeuclU)oo =0

on S' x I, with null boundary conditions on 0I,. Furthermore r = 1 € I, then
Weo(#,1) = 0. So, also in the case I, = 0, we can conclude that w.(#,7) = 0. This
function does not satisfy (3.8), a contradiction. This proves the assertion 31.

Thanks to Schauder estimates, we know that the function introduced in the assertion 31
is uniformly bounded and likewise its gradient. Hence Ascoli-Arzela theorem assure us
that we can take the limit as r; — 1 in a sequence of solutions which are defined on
St x [rg,71]. This proves the existence of a solution of A.,qw = f defined on S x [rg, 1)

for which it holds

kucﬂ’“(SlX[mH) S ”fHCS’“(51X[r071])'
Now it is sufficient to use again Schauder estimates to obtain the estimates for the deriva-
tives.

]

3.4 A family of minimal surfaces close to the hyper-
bolic plane

In this section we will show the existence of normal minimal graphs over the plane, C,,,
of equation x3 = 0 which are asymptotic to it. We will reformulate the problem to use
Schauder fixed point theorem. We recall that 7. = €/2/2. We know already that the
graph of the function v, denoted with ¥, is minimal, if and only if the function v is a
solution of

F <£v + Qo (\/FVU, ﬁV%)) =0. (3.9)

This equation is a simplified version (since u = 0) of (3.3) introduced in section 3.2. The
operator Qo has bounded coefficients for r € [r., 1). Its expression is div (VvQo,1) where

Qw1 1s given by (3.5).

Now let’s consider a function ¢ € C**(S') which is even with respect to 6, L?-orthogonal
to eg and e; and such that ||¢]|cz.« < ke. We define

w@o(" )= He o, ),

where H is the operator of harmonic extension introduced in proposition 46. In order to
solve the equation (3.9), we choose p € (0,1) and look for v of the form v = w,, +w where

60



w € Cr*(S" x [re,1)) and v = ¢ on S x {rc}. Using proposition 30, we can rephrase this
problem as a fixed point problem
w = S(p,w) (3.10)

where the nonlinear mapping S which depends on € and ¢ is defined by
S(p,w) == =G, (Lw,+ Qo (w, +w)),

where the operator G is defined in proposition 30. To prove the existence of a fixed point
for (3.10) we need the following result that states that S is a contracting mapping:

Lemma 32. There exist some constants ¢, > 0 and €, > 0, such that
1S(¢, 0)llcze < cxe? (3.11)

and, for all € € (0, €)

oz = villgze

N | —

1S(,v2) = S0, 01)l| gz <
for all vy, vy € C2¥(S* X [re, 1)) such that Hvi”cf;“ < 20462

Proof. We know from proposition 30 that [|Gy, (f)l|cze < cf| fllgoe, then

”5(907 0)”03’“ < CHKU)S(, + Qo (wgo) ”cﬁﬂ <

< (L wploge + 10 (w) llge ) -

So we need find the estimates for the two summands above. We recall that ||¢|2. < ke.
Since p € (0,1) and thanks to proposition 46 we obtain
ez < cllwyllgze < cllplicrn < che.

Being w,, a harmonic function we have Lw, = 0. The last term is estimated by

HQO (wgo) HCS"" < Ck€2.

In fact

1Q0 (wy) llepe < cllwllzg, < cllolza < cre®.

Then we can conclude
15, 0llcze < exe.

As for the second estimate, we consider

S(p,v2) = S(p,v1) = Gy, (Qo (wy + v2) — Qo (wy, + v1))
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and consequently

15(p, v2) = S(@, v1)ll gz < €l|Qo (wy 4 v2) = Qo (wy + 1) [l

We observe that from the considerations made above it follows that
||Q0 (ww + UQ) — Qo (wcp + Ul)“cgva < C||U2 - U1||cffY ||w¢||cﬁva <

< cpel|vg — U1||Ci,a.
Then
18(6,02) — S0z < exelli — vl e
[

Theorem 33. Let be B := {w € C3*(S* x [re, 1)) |[|wl|p2e < 2cx€®}. Then the nonlinear
mapping S defined above has a unique fized point v in B.

Proof: The previous lemma shows that, if € is chosen small enough, the nonlinear map-
ping S is a contraction mapping from the ball B of radius 2cxe? in C*(S* x [rc, 1)) into
itself. This value follows from the estimate of the norm of S(0). Consequently thanks to
Schauder fixed point theorem, S has an unique fixed point w in this ball. ]

We have proved the existence of a minimal surface, denoted with S,,, which is close to
H? x {0}, and close to its boundaryis the vertical graph over the annulus Bs,. — B,, of a
function which can be expanded as

Hyo p(r,0) + Vyu(r,0),  with HVmHCi,a < ce.
The function V,, depends non linearly on €, . Furthermore it satisfies

H‘_/m(@ @)(re) — Vm(ea @/)(re')"CQv&(Bl—Bl/g) < cellp — SD/HCQ’“(Sl)-

3.5 The catenoid in H? x R

The catenoid in the space H? x R can be obtained by the revolution around the x5 axis,
{0,0} x R, of an appropriate curve ~ (see [32]). We consider a vertical geodesic plane
containing the origin of H? and the curve ~. Let r be the euclidean distance between the
point of v at height ¢ and the x3 axis: we denote with r = r(t) a parametrization of ~.
The surface obtained by revolution of v, is minimal if and only if » = r(t) satisfies the
following differential equation:

2
4r(t)a r 4(8r

Frie E) —(1-=r@®)*) =0. (3.12)
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A first integral for this equation is:

or\?> 9 1474
(E) = Cr? - — (3.13)

W1 > . 1S poOSsS1iple TOo prove a ¢ runction r as a mMinimuil value 7p,;, gl1ven
ith C' > 1. It is possible to p that the functi t)h ini ] gi

by:
_\/QC+1 \/20—1<1
Tmln - 2 2 .

Since we assume C' = %5, we get
4e??

20 +1 2C —1 1 1 1

We denote with C; and Cj, respectively, the part of the catenoid contained in H? x R*
and H? x R™.

We set
te = —¢lne.

We need find the parametrization of C} and Cj as graphs on the horizontal plane respec-
tively for t € [t — €, t. + €] and t € [t — €, —t. + €].

Lemma 34. For e > 0 small enough, we have

t ¢ 1 t ¢
re(t) = ecosh — + O(e®e2) and O,r.(t) = = sinh — + O(’e2)
2€ 2 2e

fort € [0,t. + €]. Moreover ift € [te — €,t. + €], we derive

re(t) = O(e"?) and dyr. = O (6_1/2) :

Proof. We define the function v(t) such that r.(t) = r.(0) coshv(t), with v(0) = 0 and
r¢(0) which satisfies
RN

from which

_ o)~ 1<) (3.14)



Plugging r.(¢) in (3.13) and using (3.14), we have

2

Q)2 = C — 7”6510) (1 + cosh®v(t))

and under the hypothesis that v(t) = g(5) and

+
2¢
t < t < t 1

2 J 2 ) 2
we obtain that (9v)2 = C + O(e2e) and then v(t) = VCt + O(3e2). We remark a
posteriori that £ < v(t) < & + 1 holds for ¢ € [0, ¢ + €], € > 0 small enough and then

re(t) = r.(0) coshv(t) = € cosh <2i€) + 0(636%) (3.15)

where we use that 7.(0) = 7, = € + O(e?). Now we assume that ¢ € [t. — €, t. + €], then
T5<t) = 0(61/2) and 8tT€(t) = %Sinh (%6) + 0(626i> = 0(6_1/2). D

Now we can prove a lemma that give us the parametrization of the part of catenoid whose
height t belongs to a neighbourhood of t..

Lemma 35. For ¢ > 0, small enough and t € [t — €,t. + €], the catenoid can be
parametrized on an annulus of C. = {rew; \T/—g <r< 7”6\/5} by the graph of the function
Ui(r,0) which satisfies
2
Ui(r,0) = 2¢ln il v (r, 0), (3.16)
€
2e
8rUt(7’, 9) = 7 + Ut,d(T’, 8)
with vy(r,0) = O(e2) and vy 4(r,0) = O(*/?).

Proof: The results follow easily from the hypothesis and the equation (3.15).

O
It’s easy to understand that the parametrization of the catenoid for values of t in a
neighbourhood of —t,. is obtained by a change of the sign in the expression 3.16. Similar
consideration are true for the derivative. Then we obtain

2
Uy(r,0) = —2¢In { +uy(r, 0),

2
,Uy(r, 0) = —76 + upa(r, 0)

with vy(r,0) = O(e?) and vy 4(r, 0) = O(°/?).
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3.6 A family of minimal surfaces close to a catenoid
on St x [r, 1)

In this section we want to show the existence of minimal normal graphs over the catenoid
defined in S x [r., 1) C H? and asymptotic to it. We know that the graph of the function
u© + v is minimal, being u the function whose graph is the catenoid, if and only if v is a
solution of the equation

Hyy =0 (3.17)

whose expression is given by (3.3). The explicit expression of L,v is

1 0 1 \Oov 1 0udad ou'\ Ov oud (1 Judv
— B (P A e R 2 1
F <\/ZAUjL or <\/Z) Or A3 Or Or (Fﬁr) or Far or (Ag or (97"))  (318)

where F = (1 —r?)?,
4C — 2)r?
A=14 FVuff = €=
+FIVyl 4Cr2 —1 —r4
and
ou 2
or 4072 — 1 — %’

as it is easy to obtain using (3.13). It’s useful to observe that since we assume C' = 4

42
and 7. = €2 /2, we have that, for 7 € [r,1), A =1+ O(e), & = O(,/e),

aE:

oA  (8C =4)(=r+717)
or (4Cr?2 — 1 —r4)?

= 0(e)

and 0? 8Cr — 4r®
u_ (8Cr — 4r?) _ o).
or? \/(401”2 —1—r1)3

Taking into account these estimates, we can conclude that it holds

_ 0 1 ov 1 Ou 0 ou\ Ov ou 0 1 Oudv
L= VA(5 (2) 5~ ararar U5 & Farar (o)) -

OB +0(Ve 2

Then we can write vVAL,v = F (Ev + Z_}u'z)) )

(3.19)

We remark that we have already studied the mapping properties of the operator L in
section 3.3.

65



Then the graph of a function v over ¥, is minimal if and only if v is a solution of the
following equation

Lo+ Lyv + VAQ,(v) = 0. (3.20)

Thanks to the observations on the functions A and w,, we can conclude that (), has
bounded coefficients in [r,1). Now we consider a function ¢ € C**(S') which is even
with respect to 6, L*-orthogonal to ¢y and e; and such that [|i]|c2.« < ke. We define

w@(" ) = HT67<P('7 )

where the operator H has been introduced in proposition 46. In order to solve the equation
(3.20), we choose p € (0,1) and look for v of the form v = w, +w where w € C>*(S* x
[r.,1)) and v = ¢ on S* x {r.}. We can rephrase this problem as a fixed point problem,
that is

w=S(p,w) (3.21)

where the nonlinear mapping S is defined by

S(p,w) == —G,. <£w¢ + Ly(wy + w) + VAQ, (w, + w)) ,

where the operator GG is defined in proposition 30. To prove the existence of a solution
for (3.21) we need the following result which states that S is a contracting mapping.

Lemma 36. There exist some constants ¢, > 0 and €, > 0, such that
15(2, 0|z < cie®” (3.22)

and, for all € € (0, ¢)

1
18(p,w2) = S(,wn)llgze < 3 llws = willgze

for all wy,wy € CR(S* x [re, 1)) such that [|wil| 2. < 2e€s .
Proof. We know from the proposition 30 that HGre(f)Hci,a < CHfHCB,a. Then
1S (e, 0)||cﬁvCY < || Lw, + Lu(wy) + \/ZQu (we) ||cf}°‘ <

¢ (I wellege + 1 Euwp)llgge + 1Qu (w) ey ) -

Here we have used the fact that A =1+ O(e).
So we need to find the estimates of each summand. We recall that ||¢|c2« < ke. For all
€ (0,1), [Jwg[lcze < [Jwylle2e, and thanks to proposition 46 we get that

waHcZ’a < cllglleza(sty < cke
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and Lw, = 0. We use (3.19) for finding the estimate of L,w,. We obtain
7 1/2 3/2
ILu(w) e < el flgze < e,

The last term is estimated observing that

1Qu (wy) g < ellwgllgza < cre”

Putting together all these estimates we get

1S (¢, wso) Hcf;a < Ck€3/2-

As for the second estimate, we observe that

S(p,ws) — S(p,wy) = —G,, (Eu(ww + wo) + VAQ, (wy + w2)> +

G,. (Eu(ww +wy) + VAQ, (wy, + wl))

and
15 (¢, ws) = S(p,w1) |2 <

C||I’U<wso + ws) — IJU(wtp +wi) + Qu (wap + wa) — Qu (wy + wr) ||C2,a =
= cf| Ly (wa — w1) + Qu (wy +ws) — Qu (wy, +w1) [|eoe <

< | Lu(wz — wi)lleoe + [1Qu (wy + w1) — Qu (wy + w2)||oe -
We observe that from the considerations above it follows that
|1Lu(wz — wi)l e < ce'?[Jwp — w1 ] ze,
and
1Qu (wy + w1) = Qu (wy + wa)eoe < cffws — wrl|zellwyl|eze

< cre|lwa — wif]gze.

Then
150, w2) — S(pswn) gz < 2|z — |z

]

Theorem 37. Let be B := {w € C3*(S"x[re, 1)) | ||w|2,a,, < 2¢x€*?}. Then the nonlinear
mapping S defined above has a unique fized point v in B.
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Proof: The previous lemma shows that, if € is chosen small enough, the nonlinear map-
ping S is a contraction mapping from the ball B of radius 2¢z€%/2 in C2*(S* x [rc, 1)) into
itself. This value follows from the estimate of the norm of S(p,0). Consequently thanks
to Schauder fixed point theorem, S has a unique fixed point w in this ball. O

We have proved the existence of a minimal surface S;, which is close to the part of catenoid
Cy introduced in section 3.5 and close to its boundary is a graph over the annulus Bs, — B,
of the function which can be expanded as

2 _
2¢1n (l) + Hre,g0<ra 6)) + V;(T7 9)’

€
with Hf/t“cfb‘l < e,

Analogously we can show the existence of a minimal surface Sy, which is close to the part
of catenoid denoted by Cj, introduced in section 3.5 and close to its boundary is a graph
over the annulus By, — B, of the function

el @) —H, o (r,0) = Vi(r,0),

€

with ||V 2o S ce3/?. The functions V;, V, depend non linearly on ¢, . Furthermore they
satisty

(7 — 1
[V (€, ) (re) — V(e 90/)(7“6')\1027&(31—31/2) <ce?p— SOIHCM(SI)-

3.7 The mean curvature in a neighbourhood of {0, 0} x
R in H?> x R

We recall that the model we use for H? x R the disk model endowed with the metric gp,,.
If 21, x5 denote the coordinates in H? and x5 the coordinate in R, then

dz? + dx?
Ghyp = % + d(l??.),

where ) |
2 2)2 2)2
F:Z(l—xl—%) :Z<1_T) .
In this section we want to express the mean curvature Hj,, of a surface, contained in a
cylindrical neighbourhood C' of {0,0} x R in H? x R in terms of the mean curvature H,
computed with respect to the euclidean metric ge,q = da? + dz3 + dai.
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Let g be the metric defined on R® by 4dx? + 4dx3 + dx3. We consider the map f :
(Rgageucl> - (R?’,g) defined by

T1 T2 )

?, ?,1'3 (323)

(21, 22, 23) — <
It is easy to see that it is an isometric embedding. That is the pull-back of the metric g
by f equals Geucl-

We denote by V the riemannian connection on (R?,g). Let X, Y be two vector fields on
(R3, gewer).- We define X := f,(X), Y := f.(Y), Then the connection defined on (R?, geyer).
by

VxY = VgV, (3.24)

coincides with the riemannian connection relative to the metric ge,q. If N, denotes the
normal vector to a surface ¥ with respect to the euclidean metric, the mean curvature
H.(2) of ¥ in (R3, geue) is defined to be half the trace of the mapping

X — _[VXNeucl]Tv

where []7 denotes the projection on 7. We set Y= f(%). Similarly if ]\z denotes the
normal vector to 3 with respect the metric g, the mean curvature H(X) of ¥ in (R3, g) is
defined to be half the trace of the mapping

X — —[VxN|T,

where [-]” denotes the projection on T Y. Thanks to the relation (3.24) and from the fact
that TY = f,TX it is clear that o
H(Y) = H.(%). (3.25)

Now we turn our attention toward the space H? x R. Now our aim is to find a relation
between the mean curvature with respect to the metric gp,, of a surface contained in a
cylindrical neighbourhood C of {0,0} x R in H? X R and the mean curvature of the same
surface seen in the riemannian manifold (C, g).

The Christoffel symbols, I'*

ij» associated to gpyp all vanish except

27
F%l = Fgl = F%z = _Féz 12

222
FiQ = FgQ = F%l = _F% = 1_ 2
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Let 0, = 2 8961 Oy = %8%2, o) = 8%3 be the elements of a basis of the tangent space. Now,
fX =3, X9 andY =) i Y79, are two tangent vector fields, the expression of the
covariant derivative in (H? X R, gy,,) is given by

ViY => (Z X'YITE + X(Y’f)) O

k ij
It is clear that
VhY = VxY + Z > XYIT 0. (3.26)

k=1 14,j

It is possible to show that Zk 1 Z - X ZYJF’C Ok is the vector whose components with
respect the basis (01, 02, 03) are given by

Yig Y2z Yig Y2z
\}//?1 + @2 Y\{FQ _ Y\éfl O Xl

Z2 1 1 T2
F T ovE v Tour 0| X
0 0 0 X3

The mean curvature Hy,,(S) of a surface S in (H? X R, gp,,) is defined to be half the trace

of the mapping
X — _[VXNhyp]Tv

where [-]7 denotes the projection onto the tangent bundle of the surface and Ny, =
(N1, N2, N3) the normal vector to S. Thanks to (3.26) we get the relation

[V Naypl ™ = [V x Ny ™ + Z > XINITE 0. (3.27)

k=1 1i,j

Now we observe that the normal vector N to S with respect the metric g does not coincide
with Np,,. Since gy, is asymptotic to the metric g, it is reasonable to think that Ny, (5)

can be related to N(S). If we suppose that Nj,,(S) = — 2228 and N(S) = (bevs)

|(”17U27'U3)|ghyp ‘(’Ul 77)277}3)'@

then it is possible to show that
Niyp(S) = 2VEN(S) (14 O(?)) .

Now we insert this result into (3.27) and we compute the opposite of half the trace. We
obtain

Hpyp(S) = (H(S) — 2(x1 Ny + 22No)) (1 + O(r?)). (3.28)
Thanks to (3.25) we know that H(S) = H.(f1(S)). We have proved the following result
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Proposition 38. Let S be a surface contained in a sufficiently small cylindrical neigh-
bourhood C' of {0,0} x R C H? x R endowed with the metric gny,. If N = Z?:l N;0; and
Hyy, () denote respectively the normal vector to S and the mean curvature with respect to
Ghyp, He(+) the mean curvature with respect to g. and f is the map defined by (3.23), then

Hyp(S) = (He(f71(S)) = 2(x1 N1 + 22N2)) (1 + O(r%)). (3.29)

3.8 A rescaled Costa-Hoffman-Meeks type surface

In this section we will describe the surface obtained by rescaling of the Costa-Hoffmann-
Meeks surface of genus k > 1, My, (see C. Costa [3], [4] and D. Hoffman and W. H.
Meeks [15], [16]) and we will study the mapping properties of its Jacobi operator. We
denote by Mj . the image of M}, by an homothety of parameter 2e. We will adapt to our
situation some of the analytical tools used in [11] to show the existence of a family of
minimal surfaces close to M, with one planar end and two slightly bent catenoidal ends
by an angle £ € (=&, &), & > 0 and small enough. We denote an element of this family
by Mk(f), then Mk<f)|5:0 = Mk

3.8.1 The Costa-Hoffman-Meeks surface.

We start by giving a brief description of the surface My. After suitable rotation and
translation, M, enjoys the following properties.

1. It has one planar end FE,, asymptotic to the x3 = 0 plane, one top end F; and one
bottom end Fj that are respectively asymptotic to the upper end and to the lower
end of a catenoid with x3-axis of revolution. The planar end FE,, is located between
the two catenoidal ends.

2. It is invariant under the action of the rotation of angle ,f—fl about the z3-axis, under

the action of the symmetry with respect to the x5 = 0 plane and under the action
of the composition of a rotation of angle ;75 about the z3-axis and the symmetry
with respect to the x3 = 0 plane.

3. It intersects the z3 = 0 plane in k£ + 1 straight lines, which intersect themselves at
the origin with angles equal to 75. The intersection of Mj with the plane x5 =
const (# 0) is a single Jordan curve. The intersection of M) with the upper half
space x3 > 0 (resp. with the lower half space z3 < 0) is topologically an open

annulus.

We denote with X;, with ¢ = ¢,b, m, the parametrization of the end E; and with X, the
parametrization of the corresponding end F; . of M.
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Now we give a local description of the surface M . near its ends and we introduce coor-
dinates that we will use.

The planar end. The planar end E,,  of the surface My can be parametrized by

X o) 1= <|2x%,2eum(x)) € R?, (3.30)

where z € B,,(0) — {0} C R? and the function u,, tends to 0 like u,,(z) = O(]z|**'). Here
po > 0 is fixed small enough. We will assume py = O(ei). The minimal surface equation

has the following form
lz|* . Vu
d =0. 3.31
42 T\ T+ [2]' [Va?)' 72 (3.31)

It can be shown (see [11]) that the function u,, can be extended at the origin continuously
using Weierstrass representation. We can prove that u,, € C**(B,,).

If we linearize in u = 0 the nonlinear equation (3.31) we obtain the expression an operator
which is close, up to a multiplication by 4¢€2, to the Jacobi operator about the plane, that
is Lg2 = |z|*A. To be more precise, the linearization of (3.31) gives

4 .
o= gy v TS O .
V1t [z Vul? V(L [z Vul?)?

We will give the expression of H,,, the mean curvature of the graph of the function u+wv,
in terms of the mean curvature of ¥, that is H,. In the following we shall restrict our
attention to the planar case, that is uw = 0, on a domain of the form {(r,0) € B,,(0)|r €
[r1,72]}. Here we shall show that

4
2H, 1, = 2H, + L,v + %Qu(\/|x|4Vv, VIz|AV), (3.32)
where @), satisfies
Qu(0,0) = V@, (0,0).
To show (3.32), we start observing that:
1 B 1 e Vu - Vo
Vit Vu+oP I+ eVl V(1 [ Vul?)

where the function @, satisfies Q,1(0) = VQ,.1(0) = 0. The proof of that is very close
to the one that appears in section 3.2: it’s necessary only to replace F by |z|*. So we can
omit some details. Secondly we observe that 2H, ., is given by

4 .
|| div( V(u+v) 1l (4 ) Vu - Vo

4e? V1 2|4 Vul? V(L [z VuP)
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From this it follows the wanted expression.
Since we assume that X, is a minimal surface, we will consider H, = 0.

Following what we have done in section 3.6 replacing F by |z|* we get the expression of
the minimal surfaces equation that we will use in the following sections:

4
% (Ev + Lov + Qu(/]2[* W, \/yxw%)) —0. (3.34)

The catenoidal ends. We denote by X, the parametrization of the standard catenoid
C whose axis of revolution is the x3-axis. Its expression is

X,(s,0) := (cosh s cosf,coshs sinf,s) € R?

where (s,60) € R x S'. The unit normal vector field about C' is given by

ne(s,0) :=

cosf,sinf, —sinh s).
cosh s ( )
The catenoid C' may be divided in two pieces, denoted C., which are defined as the image
by X, of (R* x S1). For any € > 0, we define the catenoid C, as the image of C' by an
homothety of parameter 2e. We denote with X, := 2eX, its parametrization. Of course,
by this transformation, to C'y, correspond two surfaces denoted C. ;.

Up to some dilation, we can assume that the two ends £ . and £, . of M}, . are asymptotic
to some translated copy of the catenoid parametrized by X.. in the vertical direction.
Therefore, £, and Ej . can be parametrized, respectively, by

Xie = Xee+win.+orce3 (3.35)

for (s,0) € (so,00) x S,
Xpe:=Xee —wWpne — Opc €3 (3.36)

for (s,0) € (—o0,—s0) x S*, where 0,04, € R, functions wy, w;, tend exponentially fast
to 0 as s goes to oo reflecting the fact that the ends are asymptotic to a catenoidal end.

In section 3 of [24] it is given the expression of the mean curvature operator about of a
surface close to a rescaled standard catenoid. We can adapt this result to our situation.
We obtain that the surface parametrized by X.. + wn, is minimal if and only if the
function w satisfies the minimal surface equation H,, = 0, where

1
Hw = —@LCW‘F

0 w YVw V2w
2¢coshs “2 \ 2ecosh s’ 2e cosh s’ 2€ cosh s
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2¢ cosh s 2¢ cosh s’ 2e cosh s’ 2¢ cosh s

! Q3,6< - Vw Vi ) (3.37)

Here Lo is the Jacobi operator about the catenoid, that is

Lo — 1 82w+32w+ 2w
S s \ 0s? 002 cosh?s

and Q. and Q3. are functions which are bounded in C*(R x S1) for all k, uniformly in
€. They satisfy

Q2.(0,0,0) = @3.(0,0,00 =0 and  VQ2.(0,0,0) = VQs.(0,0,0) =0, (3.38)
V2Q3.(0,0,0) = 0. (3.39)

We will write for short

Q ( ) 1 We qu, V2UJ<1>
e\Ww = € s )
® 2¢ cosh? s 2¢\ 2ecosh s’ 2ecosh s’ 2¢ cosh s
1 Vv V2
(e YWe VW ) (3.40)
2ecosh s "7 \ 2ecosh s’ 2e cosh s’ 2e cosh s

For all r < py and s > s¢, we define
Mie(s,7) = My — [Xpe((s,00) x S1) U Xy (=00, —5) x SN U X, (B,(0))] . (3.41)

The parametrizations of the three ends of M, . induce a decomposition of Mj, . into slightly
overlapping components: a compact piece My .(so+ 1, po/2) and three noncompact pieces

X e((s0,00) x S1), Xp((—o00, —s0) x S) and X, (B,,(0)).

We define a weighted space of functions on My .

Definition 39. Given { € N, o € (0,1) and A € R, the space Cy*(My..) is defined to be

the space of functions in Ci}?(Mk,e) for which the following norm is finite

lwllete g, ) = llwllete @, sor1p0/2) + 110 0 X ellet s, o))

+sup e (lw o Xyelletas,stixst) + w0 Xoellcta(—s—1,-sxs1))

$250

and which are invariant under the action of the symmetry with respect to the x5 = 0 plane.

We remark that there is no weight on the middle end. In fact we compactify this end
and we consider a weighted space of functions defined on a two ended surface. We will
perturb the surface My by the normal graph of a function u € C?’Q(Mkﬁe). In particular
the middle end E,, . will be just translated in the vertical direction.
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3.8.2 The Jacobi operator

The Jacobi operator about Mj, . is
LMk,e = AMk,e + |AMk,e|2

where |Ayy, | is the norm of the second fundamental form on Mj, .

In the parametrization of the ends introduced above, the volume forms dvoly, , can be
written as v, ds df and -y, ds df near the catenoidal type ends and as 7, dry drs near the
middle end. Now we can define globally on M}, . a smooth function

v @ My — [0, 00)

that is identically equal to 4e* on My (so — 1,2p) and equal to 7; (resp. 7y, Ym) on the
end F;. (resp. Ey., E,,). They are defined in such a way that on X;.((sg,00) x S') and
on Xy ((—00, s9) x S) we have

Y0 X;(8,0) ~ 4¢® cosh® s and v 0 Xpe(s,0) ~ 4€® cosh? 5.

Finally on X,, ((B,,), we have
4¢?
It is possible to check that:

‘665: 652’&<Mk,6) B Cga(Mk,E)

w — L, (w)

is a bounded linear operator. The subscript d is meant to keep track of the weighted space
over which the Jacobi operator is acting. Observe that, the function ~ is here to coun-
terbalance the effect of the conformal factor ——=— in the expression of the Laplacian in

lgazy, |
the coordinates we use to parametrize the ends of the surface My, .. This is precisely what

is needed to have the operator defined from the space C?’Q(Mkﬁe) into the target space
Co (M)

To have a better grasp of what is going on, let us linearize the nonlinear equation (3.37)
at w = 0. We get the expression of the Jacobi operator about the rescaled catenoid C,

cosh? s

]LCE = 4e2 ccl)sh23 (a3 + ag + : > ’

We can observe that the operator 4¢? cosh? s L, maps the space (cosh s)% C2*((sg, 00) x S*)
into the space (cosh s)° C%((sg,00) x S1).
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Similarly, if we linearize the nonlinear equation (3.31) at u = 0, we obtain the expression
of the Jacobi operator about the plane times 4¢2.

A.

2!
Lz = e

Again, the operator % Lg2 = A clearly maps the space C>%(B,,) into the space CO*(B,, ).
Now, the function « plays, for the ends of the surface My, ., the role played by the function
cosh? s for the ends of the standard catenoid and the role played by the function |z|~*
for the plane. Since the Jacobi operator about My is asymptotic to Lg2 at Ej, . and is
asymptotic to Lo, at E; . and Ej ., we conclude that the operator £.s; maps Cg’a(]\/[k,e)

into Cg’O{(Mk,e) .

Now we recall the notion of non degeneracy introduced in [11].

Definition 40. The surface M. is said to be non degenerate if L. s is injective for all
o< —1.

It useful to observe that a duality argument in the weighted Lebesgue spaces, implies that
(Lcs 1isinjective) <« (L._s is surjective)

if § ¢ Z. See [27] and [18] for more details.

The non degeneracy of Mj, . is related to the mapping properties of L, s and to the kernel
of this operator. From the observations made above, it follows that at the catenoidal type
ends and at the middle planar end the Jacobi operators of M. and M}, are respectively
asymptotic to Lo and Lo, which coincide up to a multiplication by 4¢?. So we could
transpose the all results about the surface M (0) contained in [11] related to the study of
its mean curvature operator, to the surface M, including non degeneracy.

The Jacobi fields. It is known that a smooth one parameter group of isometries con-
taining the identity generates a Jacobi field, that is a solution of the equation Ly, . u = 0.
These solutions are generated by the following one parameter groups of isometries: the
vertical translations, the translations along the x;-axis, the dilations. See [11] for details.

The group of vertical translations generated by the Killing vector field Z(p) = e3 gives
rise to the Jacobi field

®%F(p) == n(p) - es.

The vector field Z(p) = p that is associated to the one parameter group of dilation
generates a Jacobi fields



The Killing vector field Z(p) = e; that generates the group of translations along the
ri-axis is associated to a Jacobi field

O (p) == n(p) - €.

Finally, we denote by
4 (p) :=n(p) - (e2 X p)

the Jacobi field associated to the Killing vector field Z(p) = ey x p that generates the
group of rotations about the z-axis.

The Jacobi equation has other solutions which are not taken into account because in the
difference with the four Jacobi fields just introduced they are not invariant under the
action of the symmetry with respect to the x5 = 0 plane.

With these notations, we define the deficiency space
D := Span{x; ", x, " : j = 0,1}

where y; is a cutoff function that is identically equal to 1 on X;((so + 1,00) x S'),
identically equal to 0 on M}, — X;((s9,00) x S') and that is invariant under the action
of the symmetry with respect to the x5 = 0 plane. Also, we agree that

Xb() = xe(— ).

Clearly
Los: C(Mp)®D — CJ%(M,,)

w — 7L, (W)

is a bounded linear operator. The linear decomposition Lemma proved in [23] for constant
mean curvature surfaces (see also [18] for minimal hypersurfaces) can be adapted to our
situation and thanks to the results of S. Nayatani contained in [29],[30] and extended in
chapter 1, stating that any bounded Jacobi field respecting the mirror symmetry with
respect to the x5 = 0 plane is linear combination of ®%* and &+, we get the following
result

Proposition 41. All bounded Jacobi fields on My, . that are invariant with respect to the
1y = 0 plane are linear combination of ®** and ®* and choose § € (1,2). Then the
operator ENE,(; is surjective and has a kernel of dimension 4. Moreover, there ezists G5 a
right inverse for 2575 whose norm is bounded.
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3.9 An infinite dimensional family of minimal sur-
faces which are close to a compact part of a rescaled
Costa-Hoffman-Meeks type surface in H? x R.

We recall that in section 3.7 we found that the mean curvature with respect to the metric
Ghyp Of a surface S contained in a cylindrical neighbourhood of {0,0} x R of sufficiently
small radius in H x R can be expressed in terms of the euclidean mean curvature of a
surface S, which is related to S by the relation S = f(S), being f the map defined by
(3.23).

In this section we will apply this result to prove the existence of a family of minimal
surfaces close to the surface ]\_4;@E = f(Mj,) contained in a cylindrical neighbourhood of
radius r. = /€/2 of {0,0} x R. We remark that the image by the map f~! of a surface
contained in such a domain is contained in a cylinder of radius 2r..

We start giving the statement of a result that can be easily obtained by [11], lemma 2.2.
It describes the region of the surface M} which can be parametrized by a graph on a
annular neighbourhood of 2r, contained in the x3 = 0 plane.

Lemma 42. There exists €g > 0 such that, for all € € (0,€) an annular part of the ends
Ei., BEye and E,, . of My, can be written as vertical graphs over the horizontal plane of
the functions

Ut(r, 6) = Ot + 2¢ In (2%) + ft(r, 6), (342)

0y U(r,6) = (%) + fra(r,6),

Up(r,0) = —0op — 2¢1n <2?T) + fi(r,0), (3.43)

0.Uy(r, 0) = — <%> + foalr0),

where f; = O(€?), fiqa = O(%?), i = t,b. As for the parametrization of the planar end, it
satisfies
r

Un(r,0) = fn(r,0) = (9((@“””) (3.44)

O Un(1,0) = frna(r,0) = O(( ) ).
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Here (r,0) are the polar coordinates in the x5 = 0 plane. The functions O(e) are defined
in the annulus By a2 — Bayzyy and are bounded in Cg° topology by a constant (independent
on €) multiplied by €, where the partial derivatives are computed with respect to the vector

fields r O, and 0.

Then Mj, . has two ends E; . and £}, which are graphs over the z3 = 0 plane of functions
U; and Uy, defined on the annulus By /2 — B2y

Taking into account the definition of ]\7[;‘%6 = f(My,), it is clear that a lemma with identic
statement can be proved also for this surface.

We set s, = —% In e and we define M,Ze to be equal to M}, . from which we have removed
the image of (s, +oc0) x S* by X, the image of (—oo, —s.) x S* by X, and the image
of By, (0) by Xpne with pe := 25 = 2¢'/2. We set M, = f(M],). In this section we will
prove the existence of a family of surfaces close to M, kT .- To this aim we will use proposition
38 and we will follow the work [11].

First, we modify the parametrization of the ends £, ., £ . for appropriates values of s, so
that, when r € [¢'/2/4,4 ¢'/?] the curves corresponding to the image of

0 — (2er cos®,2er sin®,U(r,0)), 0 — (2er cos@,2er sind, Uy(r,0))

correspond, respectively, up to a vertical translation to the curves s = —2¢ln(2r) and
s = 2¢ln(2r).

The curve § — (2er cos b, 2er sin6, U, (r,0)) corresponds to p = 2.

The second step is the modification of unit normal vector field on My, . into a transverse
unit vector field n. in such a way that it coincides with the normal vector field n. on M,
is equal to es on the graph over By i/2 — Bs1/2 /8 of the functions U; and U, and interpolate
smoothly between the different definitions of 7. in different subsets of M/ .

The graph of a function u, using the vector field n., will be a minimal surface if and only
if u is a solution of a second order nonlinear elliptic equation of the form

Ly u=Lcu+ Q. (u)

where LM;? is the Jacobi operator about M., Q. is a nonlinear second order differ-

ential operator and L. is a linear operator which takes into account the change of the
parametrization and of the change of the normal vector field. In [11] it is proved that this
last operator has coefficients uniformly bounded by a constant times €.
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Now, we consider three functions oy, ¢y, @, € C**(S') which are even, with respect to 6,
0y, oy are L2 orthogonal to 1 and cos @ while ,, is L? orthogonal to 1. Assume that they
satisfy

[ptllcze + [[@pllcza + [[@mllcze < ke
We set @ := (¢4, ¥b, ¢m) and we define wg to be the function equal to

1. x4 Hy,(se — s,-) on the image of X, where x; is a cut-off function equal to 0 for
s < sp + 1 and identically equal to 1 for s € [sg + 2, s

2. x_- H,, (s + s¢,-) on the image X, where x_ is a cut-off function equal to 0 for
s > —so — 1 and identically equal to 1 for s € [—s., —so — 2]

3. xm H peiom (> ) on the image of X, ., where x,, is a cut-off function equal to 0 for
r = po and identically equal to 1 for p € [p., po/2]

4. zero on the remaining part of the surface M kT -

We recall that the operators H and H have been introduced respectively in Propositions
48 and 47.

We would like to prove that, under appropriates hypotheses, the graph about M. kT . of the
function @ = f(u) with v = we + v, is a minimal surface. If we denote it by X, this is
equivalent to solve the equation:

thp(za) — O

If we define ¥, = f~'(Xz) and denote by N, = (Ni(u), Na(u), N3(u)) the unit normal
vector to Yz, thanks to proposition 38 we can write the equation to solve as

(H.(Xu) — 2(x1 Ny (u) + 22N2(w))) (1 + O(1?)) = 0.

H.(¥,) is the mean curvature of the graph of the function u about M,? .- Taking into
account that u = we + v, its expression is given by

Ly (we +v) — Le(we + v) — Qc(wg + v).

To simplify the notation we set —2(z1 Ny (u) + x9No(u)) = P(we + v). The resolution of
the previous equation is obtained thanks to the one of the following fixed point problem:

v="T(P,v) (3.45)
with

T(®,v) =Ge50& ('y (f/e(mp +v) + Plwg +v) — LMIZE we + Qc(we + v)))
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where 6 € (1,2), the operator G is defined in proposition 41 and &, is a linear extension
operator such that
Ee: C (M) — C*(My),

where Cg’a(M,Ze) denotes the space of functions of Cy*(My,) restricted to M. Tt is
defined by v = v in M}, Ev = 0 in the image of [sc+ 1, +00) x S* by X, in the image
of (—o0, —sc — 1) x S' by X, and in the image of B, j» x S' by X, . Finally &uv is an
interpolation of these values in the remaining part of Mj . such that, for example,

(Ev) 0 Xie(5,0) = (14 sc — s)v) 0 Xy (s, 0),
for (s,0) € [se, s + 1] x St

(E0) 0 Xio(s,8) = (1 -+ 5, + )0) 0 X (5.,6),
for (s,0) € [=s, — 1, —s.] x S* and

(E0) 0 Xone(p8) = (2p — 1)0) 0 X (00, 6)

€

for (p,0) € [pe/2, pe] x S*.
Remark 43. From the definition of E., if suppv N (B,, — B,.) # 0 then
[(Ecv) 0 X clleow(,,) < ce*||vo Xy, cllcow(B,,)-
This phenomenon of explosion of the norm does not occur near the catenoidal type ends:
[(Ecv) 0 Xi ellcoa(fs,+1,100)x51) < ]|t 0 Xy elleoa(fs, +1,400)x51)-

A similar equation holds for the bottom end. In the following we will assume a > 0 and
near to zero.

The existence of a solution v € C3*(M i) for the equation (3.45) is a consequence of the
following result which proves that 7' is a contracting mapping.

Lemma 44. There exist constants ¢, > 0 and €, > 0, such that
7@, 0z < (3.40
and, for all € € (0,¢,)
1
IT(2, v2) = T(®, v1)llezear, ) < 5 vz = villezequz )
for all vy, vy € Cg’a(nge) and satisfying ||U||C§,a < 2¢, €
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Proof. We recall that the Jacobi operator associated to Mj, ., is asymptotic to the opera-
tor Lo near the catenoidal ends, and it is asymptotic to the laplacian near of the planar
end. The function we is identically zero far from the ends where the explicit expression
of Ly, is not known: this is the reason of our particular choice in the definition of wg.
Then from the definition of we and thanks to proposition 41 we obtain the estimate

€ (fVLM;{,G wé) Hcgva(Mk,e) < |[relce(we © Xtﬁ)’|C§’&([50+1756]><Sl) +

2

— <
cosh? s

CP[s0+1,5e]xS1)

+ HPYbLC,e(w‘I’ © vaf)l‘Cg‘a[—se,—SO—l]Xsl) <c We © Xt,e

5
cellwe o Xt»EHC?a[SOH,sE]Xsl) <2t

Using the properties of L., we obtain
||Se (’YLE w<1>> ”C(?’Q(MhE) < CGZqu) © Xt,€Hcg’a([SOJrl’se}XSl)—i_

662||w<1> o Xm,e”(szo‘[pg,po/Q]XSl) < 62.

The estimate of ||, (7P (ws)) || 0% (.. 1 related to the estimate of the horizontal compo-

nents of the normal vector to surface at the catenoidal type ends and the middle planar end

and to the definition of the function . It is possible to show that ||&. (vP(ws)) Hcg*‘”(Mk 5 <

€2

As for the last term, we recall that the operator @), has two different expressions if we
consider the catenoidal type end and the middle planar end (see equation (3.37) and
(3.32)). In particular we assume that at the middle planar end, Q. keeps track also of
the operator L,, for u = u,, (see (3.30)) that appears in the expression of the mean
curvature operator given by (3.34). It holds that ||Euqu>||C§va([pe7p0/2]xsl) < cellwg o

Xm:€HC52’a([pg,po/2]><Sl) < cpe?. We find the following estimate

1€ (vQe (wa)) |’C§’“(Mk,e) < el

It is convenient to recall that the expression of (). at the catenoidal type ends is given by
(3.40). So we obtain

W qu; V2wq> H
0,
2¢cosh s’ 2ecosh s’ 2ecoshs ) €6 (M)

1€ (0. 00) iy, < ecl@a

We

2 2
< CEHM o Xt75||C§’a([so+l,se]><Sl) + CEHM o Xb,e||C§,a([786775071}><51)+

+ce' " |lwg o Xm,e||(222’a([pe,po/2]x51) + Hiumu@HCZ“([pe,po/Q}XSl) < o€’
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As for the second estimate, we recall that
T(®,v) := Ges <€6 (’y (f)e(mp +v) 4+ Plwe +v) — LMkT,e W + Qe (we + v)))) )
Then
T(®,v2)=T(®,v1) = Ges <5e (’Y <Ii6(w¢ +v2) + P(we + va) — LM]Z:S we + Qe (Wo + U2))>> -

Ges (56 (7 (Ee(wé +v1) + Plwe + v1) = Liyr we + Qc (wa + “1>>>>

and
IT(®,v3) = T(®, vl 20, . < ell€e (7 (Le(wa + v2) + Plaw +v3) = Le(ws + 1)
—P(we + 1) + Qc (we + v2) — Qe (wa +v1))) [0 ay, ) <

< I€ (7 (Lo = v0)) ) e, ., + 1 (v (P(wa + v2) = Plas +00))) legeaqas, +

‘I’HSE (’7 (Qe (wq) + Ul) - Qe (wq) + U?))) ||Cg’a(Mk,e)'

We observe that from the considerations above it follows that
1€ (7 (Ze(ws = 00)) ) legear ) < c€llen = villezoqurr -

€ (v (P(ws + ) = P(ws = 00)) lcpqag,.y < ello = wrllezoquer

and
1€c (7 (Qe (W + v1) — Qc (wo + v2))) [0y, .
We =
< cellvp — Ul“cg’a(MIZ:E)HMHCS’&(MhJ + [[ Ly, (V2 = 1) [le2:a ((pesp0 213 51) <
< 3+3
< (CkG + CG) ||v2 — U1||C§’Q(M,ZC)’
Then

IT(@,02) = T(®, 01) | gzergag, ) < cellv = villgzeqarr -

O

This argument provides a minimal surface M} (®) which is close to M, and has three
boundaries. This surface is, close to its upper and lower boundary, a vertical graph over
the annulus B,, — B,, /2, whose parametrization is, respectively, given by

Ui(r,0) = o1c +2en(2r) + Hy, (s + In2r,0) + Vi(r, 6),
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Up(r,0) = —op, — 2eIn(2r) — H,, (In2r + s, 0) + V,(r,0),

where s, = —% Ine. Nearby the middle boundary the surface is a vertical graph whose
parametrization is

_ ~ 2
Un(r,0) =H, . (769) V(1. 0).

The boundaries of the surface correspond to r = r. = €/2/2. All the functions Vj,
i = t,b,m, depend non linearly on ¢, . The functions Vj(e, ¢;), for i = t b, satisfy
1Vie, i) (re )l ez (B, -B, ) < ce and
_s
IVile, @) (re) = Vile, @) re)leza(Bi—py 1) < €2 [0 — @'llc2a

The function Vi, (€, @) satisties ||[Vin(€, om)(re)llcza(s, - B, ,,) < ce and

IVin(e; @) (rer) = Vin(e, @) (re)lleza(s, -, ) < celle = ¢lleze-

3.10 The matching of Cauchy data

In this section we shall complete the proof of Theorem 27.

We need introduce additional notation. Given an even function f € C**(S') with the
following Fourier expansion

f(0) = Z ane;(nh) = Z a, cos(nh),

neN neN

then we denote with 7”(f) the function

Z a, cos(nh)

n>2

and with 7/(f) the function
ap + ay cos(0).

In section 3.6 we have obtained the minimal surfaces S, S, which are graphs on D =
B \ B,, C H? and are asymptotic, respectively, to the parts of catenoid denoted C; and
C} introduced in section 3.5. In section 3.4 we have obtained a surface .S,, which is a
minimal graph on D and is asymptotic to C,, := H? x {0}.
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In other words we are able to solve, for ® = (¢, ¥y, om) € [7"C>(S)]? and ||¢i]|cze < €
a system of minimal surface equations, that we write for short as

Leus = Qc(us) on Cy, Gy
Lyus = Qp(us) on Cp,
mus = (pr — 70,00 — TV, 0m)  on (OC, 0Ch, OC,)

Here the index p and ¢ mean that the corresponding minimal surface equation is relative,
respectively, to a plane or a catenoid. So it is possible to construct three minimal graphs
about the plane and two part of a catenoid in H? x R. The functions vy, vy, Ut d, Upd are
introduced in (3.16) and in following equations.

The parametrizations of the surfaces Sy, S that are denoted by X 4 with i =¢,b, satisfy
in a neighbourhood of their boundaries

X/ =2eln (%) +¢; + 7' (ug + v;)

87’X£7<I> = % + Vi,d + aruS

and a surface S,,, whose parametrization X, &, in a neighbourhood of its boundary,

satisfies
Xpo = P + 7' (us)

!
aTXm7q) - 87«:“5
Now we can define

EvE . [W//Ca,a(sl)]?) _ 02’0(51)3 % Cl,a(sl)S
¢ — [(Xé,@Xl/),@X;n,@)a (87’Xt,7<1>7aTXé,qﬂa"'X?/n,(I))hre’

Finally, in section 3.9 we have obtained the surface ]\_@T .(®), whose boundary consists
in three curves on 9B,,. In fact we solved, for ® = (p;, oy, om) € [7"C**(S1)]? and
|pillc2.e < € the problem

Hpyp(Eue) = 0 on Mlg,e
muc = (pr— 7" fr, 00 — 7" fo, pm — 7" fr)  on  OM..

The functions fi, fo, fim, ft.d, fo.ds fm.a are introduced in (3.42),(3.43) and (3.44).
The parametrization of the surface ¥, near the catenoidal type ends are denoted by X, ¢
with ¢ = ¢,b. In a neighbourhood of the boundaries of ¥, ., they satisfy

ucHy
Xio =2eIn 2 + ¢, + 7' (uc + f;)
a7")(1‘51) = % + fi,d + aruC
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The parametrization of the middle planar end, X,, s, in a neighbourhood of its boundary,

satisfies
Xm,<I> = Pm + ﬂ-/(uC + fm)

aer,fb = fm,d + aruC"
We define
Fe . [7_(_//02,(1(51)]3 _ 02,04(51)3 % Cl,a(sl)i’)
o — [(Xt,q)a Xb,‘ba Xm,‘I))7 (arXt,‘I)a arXb,<I>7 aTXm,‘I))hrg-

We set C. .= E, — F,.

We want to prove that the surfaces S, Sy, Sy, and M kT . can be glued along their boundaries
to obtain a C*®-surface. Firstly we will show that these surface correspond in a C' way
along the boundaries curves. This is true if it exists W = (¢1, 19, 13) such that C.(¥) = 0.
The existence of the appropriates boundary functions is proven in the following theorem.
Finally, to show that the surface is C'*°, it is sufficient to apply the regularity theory.
That completes the proof of Theorem 27.

Theorem 45. There ezists €y such that, for each 0 < € < €, there exists WV = (1,19, 13) €
[7""C%(SM)]3 which solves C(¥) = 0.

Proof. We consider the harmonic extensions of ¢;, + = 1,2, 3, on the ends of ]\ka,e, that
is

1. w, = x4 Hy, (s — s,-), on the upper end
2. w, = x— Hy,(s + s, ), on the lower end

3. W = Xm Hr, 5 (-,-) on the middle end (the definition of the map f is given by
(3.23)),

and its harmonic extensions
1. wy = Hy_ yp, o0 Sy
2. wy = —Hy_yp, o0 Sy
3. Wy = Hy, s o0 Sy

(see section 3.9 for the definitions of the cut-off functions). We recall that the operators
‘H, H and H have been introduced respectively in proposition 46, 47 and 48. We consider
the following maps

EO . [71_//02,04(81)]3 SN CZ,a(sl)S X Cl,a(sl)?)

v — [(wta Wp, wm)7 (arwty 8rw67 arwm)]h‘e
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and
FO . [71_//02,04(81)]3 SN CZ,a(sl)f& X Cl’a(51>3
v — [(wta wb7 wm)7 (arwty 87«11)[), arwm)hre-

Now using Fourier expansion of the function, we can see that Cy = Ey — Iy has an inverse
which is bounded independently of e. In particular, the equation Cy(¥) = 0 has the
unique solution ¥ = (0,0,0). Now we consider (C. — Cy)(¥), whose expression is

(7' (us — ue) + 7' (v — fi), 7' (us — ue) +7'(vp — fo), 7' (us — uc) + 7' (= fm),
Or(us — wy) — Op(ue — Wy) + Veg — fra,
O (ug —wy) — O (ue — Wy) + Vo.a — fo.d,
Or(ug — wy,) — Op(uc — Wy,) — fm,d) .
It is easy to prove that
H(CE - C())(\I/>||C2,a(51)3><cl,a(51)3 < €

In order to solve C.(¥) = 0, we find a fixed point for the mapping

D(¥) := Cy " ((Ce = Co)(¥)).-

3.11 Appendix

The results contained in this section are about the existence of some harmonic extension
operators. The first one gives the harmonic extension of a function on H? \ D,,.

Proposition 46. If u € (0,1) there exists an operator
H,, : C2%(SY) — CP*(S* x [ro, 1)),

such that for every function p(0) € C**(S'), which is L?-orthogonal to ey, e1, the function
wy = My solves

A<i1,Lclu)<,0 =0 on Sl [T07 )
W, = @ on St x {ro}.

Moreover,
|‘H7"074P‘|Cf’a($1><[r0,1)) Sc H‘PHCQ@(SI)a (3.47)

for some constant ¢ > 0.
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Proof. We observe that
Avua(1 =12 = (—4p(l — r?) + dp(p — 1)r?) (1 - 12" =

= (—4p+4p*?) (1 - 7’2)M_2 <0

if o € (0,1]. So (1 —r?)" it’s a superharmonic function. Then the function ||¢||cz2.a(s1)(1—
r?) can be used as barrier function and we can apply the Perron method. We can conclude
that the solution, that we denote with w,,, exists and satisfies

lwy| < ellellczacs (1 —17).
Using the initial assumption we can write
(1= r*) " wy| < clyl.

The estimates for the derivatives of w, are obtained by Schauder estimates. We can
conclude that

lwellcze < cll@llczasy.

[
Now we give the statement of a result whose proof is contained in [7]. It gives the harmonic
extension of a function on a half catenoid.

Proposition 47. There exists an operator
H : C**(S") — C25([0, +00) x "),

such that for all o € C>*(S1), even function and orthogonal to e;, i = 0,1 in the L*-sense,
the function w = H(p) solves

(05 + 05) w
w = ¢ on S'x{0}

0 in  S'x][0,+00)

Moreover
”H((p)HCi’g([O,—&-oo)XSl) < cflpllezaisy,

for some constant ¢ > 0.
The following result gives a harmonic extension of a function on R? \ D.

Proposition 48. There exists an operator

Hy : C*(S") — C25(S" x [p, +00)),
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such that for each even function ¢(0) € C**(S"), which is L*-orthogonal to the constant

5.0 Solves

function and cos 0, then w, =
Aw, =0 on S'x[p,+0)
w,=¢ on S'x{p}.
Moreover, )
Hpollcze 51400y S Cll@llc2as), (3.48)

for some constant ¢ > 0.
Proof. We consider the decomposition of the function ¢ with respect to the basis

{cos(i0)}, that is
p= Z ©; cos(if).
i=2

Then the solution w,, is given by

w00 =3 (g>s@ cosif).

=2

i

Since % < 1, then (g < (E , we can conclude that |w(r,0)| < cp~2|¢(0)| and then
lwpllczg < cllolloe. O
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Chapter 4

Singly periodic minimal surfaces
with arbitrary nonzero genus and
infinitely many ends

4.1 Introduction

In 1988, H. Karcher [19, 20] defined a family of doubly periodic minimal surfaces, called
toroidal halfplane layers, with genus one and four horizontal Scherk-type ends! in the quo-
tient. In 1989, Meeks and Rosenberg [25] developed a general theory for doubly periodic
minimal surfaces having finite topology in the quotient, and used an approach of minimax
type to obtain the existence of a family of doubly periodic minimal surfaces, also with
genus one and four horizontal Scherk-type ends in the quotient. These Karcher’s and
Meeks and Rosenberg’s surfaces have been generalized in [35], constructing a 3-parameter
family K = {My 4 p}0.as of surfaces, called KMR examples (sometimes, they are also
referred in the literature as toroidal halfplane layers). Such examples have been classified
by Pérez, Rodriguez and Traizet [33] as the only doubly periodic minimal surfaces with
genus one and finitely many parallel (Scherk-type) ends in the quotient. The possible
limits of KMR examples are: the catenoid, the helicoid, any singly or doubly periodic
Scherk minimal surface, any Riemann minimal example or another KMR example.

Each M, , 3 has an horizontal period 7; (the period at the ends) and a non horizontal
period Ty coming from homology. We denote by M, , 5 the lifting of M, , 5 to S' x R? by

forgetting the period 7,. The surface M, , 3, that we go on calling KMR example, has
genus zero, infinitely many parallel Scherk-type ends, and two limit ends. We consider
in this work KMR examples near the catenoidal limit, so ¢ — 0 or equivalently T} — oo

LA horizontal Scherk-type end is an end asymptotic to a horizontal half-plane, invariant by one of the
period vectors of the surface.
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and Ty, — oo, and with a =0 or § = 0.

In 1982, C. Costa [3, 4] discovered a genus one minimal surface with two catenoidal
ends and one planar middle end, which is embedded outside a ball in R3. D. Hoffmann and
W.H. Meeks [14] proved the global embeddedness for this Costa’s example, and generalized
it for bigger genus. For each k£ > 1, we will denote by M} such Costa-Hoffmann-Meeks’
surface, which is a properly embedded minimal surface of genus k and three ends: one
middle end asymptotic to the plane {z3 = 0}, one top catenoidal end and one bottom
catenoidal end. L. Hauswirth and F. Pacard [11] have obtained a deformation of My, for
1 < k < 37 (in these cases, M;, is nondegenerate [29],[30]), by bending the catenoidal
ends. We denote such deformed examples by M (). It is known that their construction
extends for £ > 38 thanks to the result showed in chapter 1.

V. Ramos Batista [2] has constructed a singly periodic Costa minimal surface, with two
catenoidal ends, one Scherk-type middle end and genus one in the quotient. We produce
two new families of examples of periodic minimal surfaces of higher genus as follows. We
consider a compact part of My () contained in a vertical solid cylinder, D x R, of radius
1/(2y/€) and centered at the origin. We glue it to a minimal graph on (R? — D)/T}
asymptotic to {z3 = 0} /71, to one half of ]\7@&,5, near the catenoidal limit, that is with
o small (one time with « = 0 and a second time with § = 0) and with a Scherk type
surface. We obtain two families of properly embedded minimal surfaces in S' x R? with
genus k > 1, infinitely many parallel Scherk-type and two limit ends.

4.2 A Costa-Hoffman-Meeks type surface with bent
catenoidal ends

In this section we recall the result shown in [11] about the existence of a family of minimal
surfaces close to the Costa-Hoffman-Meeks surfaces of genus k£ > 1, one planar end and
two slightly bent catenoidal ends by an angle £&. We denote one member of the family
by My (§). Then M (0) is the family of the Costa-Hoffman-Meeks surface of genus k (see
Costa [3], [4] and D. Hoffman and W. H. Mecks [14], [15], [16]).

The family of the Costa-Hoffman-Meeks surfaces. Each member of the family of
surfaces My (0), after suitable rotation and translation, enjoys the following properties.

1. It has one planar end E,, asymptotic to the x3 = 0 plane, one top end F; and one
bottom end Fj that are respectively asymptotic to the upper end and to the lower
end of a catenoid with xs-axis of revolution. The planar end F,, is located between

the two catenoidal ends.
2. It is invariant under the action of the rotation of angle Z—J_rl about the z3-axis, under

the action of the symmetry with respect to the x5 = 0 plane and under the action
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T

of the composition of a rotation of angle 75

with respect to the x3 = 0 plane.

about the zs-axis and the symmetry

3. It intersects the z3 = 0 plane in k£ + 1 straight lines, which intersect themselves at
the origin with angles equal to 75. The intersection of Mj with the plane x5 =
const (# 0) is a single Jordan curve. The intersection of M) with the upper half
space x3 > 0 (resp. with the lower half space 3 < 0) is topologically an open

annulus.

Now we give a local description of the surfaces M (0) near its ends and we introduce
coordinates that we will use.

The planar end. The planar end FE,, of the surface M} can be parametrized by

X

Xp(z) = (W,um(x)> eR?

where = € B,,(0) — {0} € R? and the function u,, tends to 0 like u,,(z) = O(|z|*1).
Here pg > 0 is fixed small enough. The minimal surface equation has the following form

Vu
4 di =0. 4.1
ol div (<1+|x|4\w|2>1/2) ’ (1)

It can be shown (see [11]) that the function u,, can be extended at the origin continuously
using Weierstrass representation. We can prove that u,, € C**(B,,).

The catenoidal ends. We denote by X, the parametrization of the standard catenoid
C whose axis of revolution is the x3-axis. Its expression is

X.(s,0) := (cosh s cos, cosh s sinf, s) € R®

where (s,60) € R x S'. The unit normal vector field about C' is given by

ne(s,0) := (cosf,sinf, —sinh s).

cosh s

Up to some dilation, we can assume that the two ends F; and E, of M} are asymptotic
to some translated copy of the catenoid parametrized by X, in the vertical direction.
Therefore, F; and E, can be parametrized, respectively, by

Xt Z:Xc+wtnc+0t€3

for (s,0) € (sp,00) x S*,
Xy =X, —wpn. —ope3
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for (s,0) € (—o0,—s0,) x S, where 04,0, € R, functions wy, w, tend exponentially fast
to 0 as s goes to oo reflecting the fact that the ends are asymptotic to a catenoidal end.

We recall that the surface parametrized by by X := X. 4+ wn, is minimal if and only
if the function w satisfies the minimal surface equation which, for normal graphs over a
catenoid has the following form

1 82w+82w+ 2w —i—Q(
0s2 002 cosh?s ?

) + cosh s Qs (COZ’hS)) —0, (42)

where Do, Q3 are linear second order differential operators which are bounded in C*(R x S*
for all k. These functions satisfy Q2(0) = Q3(0) = 0, VQ2(0) = VQ3(0) = 0,V2Q5(0) =
and then:

cosh? s cosh s

)
0

7j—1
HQJ‘(U2) - Qj(vl)HCOaa([s,erl]xSl) S (Sulp2 HU’L'HCQ’C‘([S,S+1]><51)) l|lva — UlHCQva([s,erl]xsl)

(4.3)
for all s € R and all vy, v, such that [[v;||c2.e((s,s+1)xs1) < 1. The constant ¢ > 0 does not
depend on s.

The family of Costa-Hoffman-Meeks surfaces with bent catenoidal ends. Using
an elaborate version of the implicit function theorem and following [18] and [23] it is
possible to prove the following

Theorem 49 ([11]). There exists & > 0 and a smooth one parameter family of minimal
hypersurfaces (My(€))e, for & € (=&o,&), with two catenoidal ends and one planar end.
In particular My(0) = My, the upper (resp. lower) catenoidal end of My(&) is, up to
a translation along its axis, asymptotic to the upper (resp. lower) end of the standard
catenoid whose axis of revolution is directed by sin € ey + cos € e3. Moreover My (&) has one
horizontal planar end and is invariant under the action of the symmetry with respect to
the o = 0 plane.

The upper (lower) end of M () is, up to a translation, asymptotic to the upper (lower)
end of the same (standard) catenoid. Then the upper end E;(§) and the lower end E;(&)
of My(&), if Re denotes the rotation of angle £ about the x5 axis, can be parametrized
respectively by

Xt{ = Rf (XC + Wt ¢ nc) + Otc €3 + St €1 (44)

Xpe = Re (X — wpene) — Opg 3 — She €1 (4.5)

where the functions wy ¢, wy ¢, the numbers 0. ¢, ¢, 0, ¢ € R depend smoothly on §
and satisfy wy o = wy, Wy = Wy, 00 = 0p 0o = 0, 0 = 0 and g9 = 0.
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For all r < py and s > sg, we define
My(&,s,7) = My(§) — [Xee((s,00) X S1) U Xpe((—00, —5) x S") U X, (B,(0))] . (4.6)

The parametrizations of the three ends of M (§) induce a decomposition of M (&) into
slightly overlapping components: a compact piece My(&, so + L, po /2) and three noncom-
pact pieces X;¢((s0,00) x S1), Xpe((—00, —s9) x St) and X, (B,,(0)).

We define the weighted space of functions on My ().

Definition 50. Given ( € N, a € (0,1) and 6 € R, the space Cy* (M (€)) is defined to be
the space of functions in Cg’a(Mk) for which the following norm is finite

loc

||w’|c§,a(Mk) = ||lwllctaan (e sor1,m/2) + Il wo Xm||cfva(Bp0(0))
+ 31>1p e % (||w 0 Xiglleta((s,s+1)xsty + |lwo Xb,&Hcf»“((—s—l,—S)Xsl))
8280

and which are invariant under the action of the symmetry with respect to the xo = 0 plane.

We remark that there is no weight on the middle end. In fact we compactify this end
and we consider a weighted space of functions defined on a two ended surface. We will
perturb the surface M () by the normal graph of a function u € Cg’a and the middle end
FE,, will be just translated in the vertical direction.

The Jacobi operator. The Jacobi operator about My(§) is

L (o) := Do) + [Ano

where |Ayy, )| is the norm of the second fundamental form on M (€).

In the parametrization introduced above of the ends the volume forms dvolyy, ¢) can be
written as v, ds df and -, ds df near the catenoidal type ends and as 7, dry drs near the
middle end. Now we can define globally on M (&) a smooth function

7 s Mi(§) — [0, 00)

that is identically equal to 1 on My(§, so — 1,2p¢) and equal to v, (resp. s, ¥m) on the
end E; ¢ (resp. Eyg, E,,). Observe that, on X, ¢((so,00) X S') and on Xj,¢((—o00, s9) x S*)
we have

v 0 Xi¢(s,0) ~ cosh® s and v 0 X,¢(s,0) ~ cosh?s.

Finally on X,,(B,,), we have
Y0 Xp(x) ~ Jo] .
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Granted the above defined spaces, one can check that:
Ley: CU(Mi(€)) — Cy(M(€))
w — 7 Lag e (w)

is a bounded linear operator. The subscript ¢ is meant to keep track of the weighted space
over which the Jacobi operator is acting. Observe that, the function v is here to coun-

terbalance the effect of the conformal factor m in the expression of the Laplacian

in the coordinates we use to parametrize the ends of the surface My (§). This is precisely
what is needed to have the operator defined from the space C;**(M;(€)) into the target
space Cy* (My(€)).

To have a better grasp of what is going on, let us linearize the nonlinear equation (4.2)
at w = 0 we get the expression of the Jacobi operator about the standard catenoid

Lm:](f+%+ 2>.

cosh? s cosh? s

We can observe that the operator cosh® s Lo maps the space (cosh s)° C3%((sg, 00) x S*)
into the space (cosh s)° C%((sg,00) x S1).

Similarly, if we linearize the nonlinear equation (4.1) at u = 0, we obtain the expression
of the Jacobi operator about the plane

LRZ = ’CC‘4 A

Again, the operator |z|~*Lg: = A clearly maps the space C*®(B,,) into the space
C%*(B,,). Now, the function v plays, for the ends of the surface My (€), the role played
by the function cosh?® s for the ends of the standard catenoid and the role played by the
function |z~ for the plane. Since the Jacobi operator about M (€) is asymptotic to Le

at E,, and is asymptotic to L¢ at £, and Ej, we conclude that the operator L¢ s maps
Cs (M (€)) into C3* (M (€)).

We recall the notion of non degeneracy introduced in [11]:

Definition 51. The surface My(§) is said to be non degenerate if Le 5 is injective for all
o< —1.

It useful to observe that a duality argument in the weighted Lebesgue spaces, implies that

(Les is injective) <& (Le_s is surjective)
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if § ¢ Z. See [27] and [18] for more details.
The non degeneracy of My () follows from the study of the kernel of L.

The Jacobi fields. It is known that a smooth one parameter group of isometries con-
taining the identity generates a Jacobi field, that is a solution of the equation Ly, ¢yu = 0.
These solutions are generated by the following one parameter groups of isometries: the
vertical translations, the translations along the xj-axis, the dilations. We refer [11] for
details.

The group of vertical translations generated by the Killing vector field Z(p) = e3 gives
rise to the Jacobi field

®%*(p) == n(p) - es.

The vector field =Z(p) = p that is associated to the one parameter group of dilation
generates a Jacobi fields

% (p) :=n(p) - p
The Killing vector field Z(p) = e; that generates the group of translations along the
ri-axis is associated to a Jacobi field

®5" (p) = n(p) - e

Finally, we denote by
@ (p) :=n(p) - (e2 x p)

the Jacobi field associated to the Killing vector field Z(p) = ey x p that generates the
group of rotations about the z-axis.

The Jacobi equation has other solutions which are not taken into account because in the
difference with the four Jacobi fields just introduced they are not invariant under the
action of the symmetry with respect to the x5 = 0 plane.

With these notations, we define the deficiency space

D := Span{x; ®"*, x, & : j = 0,1}
where ; is a cutoff function that is identically equal to 1 on X;((so+1, 00)x S?), identically
equal to 0 on M}, — X;((s9, 00) x S') and that is invariant under the action of the symmetry

with respect to the x9 = 0 plane. Also, we agree that

Xo() = xe(— ).
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Clearly
Les: CUMp(&) @D —  C3(Mj)

w >y Lag e (w)

is a bounded linear operator. The linear decomposition Lemma proved in [23] for constant
mean curvature surfaces (see also [18] for minimal hypersurfaces) can be adapted to our
situation and thanks to a result of S. Nayatani contained in [29],[30] and extended in
chapter 1, which states that any bounded Jacobi field respecting the mirror symmetry
with respect to the x5 = 0 plane is linear combination of ®%* and ®'*, we get the
following result

Proposition 52. Assume that all bounded Jacobi fields on My, that are invariant with
respect to the xo = 0 plane are linear combination of ®>* and ®1+ and choose 6 € (1,2).
Then (reducing & if this is necessary) the operator 3575 1s surjective and has a kernel of
dimension 4. Moreover, there exists G¢ s a right inverse for /3&5 that depends smoothly
on & and in particular whose norm is bounded uniformly as [£| < &o.

4.3 An infinite dimensional family of minimal sur-
faces which are close to M (&)

In this section we consider a truncature of My(£). First we recall a result of [11] that
describes the region of the surface which can be parametrized by a graph on a x3 = 0
plane.

Lemma 53 ([11]). There ezists ¢y > 0 such that, for all € € (0,€) and all |§] < € an
annular part of the ends E,(§), Ey(§) and E,, of My(§) can be written as vertical graphs
over the horizontal plane for the functions

) =0 +In(2r) + &£ cos + O(e),
0) = —ope —In(2r) — Er cosB 4 Ofe),
Upn(r,0) = O(r=(k+1)),

Here (r,0) are the polar coordinates in the xs = 0 plane. The functions O(¢) are defined in
the annulus By .-1/2 — B-1/2/4 and are bounded in Cg° topology by a constant (independent

on €) multiplied by €, where the partial derivatives are computed with respect to the vector
fields r 0, and Op.

Then M (€e/2) has two ends Fi(e/2) and Ej(e/2) which are graphs over the x5 = 0
plane for functions U; and U, defined on the annulus B, 1,2 —B.1/2)4. Weset s, = —% Ine
and we define M (¢/2) to be equal to My(€/2) from which we have removed the image of
(Se,+00) x S by X, /o, the image of (—o0, —s,) x S' by X;.» and the image of B, (0)
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by X,, with p, := 2¢'/2. In this section we will prove the existence of a family of surfaces
close to M (¢/2). We follow the work [11].

First, we modify the parametrization of the end F;(¢/2), E,(e/2) and E,,, for appropriates
values of s, so that, when r € [e71/2/4,4 ¢~'/?] the curves corresponding to the image of

0 — (r cosB,r sinf, Uy(r,0)), 60— (rcosb,r sinb, Uy(r,0))
correspond to the curve s = £ log(2r).

The curve § — (r cosd,r sin6, U, (r,0)) corresponds to p = .

The second step is the modification of unit normal vector field on Mj(e/2) into a transverse
unit vector field 7./, in such a way that it coincides with the normal vector field n./; on
Mi(€/2), is equal to e3 on the graph over By.—1/2 — Bjc-1/2/5 of the functions U; and U,
and interpolate smoothly between the different definitions of 7./, in different subsets of
MF(e/2).

The graph of a function w, using the vector field n./», will be a minimal surface if and
only if u is a solution of a second order nonlinear elliptic equation of the form

Loz v = Leppu+ Qe (u)

where L7 (/9 is the Jacobi operator about M(e/2), Q. is a nonlinear second order

differential operator and L, /2 is a linear operator which takes into account the change of
the parametrization and of the change of the normal vector field. It is possible to prove
that this last operator has coefficients uniformly bounded by a constant times €.

Now, we consider three functions oy, ¢y, @ € C**(S?) which are even, with respect to 0,
0y, oy are L? orthogonal to 1 and cos @ while ¢,, is L? orthogonal to 1. Assume that they
satisfy

[otlleze + llepllcza + [[omllcze < ke
We set @ := (¢4, ¥p, om) and we define wg to be the function equal to

1. x4 Hy,(sc — s,-) on the image of X, ./, where x is a cut-off function equal to 0 for
s < so+ 1 and identically equal to 1 for s € [sq + 2, s]

2. x— Hy,, (s — sc,-) on the image X, > where y_ is a cut-off function equal to 0 for
s > —so — 1 and identically equal to 1 for s € [—s., —s¢ — 2]

3. Xm Hp. 4, (+,-) on the image of X,,, where x,, is a cut-off function equal to 0 for
r > po and identically equal to 1 for p € [p, po/2]
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4. zero on the remaining part of the surface M (¢/2).

We recall that the operators H and H have been introduced respectively in Propositions
79 and 80.

We would like to prove that, under appropriates hypothesis, the graph about M (e/2) of
the function u = we + v is a minimal surface. This is equivalent to solve the equation:

LMk(e/g)(wq> + ’U) = Le/g(wcp —+ 1)) —+ Q€<wq> + ’U)

on M '(¢/2), so that the graph of u = wg +v will be a minimal surface. The resolution of
the previous equation is obtained thanks to the one of the following fixed point problem:

v ="T(®,v) (4.7)
with i
T(q), ’U) = GE/275 o 86 (’y (LE/2<UJ¢. + U) - LME(G/Q) We + Qe(wq> + U)))

where § € (1,2), the operator G5 5 is defined in proposition 52 and & is a linear extension
operator such that
E: Gy (M (¢/2)) — C3*(My(e/2)),

where Cy* (M} (¢/2)) denotes the space of functions of Cy** (Mj,(¢/2)) restricted to M} (¢/2).
It is defined by Ev = v in M} (e/2), Ev = 0 in the image of [sc+ 1, +00) X S* by X, /s, in
the image of (—o0, —s. — 1) x S' by X} /2 and in the image of B, 2 x S* by X,,. Finally
& is an interpolation of these values in the remaining part of Mj(e/2) such that, for
example,

(862)) o Xt,e/Q(Sa 9) = ((1 + S — S)”) o Xt,e/Q(Ssy 0)7
(£0) © Xuepa(5,6) = (14 5.+ 5)0) 0 Xiya(s6)
for (s,0) € [s., sc + 1] x S* and

(E0) 0 Xn(.0) = (Zp — 1)0) 0 X,u(pe.6)

€

for (p,0) € [pe/2, pe] x S™.
Remark 54. As consequence of the properties of E., if suppv N B,, — B, # 0 then

[(Ecv) 0 Xonllcow(B,,) < ce v o Xonllcoa(s,,)-
This phenomenon of explosion of the norm does not occur near the catenoidal type ends:
[|(Eev) © Xy epallco.o((s+1,400)x51) < ]|V 0 Xy eallco.o(fs+1,400)x51)-
A similar equation holds for the bottom end.

In the following we will assume o > 0 and near to zero.
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The existence of a solution v € C;*(M](¢/2)) for the equation (4.7) is a consequence of
the following result which proves that 7" is a contracting mapping.

Lemma 55. There exist constants ¢, > 0 and €, > 0, such that
I7(2,0) gz < e (4.8)

and, for all € € (0,¢,)

1
|T(®,ve) — T'(P, Ul)Hcg’a(Mk(e/z)) < B |vg — U1||C§’D‘(Mg(e/2))

for all vy, vy € C*(M (e/2)) and satisfying V]2 < 205 2.

Proof. We recall that the Jacobi operator associated to M (e/2), is asymptotic to the
operator of the catenoid near the catenoidal ends, and it is asymptotic to the laplacian
near of the planar end. The function wg is identically zero far from the ends where the
explicit expression of Ly, (c/2) is not known: this is the reason of our particular choice
in the definition of wg. Then from the definition of we and thanks to proposition 52 we
obtain the estimate

||85 (IYLME(E/Q) ’u)q>> ||Cg’a(Mk(€/2)) < H’YtILC(w@ © Xt:€/2)|‘Cg’a([so-&-Lse]xSl) +

2

<
cosh? s

We © Xy /o
CY*([s0+1,5¢]xS1)

+ ‘ ‘%Lc(wcp o Xb76/2>‘|C§’a([—ss,—so—1}><,5‘1) <c
5
CE||w<1> e} Xt7€/2Hcg’a([so-l-l,se]xsl) < Cr €2+2.

Using the properties of L, /2, We obtain

N

2 <7Le/2 wq)) leoar ez S €0 Xeerllvo oy1 ) HeE w0 Xm oo (o po/21x57)

< c€¥l|wa 0 Xeepalleze (up1saxsr) T €€ Nwa 0 Xmlleze (oepo/zxs) < cx €.
As for the last term, we recall that the operator (), has two different expressions if we

consider the catenoidal type end and the planar end. It holds that

1€ (VQe (wa)) ||Cg,a(Mk(€/2)) < o’

In fact
[ (VQe (wa)) ||cgﬂa(Mk(€/2)) < celjwg 0 Xt7€/2"ggaa([50+17se}xsl)+

cellwe © Xpesallgaa  + e we © Xonlla i, o2y < Cre”.

[—8e,—s0—1]x ST
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As for the second estimate, we recall that
T(P,v) := Gejap (86 <’y (f)e/g(wcp +v) — ]LMIZ(E/Q) we + Q. (we + 'U)))) )
Then
T(®,v2) = T(®,v1) = Geae (5e <’Y <Ee/2(wq> +v2) = Lz joy wo + Qe (wo + Uz)))) -

Gefos (62 (7 (ze/z(% +u1) = Lagre/a) we + Qe (we + ”1)>>>

and

—Leja(we +v1) + LMg(e/z) we — Qe (we + Ul))) Hcg’a(Mk(e/Z)) -
| Ee (’Y (ie/Q(wcp + vg) — Ze/2(w<1> +v1) + Qc (wo + v2) — Qe (Wo + Ul))) HC?’“(MME/Z)) -
= 1€ (7 (Lepale = 01) + Qc (wa + v2) = Qc (wa +01)) ) v gy (es2) <

< l€ (7 (L0 = 00)) ) ey + 1€ (3 (@ (wo +01) = Qu (wo +2))) v gy /2

We observe that from the considerations above it follows that

1€ (7 (Leralo = 00)) ) llevqan oy < c€llve = vnllezaqurr oy

and
1€ (7 (Qc (wo + v1) = Qc (wa + 2))) [0 (a1, (¢/2))
< cflvg — U1|’C?’Q(ME(E/Q))chb”cg’a(Mk(e/Q)) <
5
< <Ck€1+2> ||’U2 — ’U1||C§,a(M]z“(6/2))
Then

[T(®,v2) = T(®, 01)ll 2 (agy e/2)) < Cellv2 = vallzenprc/a-
]

This argument provides a minimal surface M} (¢/2, ®) which is close to M (¢/2) and has
three boundaries. This surface is, close to its upper and lower boundary, a vertical graph
over the annulus B,-1/2/5 — B.-1/2/, whose parametrization is, respectively, given by

Ui(r,0) = 01,2 + In(2r) + %T cost + Hy,,(sc —In2r,0) + Vi(r,0),
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Up(r,0) = —0pc/o — In(2r) + %7" cosf + Hy, (In2r — s, 0) + V,(r,0),

where s, = —% Ine. The boundaries of the surface correspond to r. = %e’l/ 2. Nearby
the middle boundary the surface is a vertical graph over the annulus By, — B, /2, where
pe = 2¢'/2. Tts parametrization is

Un(r,0) = ﬁpe,g@m (r,0) + Vi (1, 0).

All the functions V; for i = ¢, b, m depend non linearly on €, ¢. The functions V;(e, ¢;), for
i = t,b, satisty [|[Vi(e, i) (re)leza (B, -, ,,) < ce and

1-6/2

IVi(e, @) (re) = Vile, @) (re)leza(mi—p, ) < c€ 7l = @iz

The function V,,(e, ¢;) satisfies ||Vi,(€, om)(0e) ||lc2a(B,—p,) < ce and

Vi (€,0)(per) = Vin(€, @) (per) lczo(By—5y) < celle — @[ c2e

4.4 KMR examples M, , 3

In 1988, H. Karcher [19, 20] defined a family of doubly periodic minimal surfaces, called
toroidal halfplane layers, with genus one and four horizontal Scherk-type ends? in the
quotient. In 1989, Meeks and Rosenberg [25] developed a general theory for doubly
periodic minimal surfaces having finite topology in the quotient, and used an approach of
minimax type to obtain the existence of a family of doubly periodic minimal surfaces, also
with genus one and four horizontal Scherk-type ends in the quotient. These Karcher’s and
Meeks and Rosenberg’s surfaces have been generalized in [35], constructing a 3-parameter
family K = {My 4 5}0.as of surfaces, called KMR examples (sometimes, they are also
referred in the literature as toroidal halfplane layers). Such examples have been classified
by Pérez, Rodriguez and Traizet [33] as the only doubly periodic minimal surfaces with
genus one and finitely many parallel (Scherk-type) ends in the quotient. The possible
limits of KMR examples are: the catenoid, the helicoid, any singly or doubly periodic
Scherk minimal surface, any Riemann minimal example or another KMR example. Our
aim in this section is to study two subfamilies of KMR examples which are invariants
under a reflection symmetry about a vertical plane, near the catenoidal limit.

Firstly, we briefly recall the construction of the KMR examples. For each ¢ € (0, %),
a € [0,%] and B € [0,5] with (a,3) # (0,0), consider the rectangular torus X, =

{(z,w) eC |w?= (z2+)\2)(22+>\_2)}, where A\ = (o) = cot$ > 1. The KMR

2 A horizontal Scherk-type end is an end asymptotic to a horizontal half-plane, invariant by one of the
period vectors of the surface.
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Figure 4.1: The position of the branch values

example M, , g is determined by its Gauss map ¢ and the differential of its height function
h, which are defined on ¥, and given by:

b d
i(a— bz)
where:
e a=ala,f) —cosw—l—icosanﬁ;

e b=10(a,) = sm— + i sin 5= a+ﬂ

T CSC T

o 1= o) = Rt )’ where X (m) = f()% \/% du , 0 < m < 1, is the complete

1—msin“ u

elliptic integral of the first kind. Such p has been chosen so that the vertical part
of the flux of M, , 3 along any horizontal level section equals 27.

Remark 56.
(i) b — 0 if and only if « — 0 and f — 0, in which case a — 1 + 1.

(ii) |2 = tan £, where ¢ is the angle between the North Pole (0,0,1) € S* and the pole
of g seen m S? wvia the inverse of the stereographic projection.

The KMR example M, , g can be parametrized on X, by the immersion X = (X, Xy, X3) =
R [ @, where ® is the Weierstrass form:

o — <1 (l—g) dh,3<1+g> dh,dh).
2 \ g 2 \g

The ends of M, , s corresponds to the punctures {A, A’, A” A"} = g7({0,00}), and the
branch values of g are those with w = 0, i.e.

D = (—iX,0), D' = (i\,0), D" = (%,0), D" = (—1,0). (4.9)

Seen in S?, these points form two pairs of antipodal points: D” = —D and D" = —D'.
(Each KMR example can be given in terms of the branch values of its Gauss map.)

In [35], it is proven that the above Weierstrass data define a properly embedded
minimal surface (M, o 3) invariant by two independent translations: the translation by
the period T} at its ends, and the period T, along a homology class. Moreover, the group
of isometries Iso(M, ) of M, always contains a subgroup isomorphic to (Z/27Z)?,
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Figure 4.2: Left: M0, with 0 = 7. Right: M, for 0 = a = 7.

Figure 4.3: M, 5, where 0 = 7 and 8 = .

with generators D (corresponding to the deck transformation (z,w) +— (z, —w)), which
represents a central symmetry about any of the four branch points of g, and F, which
consists of a translation by %(Tl +1T53). In particular, the ends of M, , g are equally spaced.

We are going to focus on the two most symmetric subfamilies of KMR examples:
{MJ,O“()}U’O[ and {Mmowg}gﬂ.

1. When o = 3 = 0, M, contains four straight lines parallel to the z;-axis, and
Iso(M, ) is isomorphic to (Z/2Z)* with generators Sy, Sa, S5, Rp: S is a reflection
symmetry in a vertical plane orthogonal to the x;-axis; Ss is a reflection symmetry
across a plane orthogonal to the z9-axis; S3 is a reflection symmetries in a horizontal
plane (these three planes can be chosen meeting at a point, which is not contained in
the surface); and Rp is the m-rotation around one of the four straight lines contained
in the surface, see Figure 4.2 left. In this case, Ty = (0,7, 0).

2. When 0 < o < %, Iso(M, 40) is isomorphic to (Z/2Z)*, with generators D, S, and
Ry, where Sy represents a reflection symmetry across a plane orthogonal to the xo-
axis, and Ry is a m-rotation around a line parallel to the xo-axis that cuts M, 4 or-
thogonally, see Figure 4.2 right. Now 77 = (0, mut,,0), with ¢, = sing

\/sin2 o cos? a+sin? «

3. Suppose that 0 < 8 < 0. Then M, s contains four straight lines parallel to the
zy-axis, and Iso(M,. ) is isomorphic to (Z/27)3, with generators Si, Ry and Rp:
Sp represents a reflection symmetry across a plane orthogonal to the x;-axis; R
corresponds to a m-rotation around a line parallel to the x;-axis that cuts the surface
orthogonally; and Rp, is the w-rotation around any one of the straight lines contained

in the surface, see Figure 4.3. Moreover, T} = (0, mut®,0), where t° = — ;‘in" =
From now on, we will denote by T" = T} the period of the surface ~at its ends.
Finally, it will be useful to see X, as a branched 2-covering of C through the map
(z,w) — z. Thus ¥, can be seen as two copies Cy, Cs of C glued along two common cuts

Y1, Y2, which we tale along the imaginary axis: ; from D to D’ and v, from D" to D".
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4.4.1 M, as a graph over {z3 =0}/T

The KMR examples M, , g converge, as (o, a, 5) — (0,0,0), to a vertical catenoid, since
¥, converges to two pinched spheres, g(z) — z and dh — ﬂ:% as o,a, 3 — 0. In fact, we
can obtain two catenoids in the limit, depending on the choice of branch for w (for each
copy of C in X, we obtain one catenoid in the limit). Our aim along this paper consists of
gluing KMR examples M, .o or M, 3 near this catenoidal limit, to a convenient compact
piece of a deformed Costa-Hoffman-Meeks surface My(e/2). In this subsection we express
part of M, , 3 as a vertical graph over the {x3 = 0}-plane when o, o, 5 are small.

Consider M, , 3 near the catenoidal limit, i.e. o, , 3 close to zero. Without lost of
generality, we can assume dh ~ % in C;. We are studying the surface in an annulus
about one of its ends, say a zero of its Gauss map.

Lemma 57. Let 0,a, 8 be small. Up to translations, My can be parametrized in the
annulus {(z,w) € 5, | z € Cy, |2 <z < v} (for v >|2] small) as:

X1+iX2:_71(z—|— ;) zbln|z|+ 1+z)b+o<b2 =3 4 A2272)

Xy =1In|z| + O(A\2272),

Proof. We have assumed dh ~ % in the annulus we are working in. More precisely, we

have

dz K dz
dh = ,U\/ 22422)(22+12) A Z\/(A72+Z72)(z2+>\72)

_ kdz 1
T Az

VIFA 2224222241

pulo) _ g _ 4\ _ —4
Since o) = reomionKamis) = 1+0(c*) =1+ 0(\"), and

small, we get

=14 0(t) fort >0

\/7

dh = %(1 +ONNA+0ON 22+ A 2272407,
z
Since |z| < 1, then both A72|2]* < A72|2|72 and A™* < A72|2z|72. Therefore,

dh = dZZ(1+O()\ 2,72)).

Fix any point zp € C;. Thus X;(z) +1i Xo(2) = 2 (fz i I gdh). Straightforward

20 9
computations give us

z dh a—bw —
fzo g - w w—l—b/a) 1 + 0(0'2(,0 2))dw

a
<T| n e —bn(z+ b/a)> + Cy + O(0?272 + 0%bz73),

ISEES

Q |~
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Where Cl = g (%ln% +Bln(20+b/a)>, and

f;o gdh = —i [7 —2tb (1 4+ O(0%w™2))dw

20 w(a—bw)

= =t (@1 n I Eb +bInZ > + O(o?z71 + 0%b272).

a

For [t| < |z we have In 2, = =f + C+0E ) and In(z +t) =Inz + L+ O(3272).

Hence taking |b/a| < |z| < 1, we obtain:

Zdh _ ib i(lal?+b) iba 2 -3 9 -2
o [dh—_Dnz— +amm O+ O 270+ A7%277),

20 g a a?z

o« [Fgdh=—2mz— W) Loy o2,

where Cy, Cy € C verify C; — Cy = z20(+lol?) O(b). Therefore,

B

Xi+iXe =4 (J5% - [2gan)

= Dinfe|+ LD (o4 4) - i 2GR L 0@ 40,
(|a|2+|b| )

Taking into account that = —14O(b) and 2% = —1= + O(b), we have

1 %) ~1 1 1+
X1+Z'X2:M+an|z|_’__ 24+ — +( +Z)b O(b2 _3+/\2_2)‘
2| 202 a 2

Similarly, [ dh =1nz —Inz + O(A"?27%), hence
X, = m/ dh = Tn || — In |z0] + O(A2272),
20

which finishes Lemma 57. O

Lemma 58. Let (r,0) denote the polar coordinates in the {x3 = 0} plane and define
e=b+ A"'. Then a piece of M, p can be written as a vertical graph of

U(r,0) = —In(2r) + r(ni cosf + e sinf) + O(e),
for (r,0) € (ﬁ, \/ig) x [0,2m), where my = R(b) + J(b) and ny = R(b) — I(b).

Remark 59. Recall that b = sin D‘T_ﬂ + ¢ sin “Tw In particular:
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o When 3 =0, we have n; = 2sin§ and 1y =0, so

U(r,0) = —In(2r) + 2sin %r cosf + O(e), O(e) = O(a+ o).
o Whena=0,n =0 and ny = QSIHQ, S0
U(r,0) = —In(2r) + 2sin gr sinf + O(e), O(e) = O(B + o).

Proof. From Lemma 57, we know that (X, +iX5)(2) = 5t (2 + L) + A(2), where

b i)b
A(z):%ln|z|+( 2_ )

+ O 278+ A2,

Denote z = |z[e™. Then z 4 1 = (|z[ + é) e and
1 1
rcosf = X = —5 |z| + B cos ) + Ay,
2

1
rsinf = Xy = — (]z\+| |>sinz/1+A2,
where A; = R(A) and Ay = F(A). Therefore,
1 1)?

r2— 1 (]z|+m) (]z|+ E ‘) (Aj costp + Agsiny) + A3 + A3, (4.10)

From (4.10) we deduce:
2 _ 1 1) Az A2 g2 2
r* =7 (|z| + m) (1 — g1 (Arcosy + Az sing) + g (A + A )> :

When |z| = O(y/¢), the functions A; are bounded, and we get

r=2 <|z| +%) (1+O(V3), (4.11)

and so r = O(1//2). Moreover, we get =1+ O(y/e), from where

r
2(le+r)

e?(1+0(Ve)) = S . M —e™ + 2114 = —e" + O(Ve)).
1(|Z|+L) 1+ [z[?
2 2|
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Hence

e = —e”(1+ O(Ve)).
From (4.10) and (4.11) we obtain

1 212 ]

% =24 <|Z| +m> (A1C08¢+A2Sinw) —Af_Ag
1 a2

:r2<1+;(1+0(\/§))(A1005¢+A28m¢)_ 1:; 2)

1
=r? (1 + (Ajcostp + Aysine)) + (9(8)) .
Therefore,

1 = (2r)? <1 + % (A1 cost + Agsine)) + 0(8)) (1+0(¢e)).

|2?

Since In(1 +t) =t + O(t?), we deduce
1
—1In|z| =In(2r) + 5(/11 cos + Ay sinyp) + O(e).

Finally, it is not very difficult to prove that

1

Ajcos + Assiny = RE

(71 cos ) — ma sine))

=r?(—nycosf + nysin ) (1 + O(Ve)),

from where Lemma 58 follows. O

If we consider small translations of M, , 3 dilated by a factor 1 + v, for some small v,
we obtain

2r
1+~

1
X3=—(147)In + 7 (—n1cos 0 + nysinf) + —(ky cos O + ke sind) + k3 + O(e),
r

for small k1, k9, k3 € RT, where n; = by + by and 75 = by — bs.
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4.4.2 Parametrization of the KMR example on the cylinder

In this subsection we want to parametrize the KMR example M, , g on a cylinder. To
this aim, we introduce the sphero-conal coordinates (z,y) on the unit sphere S? (see [17]):
For any (z,y) € S! x [0,7) = [0,27) x [0, 7), define

F(z,y) = (cosx siny,sinxm(y),l(x) cosy) € S2,

where

m(y) = /1 —cos2ocos?y and I(z)= V1 —sin o sin? 7.

Recall that the conformal compactification Y, of M, , s only depends on o. The
parameter o € (0,5) will remains fixed along this subsection, and we will omit the
dependence of the functions we are introducing on o.

Note that, when o = 0, the conformal compactification of the limit surface My, g is
not a torus but a sphere, and the above sphero-conal coordinates reduce to the spherical
ones.

Il faut bien ecrire ga: The coordinate surfaces {x = constant} and {y = constant}
are two elliptic cones with vertex at the origin. The cross section of each of these cones
with a vertical plane which is orthogonal to the axis of the cone is an ellipse.

Recall that ¥, can be seen as a branched 2-covering of C, by gluing C,, C, along
two common cuts y; and 7, along the imaginary axis joining the branch points D, D" and
D", D" respectively (see (4.9)). If we compose F(x,y) with the stereographical projection
and enlarge the domain of definition of the function, we obtain the differentiable map
z(x,y) : St x St = [0,27) x [0,27) — C given by

cosx siny + i sinx m(y)

z(z,y) =

1—1(x) cosy ’

which is a branch 2-covering of C with branch values in the four points whose sphero-
conal coordinates are (z,y) € {:i:g} x {0, 7}, which also correspond to D, D', D" D".
Moreover, z(z,y) maps S x (0,7) on C — (7, U~,). Hence we can parametrize the KMR
example by z, by means of its Weierstrass data.

We denote by M, , g the lifting of M, , 5 to R x St x R by forgetting its non horizontal
period (i.e. its period in homology, 75). We can then parametrize Mma,g on St x R by
extending z to [0, 27) x R. But such a parametrization is not conformal, since the sphero-
conal coordinates (z,y) — F(x,y) of the sphere are not conformal. As the stereographic
projection is a conformal map, it suffices to find new conformal coordinates (u,v) of the
sphere defined on the cylinder. In particular, we look for a change of variables (x,y) +—
(u,v) for which |F,| = |F,| and (F,, F,) = 0, where F(u,v) = F(z(u,v),y(u,v)).
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We observe that

T(x,y) T(x,y)
m(z) Iy)

with T'(z,y) = sin® o cos? x + cos? o sin?y. Then it is natural to consider the change of
variables (z,y) € [0,27) x [0,7) — (u,v) € [0,U,]x??? defined by

.| = and |F,| =

u(z) = /Ow %dt and v(y) = /Oy mis)ds’ (4.12)

where

2w
UJ = u<27T) = fO \/ﬁ (413)

Note that U, is a function on ¢ that goes to 27 as o approaches to zero, and that the

above change of variables is well defined because o € (0, 7). From all this, we can deduce

that Mma,ﬁ is conformally parametrized on (u,v) € I, x R, with I, = [0, U,].

REDIGER:

Remark 60. In lemma 58 assuming |z| = O(y\/€) we have found the equation as a graph
about an appropriate neighbourhood of the part of the surface Zf\\/[/o,a,g along which we will
glue it with the Costa-Hoffman-Meeks surface. It is possible to prove that if |z| = O(\/e)
and o0 = O(/€) then y = y. = © — O(y/€). Moreover using (4.12) we can obtain the
corresponding value of v. It is given by v. = —% Ine+ O(1).

4.5 The Jacobi operator about Ma,a,ﬁ

The Jacobi operator for M, 5 is given by J = Age +|A|?, where | A]? is the squared norm
of the second fundamental form on M, , 3 and Ay, is the Laplace-Beltrami operator with
respect to the metric ds? induced on the surface by the immersion X defined in section
4.4. That is

1 _1n\2
ds* = 7 (Igl +lgI™")" dn/”

In subsection 4.4.2 we have presented the parametrization of M, , 3 and of its lifting on
a cylinder. We recall we adopted the coordinates (z,y). In this new frame the Jacobi
operator, J, is obtained considering as metric on the rectangular torus X, the pull-back
of standard metric ds? of the sphere S* by the Gauss map. The following relation holds
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(being K = —3|A[* the Gauss curvature) since Age = —K Ay and dN*(dsg) = —K ds”.

From [17] and taking into account the parametrization of Mg,a,ﬁ given in subsection 4.4.2,
we can deduce that, in the (z,y)-variables on S?\ {v; U7}

sar= ey [ (i) 2 ()]

After the conformal change of coordinates (z,y) — (u,v) defined by (4.12), we can write

_ —K
J = Tt gy Lo Where

L, =02, + 0%, + 2sin® 0 cos®(z(u)) + 2 cos® o sin*(y(v)) (4.14)
is known as Lamé operator.

Remark 61. In proposition 66, we will take limits as o — 0. For such a limit, the
Riemann surface ¥, degenerates into a Riemann surface with nodes consisting of two
spheres jointed by two common points, and the corresponding Jacobi operator equals Lo =
9%, +siny 0, (siny d,) + 2sin®y in the (x,y)-variables. Note that in this case the change
of variables (x,y) — (u,v) is not defined.

4.5.1 The mapping properties of the Jacobi operator

Our aim along this subsection is to study the mapping properties of the operator 7. It is
clear that it is sufficient to study the simpler operator £, defined by (4.14). So we want
to study the possibility to solve in a unique way the problem

{ Low=f, in I, X [vg, +00[
Womvy = ¢

with vy € R, considering convenient normed functional spaces for w, f and ¢, so that the
norm of w is bounded by the one of f.

Since L, has separated variables, let us firstly consider the operator
L, = 02, + 2sin® o cos®(z(u)).

The quantity U, defined in (4.13) is the period of the function cos(z(u)). It is possible
to prove that U, — 27 as 0 — 0. We let L, act on the U,-periodic and even functions.
Moreover it is uniformly elliptic and self-adjoint. In particular, L, has discrete spectrum
(As.i)iz0, that we assume arranged so that \,; < A\, ;+1 for every i. Each eigenvalue \,; is
simple because we only consider even functions. We denote by e, ; the even eigenfunction
associated to A, ;, normalized so that

/0 e i) du = 1.
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Lemma 62. For every @ > 0, the eigenvalue \,; of the operator L, and its associated
etgenfunctions e,; satisfy

—2sin’ 0 < Ay — 4% <0, o — €0.ilc2 < ¢ sin’ o, (4.15)

where eq;(u) := cos(ix(u)) for every u € I,, and the constant ¢; > 0 depends only on i (it
does not depend on o).

Proof. The bound for \,; — i* comes from the variational characterization of the
eigenvalues,

Us
Aoi = sup inf / ((0ue)® — 2sin” o cos®(z(u)) €?) du,
codim E—; €€ llell2=1Jo

where F is a subset of the space of U,-periodic even functions in L?(I,), since it always
holds 0 < 2sin? o cos?(x(u)) < 2sin?o.
The bound for the eigenfunctions follows from standard perturbation theory [21].

O
The Hilbert basis {e,; }ien of the space of U,-periodic and even functions in L*([,) induces
the following Fourier decomposition of L? functions g = g(u,v) which are U,-periodic and
even in the u-variable,

Z gz ea i

i>0
From this, we deduce that the operator £,, can be decomposed as L, = ) i>0 L, ;, being
Loi = 02, + 2cos® osin®(y(v)) — A\ps, for every i > 0.
Since 0 < 2cos? o sin*(y(v)) < 2cos? o = 2 — 2sin? o, the lemma 62 give us
P, = 2 cos? o sin?(y(v)) — Aoi <2 — i2. (4.16)

This fact allows us to prove the following lemma, which assures that £, is injective when
restricted to the set of functions that are L2-orthogonal to €s0 and e, in the u-variable.

Lemma 63. Given vy < vy, let w be a solution of Low =0 on I, X [vg,v1] such that
(i) w(-,v9) =w(-,v1) =0.
(i1) fo w(u,v)eq;(u)du =0, for every v € [vg,v1] and i =0, 1.

Then w = 0.

Proof. By (ii), w = } 5, wi(v) €,;(u). Since the potential F,; of the operator L,; is
negative for every i > 2 (see (4.16)) and the operator L,; is elliptic, the maximum
principle holds. We can then conclude the lemma 63 from (7). O
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Now we can state the following
Lemma 64. For all i > 2 and Yo there exists a unique positive solution of
L, ws; =0 withw,;(0) =1
defined on I, = [0,U,] such that
1

ei’YU,iU < wo‘,z(v) < CO”L e:t'Yo,iU (417)

b
ca,i

for some constants v,; > 0 and c,; > 1.

Proof. For i > 2 and for 0 < o < 7/2, the potential F,; of L,; is negative, hence this
operator satisfies the maximum principle. We can choose two constants v < 0 close
enough to 0 and +" < 0 with |7'| large enough so that

v+ P,; <0 and v 2+ P,; > 0.

This choice allows us to use the Perron method to prove the existence of the solution. In
fact the functions v — €7V and v — €'V respectively satisfy

Lg’iewv = (72 —+ Pg’i)€71} <0

and
Loie” " = (v*+ P, ;)" >0

that is they are respectively a subsolution and a supersolution and so they can be used
like barrier functions.

The existence of the constants 7, ; follows from the fact that the potential of L, ; consists
of the function sin?(y(v)) which is periodic in the variable v. We denote the period by R,.
It is possible to show that R, — +o00 if ¢ — 0. Indeed, we can define the linear operator
Ma,z‘ by

M, i(s1,52) = (s(Ry), 0ps(R,))

where s is the unique solution of
Lo‘,i s=0

which is defined on [0, R,] and which satisfies s(0) = s; and 9,s(0) = so.
We claim that M,; has two positive eigenvalues which satisfy m,; < 1 < n,; and
My iNs; = 1. The solution s which has been described above is exponentially decay-

ing and (s(0), d,s(0)) corresponds to an eigenvector of M, ; with eigenvalue m,; < 1.
Therefore, we have

Mo,i(5(0), 8y5(0)) = o (s(0), 0y5(0)) = (s(Lo), Ops(Ro))
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This implies that
(s(2R,),008(2 Ro)) = My ;(s(Ro), 0u5(R5)) = me ; (5(0),0,5(0))

and so for all £ € N we have

(s(k Ry),0s5(k Ry)) = m¥ .(5(0),0,5(0)).

o,

Hence we have the relation
e_'Yo,iRa — mo’,i

which defines 7,.;.

Now we prove the claim. Assume that g; and g, are two solutions of L,;s = 0 with
91(0) = 0yg1 = 0 and ¢5(0) = 0,91 = 0. The Wronskian W (g1, go) associated to g; and go
does not depend on the variable v because the Wronskian of a differential equation of the
form

Opu [ + a(0)0pf +b(v)f =0

must satisfy the differential equation 0,W + a(v)W = 0. In this case a(v) = 0 and so we
have 9,W = 0. Then if we compute W at v =0 and v = R,,, we can write

91(0)g5(0) — 91(0)92(0) = g1(R5)g5(Rs) — 91(Ro)g2( Ry ).

Now we observe that from the previous assumption it follows that

91(0)g5(0) = det(Ny,:)91(0)g5(0),

where N, ; is the matrix associated to the operator M, ;. But the determinant is equal
to the product of its eigenvalues so we have proven that m,;n,; = 1. Finally the entries
of N,; are real and so it is for its trace. This implies that the eigenvalues are real. We
must prove that the eigenvalues cannot be equal to 1. It is sufficient to observe that it is
not possible, otherwise it should exist a nontrivial bounded solution of the homogeneous
problem L, ; s = 0. Namely at a point where this solution has a positive maximum (that is
its second derivative is negative) we have 0 = L,; s < P,; s < 0 and in correspondence of
a negative minimum (that is its second derivative is positive) 0 = L, ;s > P,;s > 0). O

The parameters ,; are called the indicial roots of the operator L,;.

When ¢ = 0 and ¢ = 1, the argument used above does not hold since the potential of
L,; is not negative. In this case, the explicit solutions of the equation L,;s = 0 are
obtained thanks to the existence of the Jacobi fields. The idea is that our surface has
many properties of symmetry and this induces 4 independent Jacobi fields that we are
going to describe. We recall that in the following we will consider the two subfamilies of
M, o p for which o = 0 and 3 = 0. We described them in section 4.4. These surfaces are
invariant by the symmetry about the plane {z; = 0} (o« = 0) and the plane {z, = 0}
(8 =0). So the set of the Jacobi fields to consider are different in the two cases.
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e Two Jacobi fields can be obtained by considering the one parameter families of
minimal surfaces which is induced by the translations in the x3-direction and by

— the translations in the xo-direction in the case where a = 0,

— the translations in the x;-direction in the case where 5 = 0.
These Jacobi fields are clearly periodic and hence bounded.

e A third Jacobi field can be obtained by considering the one parameter family of
minimal surfaces which is induced by dilatation from the origin. The so-obtained
Jacobi field is not bounded and in fact it grows linearly.

e The last Jacobi field can be obtained by considering the one parameter family of
minimal surfaces which is induced by changing the parameter o. Again, this Jacobi
field is not periodic and grows linearly.

The Jacobi operator £, becomes a Fredholm operator when restricted to the following
functional space.

Definition 65. Given o € (0,7/2), ¢ € N, a € (0,1), u € R and an interval I, we define
Co*(15 x I) to be the space of functions w = w(u,v) in Coo(I, x I) which are even in the
variable w and for which the following norm is finite:

||chf,a = SZIIJ e M Hchf»a(Iax[u,uﬂ]y
v

Proposition 66. Given € (—2,—1), there exists a oy € (0,7/2) such that, for every
o € (0,00) and vy € R, there ezists an operator

Gowy 1 Co(Iy X [vg,+00)) — C2(I, X [vg, +00))
f — w = Ga,vo (f)

satisfying the following statements:

(Z) ng = f on ]cr X [U07+OO);
(i1) w € Span{eyp, €51} on I, x {vo};

(111) HwHCﬁ,a <c Hf”cg,a, for some constant ¢ > 0 which does not depend on o, vy.
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Proof. Every f € C))*(I, x [vg, +00)) can be decomposed as

= foea,0+f1€a,1+f,
where f(, v) is L?-orthogonal to €s0 and e, for each v.

Step 1. Firstly, let’s prove the proposition 66 for the functions f € C)*(I, x [vo, +00))
that are L2-orthogonal to {€s0,€s1}. As a consequence of the lemma 63, £, is injective
when it acts on this set of functions. Hence, the Fredholm alternative assures that there
exists, for each vy > vy + 1, an unique w € C»*, with w(-,v) L*-orthogonal to ey, €1
satisfying:

{ Low=f on I, X [vy,v1],

w(-,vg) = w(-,v1) = 0. (4.18)

Assertion 67. There exists a constant ¢ and oy € (0,7/2) such that for every o € (0, 0y),
vo € R, vy > vo+1, f € (I, x[vo,v1]) and w € C*(I, x [vo, v1]) satisfying the equation
(4.18) and

fwlege < clf e (119)

Suppose by contradiction that the assertion 67 is false. Then, for every n € N, there
exists o, € (0,1/n), vi, > v, + 1 and f,, w, satisfying (4.18) (for o, vg, v1, instead
of o, vy, v1) such that

”ancga =1 and ||wan2wY — +00, when n — oc.

Since I, X [Von, V1] i a compact set, A,, 1= sup e " |w,| is achieved at a point
Iy, X [V0,n,01,n]
(Un, V) € Iy, X [Von, V1) We define
e Hun
Wy (U, v) 1= ———— wp(u, v + vy,),
[wallg

for all (u,v) € I,, X I, with I, = [vo, — Un, V1, — Uy]). Clearly, A, < HwnHCS,a, and

e Hwten) |, (u, v + v,

@) < e i <o
n
l[wnll 2,0
On the other hand, e™*|Vwy,| < [|wnl|gze = ﬁ Thanks to Schauder estimate, we
nllo0,a
obtain ||wn||ci,a </ (||fn||CBa + ||e*““wn||co> =cd(1+A4,).
Hence?,
A wallge
\Vw,| < e < cet
Tenllge

3From now on, ¢ will denote any arbitrary positive constant.
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The intervals I,, converge to a nonempty (and possibly unbounded) interval ... Since the
sequences (W), and (V,), are uniformly bounded, Ascoli-Arzela theorem assures that
a subsequence of (10,), converges for n — oo (and o,, — 0) on compact sets of [, x I
to a function ws, which is L2-orthogonal to {€0,0, €01} for each v € I, and vanishes on
Iy x 0l, when 0l # (). Note that

An

sup 6_#v||wn||co,a(10nX[%er]) =, (420)
veln Hwanﬁva

does not converge to zero. In fact A, — 00, [|wn|[coe < [Jwnlleze < ¢/(1+ A,) then

A, A, 1

= — — > O.
[wnllcoe — (1+An) ¢

In particular,
sup e *|w,| = 1. (4.21)

Iop, X1In

Since if n — oo we have g,, — 0, from (4.12) we can conclude
1 y
d —In|tan Z|.
u—z and v-— g n | an2\

From the last expression we get

2

y(v) = 2arctan(e?”) and €% = |tan%|.

Using well kwown trigonometric formulae also we find

1 — 6411 2621}

cosy(v):1+e4v and siny(v):1+e4v.

(4.22)

It is possible to find the expression of the function w., working with the x,y coordinates
and after that to come back to the u,v coordinates. In fact we can observe that, up to
subsequence, the function w,, satisfies Low,, = 0 with

Ly =07, +sinyd, (sinyd,) + 2sin’y.

Now we consider the eigenfunctions decomposition of we,

Weo(T,y) = Z a;j(y) cos(jx).

j>2
Each coefficient a; must satisfy the associate Legendre differential equation

(sin® y@iy + cosy siny d, — j* + 2sin’y) a; = 0.
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Since j > 2 the solutions are the associated Legendre functions of second kind (the
functions of second kind being zero) a;(y) = Q1 (cosy), where

4 . - QY (¢ t 141
Q1(t) = (=1)7\/(1 — t2)J fl?tlﬂ( ), with Q%(t) = iln <1—i—t) - 1.
Now we come back to the variables (u,v). We observe that the function

ool 0) = 3 @4(cosy(0)) cos(j u)

22

does not satisfy the inequality (4.21) with n — +oo and u € (—2, —1), a contradiction.

This proves the assertion 67, that is, for every v; > vy + 1, there exists a function w
satisfying (4.19). Let’s take the limit as v; — oo. Clearly,

e o] < [[wllgoe < el flleoe-
And the Schauder estimates assures

e |Va| < flillgze < e (I llgge + lleg ) < el fllege

Hence Ascoli-Arzela theorem says to us that a subsequence of {w,, }y,>v,+1 cOnverges to
a function w € C3* defined on I, X [vg,00), which clearly satisfies the statement (i) of
proposition 66.

Step 2 Let’s now consider f € C)*(I, X [vg, +00)) in Span{eqso, €s1}, i-c.

f(u,v) = fo(v) ego(u) + fi(v) eqn(u).

We extend the functions fo(v), fi1(v) for v < vy to be equal, respectively, to fo(vo), f1(vo).
Given v; > vy + 1, consider

Lo jw; = fj, v € (—00,v]
{ wj(vy) = Oyw;(v1) = 0 1 (4.23)

Peano theorem assures the existence and the uniqueness of the solution w;. Our aim
consists in proving the following

Assertion 68. ||1Uj||cg,a <c ||fjHC2,a for some constant ¢ which does not depend on v;.

Suppose by contradiction that, for every n € N, there exists o, € (0,1/n), v1, > vo, + 1
and f;,,w,, satisfying (4.23) such that

[finllcoe =1 and  [[wjnllcoe — +o00, when n — oo.
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The solution w;, of the previous equation is a linear combination of the two solutions
of the homogeneous problem L,, jw = 0. They are the Jacobi fields associated to the
isometries and it is known that they are at most linearly growing functions. Hence the
supremum
A, = sup e "|wj,
(—o0,v1,n]

is achieved in a point which we call v, € (—o0,v1,]. We define on I, := (—00, v, — vy
the function w;, by

- 1
Wjn(v) = | e M w; vy + ).

|wj,n||cﬁv‘1
As above, one shows that the sequence (v;, — v,), remains bounded away from 0, that
is v1, > v, for each n. Without loss of generality, we can assume that the sequence
(V1,0 — Vp)n converges to vy € (0, 400]. We set I, = (—00, 0y].

As in Step 1, we can also assume that the sequence of functions (w,,), converges on
compact subsets of I, to a nontrivial function w;. We observe that w;(v;) = 0if v; < 400
and that

sup e " |w;| = 1. (4.24)

’Ueloo

Secondly ;, in the coordinates x,y is a solution of
(sin2 Yy 8§y + cosy siny 9, — j* + 2sin’ y) a; = 0. (4.25)

This is again the associated Legendre differential equation. The solutions of the equation
(4.25) are the associated Legendre functions of first P{(cosy) and second kind @’ (cosy)
with 7 =0, 1.

We have reached a contradiction because we can observe that these solutions, after the
change of coordinates to come back to the u,v coordinates, do not satisfy the equation
(4.24) with p € (-2, -1).

So we have proved that

sup e " w;| <c sup e M|f;].
(—o0,v1 —00,v1

Now we pass to the limit as v; tends to +00 in a sequence of solutions which are defined
on I,. This proves the existence of a solution of

Lojw; = f;
which is defined in [vg, +00). In addition, we know that

sup e " |w;| <c sup e M|f;].
[U0,+OO) [U07+OO)
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Multiplying for the eigenfunctions, taking the supremum on I, X [vy,4+00) and using a
last time elliptic estimates, we get the wanted estimate. So the proof of the result is
complete. Il

4.6 A family of minimal surfaces close to ]\70.,0,5 and

M5

The aim of this section is to find a family of minimal surfaces near to a translated and
dilated copy of M, and M,z with given Dirichlet data on the boundary. We start
recalling that in subsection 4.4.1 we got that a translated and dilated copy of Mg7a7ﬁ can
be expressed as the graph over the x3 = 0 plane of the function

2 1
(1+7) lnl_: + 7 [n cos O + nysin ] + — (k1 cos + ko sin ) + K3 + g (4.26)
vy r
where ¢, = O(€), K1, ko, k3 € RT and small, n; = by + by, 79 = by — by, by = sin aT*’B,
by = sin %3, and r belongs to a neighbourhood of r, = 2%&

We denote by Z the immersion of the surface Mo—’a“ﬁ. The following proposition, whose
proof is contained in section 4.11, states that the linearized of the mean curvature operator
is the Lamé operator introduced in section 4.4.2.

Proposition 69. The surface parameterized by Zy := Z + f N is minimal if and only if
the function f is a solution of

‘Caf = Qa(fa fua fw fuu7fuva fuv)~

where L is the Lamé operator and QQ, is a nonlinear operator which satisfies

HQa(fQ) - Qa(fl)Hcoaa(Iax[v,uH]) <c SUP2 HfiHc2»a(on[v,v+1]) Hfz - leCQ»Q(IgX[U,v—i-l])

1=1,

for all f1, f such that || fillc2.e(r, x[wwt1]) < 1. Here the constant ¢ > 0 does not depend on
veR, noronoe(0,1).

As a consequence of the dilation of factor 1+ of the surface the minimal surface equation
becomes

Low= ﬁ@, (1+7)). (4.27)

where hereafter we use a simplified notation for the operator Q.
We now truncate the surfaces M, o and M, o at the graph of the curve r = %ﬁ of the

function (4.26) with, respectively, « = 0 and # = 0, and we consider only the upper half
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of these surfaces which we call M; and M. We are interested in minimal normal graphs
over these surfaces which are asymptotic to them. The normal graph of the function w
over My, M, is minimal, if and only if w is a solution of (4.27).

We make the following change of coordinates

o (4n0)

It is important to remark that though the surfaces Mj, M5 can be parameterized by (58),
their boundary does not correspond to the curve v = v. = —1/21Ine. We therefore modify
the above parametrization so that over the annulus By,, — B, the image of the function
(4.26) corresponds to the horizontal curve v = v.. Finally, we interpolate smoothly the
two parametrizations over the annulus Bg,. — Bg,... We would like that the normal vector
field relative to My, Ms is vertical near the boundary of this surface. This can be achieved
by modifying the normal vector field into a transverse vector field N which agrees with
the normal vector field N for all ¢ > v.+In4 and with the vector e3 for all v € [v,, v.+1n 2].

Now, we consider a graph over this surface for some function u, using the modified vector
field N. This graph will be minimal if and only if the function u is a solution of a nonlinear
elliptic equation related to (4.27). To get the new equation, we take into account the effects
of the change of parameterization and the change in the vector field N into N. The new
minimal surface equation is

Low=Lew~+Qy (). (4.28)

Here Q, enjoys the same properties of @), since it is obtained by a slight perturbation
from it. The operator L. is a linear second order operator whose coefficients are supported
in [v, v +1n4] x S' and are bounded by a constant multiplied for €!/2, in C* topology,
where partial derivatives are computed with respect to the vector fields 9, and 0,,.

As a fact, if we take into account the effect of the change of the normal vector field,
we would obtain, applying the result of Appendix B of [11], a similar formula where the
coefficients of the corresponding operator L. are bounded by a constant multiplied for e
since
N.-N.=1+0(e)

for t € [t.,t.+1n2]. Instead, if we take into account the effect of the change in the param-
eterization, we would obtain a similar formula where the coefficients of the corresponding
operator L. are bounded by a constant multiplied for €!/2. The estimate of the coefficients
of L, follows from these considerations.

Now, assume that we are given a function ¢ € C**(I,) which is even with respect to u,
L*-orthogonal to e,0,€,1 and such that ||¢||c2.« < ke. We define

wso('v ) = va@('a ')a
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where v, = —1/2Ine + O(1) and H is introduced in proposition 81.

In order to solve the equation (4.28), we choose p € (—2,—1) and look for u of the form
w = w, + g where g € C7*(I, X [ve,00)) and w = ¢ on I, X {v}. Using Proposition 66,
we can rephrase this problem as a fixed point problem

9=>5(¢,9) (4.29)

where the nonlinear mapping S which depends on € and ¢ is defined by

S(gp,g) = Gep, (I’e(wcp + g) — L, Wy + Qe (wcp + g)) .

where the operator G, is defined in Proposition 66. To prove the existence of a fixed
point for (4.29) we need the following

Lemma 70. There exist some constants ¢, > 0 and €, > 0, such that
HS(‘Pa0>||c3’a(10><[v6,00)) < cpel T2 (4.30)
and, for all € € (0, €)
1
“S(SO?gQ) - S((‘O’gl)HCi’a(IgX[’ue,oo)) < cpe? ||92 — ngCi’Q(IgX[’Ue,oo))
I+p/2

for all g1, g2 € Cﬁ’a([l, X [ve,00)) such that Hgi”Ci’a(IaX[ve,oo)) < i€

Proof: We know from Proposition 66 that ‘|Ge,vg(f>||cﬁ’a < c||f\|cg,a, then

15 (¢, O)HCi’o‘([dx[ve,oo)) < CHZe(w@) — Lo wy + Qo (W) Hcg’a(lgx[ve,oo)) <

Sc (Hze(w@)||Cﬁ’°‘(I[,><[v5,oo)) + [1£o w‘PHCg’a(IgX[ve,oo)) +11Qs (wy) HCB’Q(IOX[UE,OO))) ’

So we need to find the estimates for the three above norms.
We recall that ||, < ke. For all p € (=2, —1), thanks to Proposition 81 we know that

‘w|2,a;[v,v+1} < e,u,(v—ve) SO|2,a (43].)

Using the relation e™#¥¢ = e*/? we know that

||w<PHC;2[a: sup e_“vlwlla;[v,v—&—l]g sup 6—#1)6#(@—1;()
VE[ve,00] vE[ve,00]

2 1 2
< 2| plye < cpe T2
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From this inequality and from the estimates of the coefficients of L., it follows that
7 2 3+4)/2
IZewp)llgse < ce?lfuw oy < ce 72
As for £, we consider the following relation
Lowy, = 2T w,,

where T < 1. It comes from the definition of w, and Proposition 81 which gives us the
following relation:
2w, + 02w, = 0.

Therefore, we conclude that

||£U wipHCB’a(IUX[’Ue,oo)) < 2||w<P”C2‘a(IO,><[vE’OO)) < Ck€1+‘u/2,

The last term is estimated by

||QO’ (w¢) ||C27a(IgX[U5,OO)) < Ck€2+ﬂ/4.

In fact

1Q5 (W) et ropoeopy S €SP € Wity S ell3ae S elplie sup e et
VE[ve,00) [ve,00)

2 +pv/2 /a2 2+1/4
<C|90|2,a sup et/ 2emive L et |g0|2,a<cke w/t,

[ve,00

Putting together these estimates we get the first result. As for the second estimate, we
recall that

S(p,9) = Gew, (ie(ww +9) — Lowy, + Qy (wy + 9)) :

Then
S(p, 92) = S(,91) = Gep, (Le(w(p + g2) — Lo wy + Qo (wy + 92)> —

Geme (Ee(wap + 91) - »Ca wap + QO’ (wgo + gl))

and

15(¢, 92) = S(, 91)llez (1, x o o0y < EllLe(wg + g2) = Lo wy + Qo (wy + g2) —

_£€<w@ + gl) + ‘Ca Wy — QO’ (wso + gl) H(,'g’a([ax[ve,oo)) =
ILe(wy + g2) = Le(wy + g1) + Qo (wy + 92) — Qo (wy + 1) 0o (7, xoe,00)) =

= ||[~/e<92 - gl) + ch (wcp + 92) — Qo (ww + 91) ||C2’°‘(L,><[ve,oo)) <
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< Hf/e(g2 - gl)Hcﬁv“(ng[vé,oo)) + ||Qo (wy +g1) — Qo (wy + g2) ||cﬂva(zgx[ve,oo))'

We observe that from the considerations above it follows that

[ Le(g2 — 91)||c27a(1(,x[v€700)) < Ck€1/2||92 - gl||(,’i’°‘(]a><[u€,oo))

and that there is j + 5/ > 1 such that:

1Q5 (wy + 1) = Qo (wy + g5) 0 (1, xves00)) S
< ellgz = gillegety ooy (106 + Bl Iwp + 01 <

"
< o (62+u/2)3 J Ilgo — 91||cﬁv“(1f,x[ve,oo)) < ck€4+2u||92 - ngCﬁ’a(lgx[ve,oo))‘
Then
1S (e, g2) — S((p7gl)HCi’a(IU><[ve,oo)) < ck€4+2u||92 — g1|’civa(la><[v5700))'
O

Theorem 71. Let be B := {g € C>*(I, x [v.,00))|||g]|[C>* < cre"™/?}. Then the non-
linear mapping S defined above has a unique fived point g in B.

Proof. The previous lemma shows that, if € is chosen small enough, the nonlinear map-
ping S is a contraction mapping* from the ball B of radius cze' /2 in C2(1, X [v,, 0))
into itself. This value comes from the estimate of the norm of S(p,0). Consequently
thanks to the Schauder theorem, S has a unique fixed point v in this ball. n

This argument provides a minimal surface M;(¢) which is close to M; and has one
boundary. This surface is, close to its boundary, a vertical graph over the annulus
B.1/2)5 — B.-1/2/, whose parametrization is given, for a = 0 by

2r

1 _
Uir(r,0) = (147) In | +1ng sin 0+— (k1 cos O+ro sin 0)+rg+H,y, o (ve—In2r,0)+V (1, 0).
v r

and, for 3 =0, by

2r

1 _
Uia(r,0) = (14+7) In 1 7+7"771 cos ¢9+;(/-£1 cos 0+kg sin ) +k3+H,, o (ve—In 21, 0)+V (r, 6).

where v, = —% In e. The boundary of the surface corresponds to r, = % ¢~ 1/2. The function
V' depends non linearly on €, ¢. It satisfies ||V (€, ¢;)(re)||c2.a(5, -8, ,) < ce and

IVi(e, @) (rer) = Vile, ) (re) |z (B, ) < €216 = & llczaa,)-

4after the correct choise of the constant k that appears in the estimate of the norm of ¢.
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4.7 Periodic flat cylinder

In this section we are interested in finding an infinite family of minimal surface close to a
horizontal strip from which we have removed a circle. We shall use the following model.
We denote by ¥ = {z +iy € C;y € [-7, 7]}, with > 0 and enough small, the horizontal
flat cylinder whose embedding in R3/T is X (z) = (2,0), where T' = 27”62 is the period.
Topologically 3 is equivalent to R x S*. We denote B, the ball of radius s centered in
the origin. The equation to consider is

div— Y (4.32)

V1+|Vu|?

for u defined on ¥ — B, and with boundary data on 0B.

We define the subdomains €2,, = {z € ¥;|z| < x;} and denote the two cylindrical ends
with By ={z€ Xz > a1}, Ba ={2z€ ;2 < —x1}.

Definition 72. Given k € N, a € (0,1) and p € R, we define the weighted Hélder space
C’l’j’a(E) to be the space of functions of C:*(X) for which the following norm is finite

loc
||u||cﬁv‘1 = I:U:Ik:,a;Qq)l + S;IP e_ﬂw([u]k,a,([x,m—l-l]xsl) + [u]k,a,([—m—l,—x]xsl))
T>11

where [u]y.q.q denotes the usual Ck Hélder norm on the set Q.

We denote by Cl*(X — B,) the subspace of the functions of C*(X) restricted to ¥ — B
and by [CF*(X — By)]o the subspace of the functions vanishing on the boundary.

There exists an extension operator & : Cp*(X — By) — C*(X) which satisfies ||€,(u)]] <
Cl|ul|. The operator is defined by E(u) = v on ¥ — By and &(u) = (2|z]/s — 1)u(z) on
By — Byjy and E,(u) = 0 on By /s.

Now we consider the bounded operator A, :

A Co(8) — CO(%)
where A = 97 + 07. It follows from the general theory of elliptic partial differential oper-
ators that A, is a Fredholm operator for all ¢ ¢ Z. It is well known that, if p € R —Z,
then A, is injective if and only if A_, is surjective and the dimension of the kernel of

A_, is equal to the cokernel of A,. Furthermore, it is possible to show that the operator
A, is injective for —1 < pu < 0 and so it is surjective for 0 < p < 1.
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When the weight parameter is negative, we can still make the operator surjective by
considering a finite dimensional extension of the Holder space defined above. To be more
precise we need additional notation. Let us set 21 = 2s such that B, C {—x; <z < x1}.
We introduce the cut-off functions & and & satisfying the following conditions:

e {1 =0forx <z and & =1 for z > 224,
o & =0for x> —xp and to & =1 for x < —2x4.

Now we are ready to define

Dy := Span{&y, &, &1, S

This space is identified with R* and is endowed with the Euclidean norm. For —1 < < 0
we have Ker A_,, C C2*(X) @ Dy. In fact if we expand a solution of Au =0 on {z > 2}

by .
u= Z up (z)e' T,

where T' is the period with respect to the variable y, then u = ug + @, with u € C’i’a with
—1 < p < 0, and ug affine function, i.e. a linear combination of the constant function and
x near the cylindrical ends E; and FE,. The index theory assures that the kernel is two
dimensional. We define Ky = Span{{;,&>}. The linear decomposition Lemma proved in
[23] for constant mean curvature surfaces (see also [18] for minimal hypersurfaces) can be

adapted to our situation. So Dy = Ky & Ny, where Ny denotes a complementary space.
Then
ker A_, C C*(%) & No

and the application
A:CH(2) 8 Ky — Cp(%)

is an isomorphism.
Proposition 73. If0 < u < € and T = 27” then there exists an operator
F, : CY™(X) — C*(2) @ Ko

such that for all f € CB’Q(Z), the function v := F,(f) = w + a1& + a2y solves Av =
f in X. Moreover,

1Eu(Dllezear, = larl + laz] + [[wllcze < el fllcge,

for some constant ¢ > 0.
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Proof. We solve the equation Av = f at the ends F; and FEs of . For x > x; we consider
the Fourier series of f and v (a similar argument holds for E,).

27 227
v = E vpe' T and f = E fne'T™
nel nez

For n # 0, applying the barrier functions method we find that the solution v,, satisfies

1/]lcge

(21)2 n? — 12 e
T

[on(2)] <

Y

and for n = 0, v,(x) is given by

vo(w) = / h /t " fo(s)dsdt.

We can conclude that e #*|v| < ¢|| f]| coe and applying Schauder estimates we obtain

lrolleze < llfll o

Obviously we can apply the same argument for F,. We denote by vq, vy the solutions
corresponding to Ey, By, we define g = &0, +&w, and we set f = f —Ag. We parametrize
¥ conformally on C* and we solve Aw = f on CU {oco}. Then the function v = w + g
satisfies Av = f. m

It is possible to show the following result.

Proposition 74. Let ¢ € C*“(0Bs) a function L*-orthogonal to z — 1, then there exists
an operator H such that wy, = Hy € C’E’?(E—Bs) ®Span{&y, &} which solves the following
problem

Awy =0 on ¥ — B
wy=¢ on O0DB,.

and satisfies |Holl o205 por, < clollcze.

In the following we consider s = 5§ = ﬁé We recall that we have set z; = 2s.

Let ¢(0) be a C** function defined on dBs, even and L? orthogonal to the costant function
and to 0 — cosf and such that

||0]|c2es1) < ke (4.33)

and wy = Hy the harmonic extension in C*(¥ — Bs) @ Span{&y, &} obtained applying
Proposition 74. Our aim is to find a minimal surface close to > — Bs and which is the
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graph of a function whose form is w, + v. The equation (4.32) can be written in the
following form
Av = Qv+ wy) on X — B,

where

V<U + U)¢)V|V<U + U)¢)|2

2(14 V(v 4+ wy)[?)
When v € C2*(X — Bs) © Ko then Vv € C%(X - Bs) © Ky and Q(v) € C*(X — Bs) ® K.
We rephrase the problem as a fixed point problem, that is

Qv+ wy) =

where
T(p,v) = Fu o &(Q(v + wy)).

To prove the existence of a solution of (4.34) we need the following result which states
that T is a contracting mapping.

Lemma 75. There exist constants ¢, > 0 and €, > 0, such that
3
IT(, 0)ll g2y < Cr €2 (4.35)

and, for all € € (0,¢€,)

1
[T(¢,v2) = T(o, ”1)||c2°‘@K0 ||UQ Ul”Cﬁ’”‘@Ko

and
||T(¢2, Uz) - T(fbl, Ul)Hciva@KD S Cr€ ||¢2 - ¢1||627a(sl)

for all v, vy, vy € Ci’a(Z) @ Ky whose norm is bounded by 2 ¢, €3 and for all boundary data
@, 41, o that are orthogonal to the constant function and to 0 — cos@ and satisfy (4.33).

Proof. We use the result of Proposition 74 to obtain the estimate
1€5(Q (wg)) | oo < w0 ElIICOa +cllwlk, < cer.
As for the second estimate, we recall that

T(p,v) = Fy 0 & (Q (w, +v)).

Then
T(p,v9) = T(p,v1) = Flo&s (Q (wcp +v2)) — Flo&s (Q (ww +v1))

and
1T (¢, v2) = T(ep, Ul)”cﬁva DK X < & (Q (wyp +v1) — Q (wy + v2)) ||(22’D‘(2)@K0 <
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1
< clwy| Cg,a(z)®KO||vg — leCﬁ’O‘(E)GBKO < cpe?|lvg — Ul”ci'“(z)@Ko'

O
The previous lemma shows that, provided e is chosen small enough, the nonlinear mapping
T(¢, -) is a contraction mapping from the ball of radius 2 ¢, €2 in C»*(¥ — Bs) into itself.
Consequently the equation (4.34) admits a solution v in this ball. The graph over ¥ — B;
for the function wy+v is a minimal surface close to ¥ — Bs, it has two horizontal ends and
one boundary. This surface is by construction a vertical graph over the annulus By; — Bs
for some function Ug that can be expanded as

UB(T’, 9) = H¢(T, 9) + VB(’F, 9)

where VB(e, ) depends nonlinearly on € and ¢. The boundary of the surface corresponds
tor=r.= ﬁg Furthermore the following estimates hold

HVB<67 @)(TE ')HCQ’O‘(BQfBl) < ce

and
V(e d)(re ) — Vi(e, &) (e leza(ss—pry < €2 |6 — & [lczaqsny (4.36)

where the constant ¢ > 0 does not depend on e.

4.8 The existence of minimal graph close to a Scherk
type surface.

In this section we are interested in proving the existence of a family of minimal surfaces
close to a Scherk type surface K defined on ¥ — B,_ where r. = 1/2y/e. We solve the
following equivalent problem. Let ¥ = {x + iy € C;y € [—m, 7|} the horizontal flat
cylinder whose embedding in R®/T is X(z) = (z,0), where T" = 2me, is the period.
Topologically 3 is equivalent to R x S'. We denote by B, the ball of radius s centered in
the origin. We denote by X the solution of

Au=0 in X — B, (4.37)

where ¢y is the Dirac distribution, such that, up to an additive constant, in a neighbour-
hood of the point z = 0 is asymptotic to elnr and in {z > x;}, with k enough big, is
asymptotic to a function which is linear in the variable x. We want to show the existence
of a minimal surface which is the graph of the function given by X + w about ¥ — B,.

The equation to consider is

div—YY (4.38)

VItV
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for u defined on ¥ — B, and with boundary data on dB,.
Let ¢(0) be a C** function defined on dBs, even and L? orthogonal to the costant function
and to 6 — cos 6 and such that

||gb||c2,a(51) < KEQ (439)

and wg = H, the harmonic extension in Ci’a(i —B:)® Span{{_“l, &} obtained applying
Proposition 74. Our aim is to find a minimal surface close to ¥ — B; and which is the
graph of a function whose form is X + w, + v. The equation (4.38) can be written in the
following form

Av = Q(X + v+ wy) on ¥ — By,

where
V(X +wy +0)V|V(X + wy + )
21+ |V(X 4+ wy +v)?)
When ¢ € C2*(5 — Bs) ® K, then Vt € C)*(X — By) @ Ko and Q(t) € C)*(X — B;) & K.
We rephrase the problem as a fixed point problem, that is

Q(X+w¢—|—v):

v="T(¢,v) (4.40)

where
T(¢,v) = Fu 0 &(Q(X + wy + ).

To prove the existence of a solution of (4.40) we need the following result which states
that 7" is a contracting mapping.

Lemma 76. There exist constants c,, > 0 and €, > 0, such that
3
HT((ba O)"Ci’“@[(o g Cx €2 (441)

and, for all € € (0,¢,)

1
IT(9,v2) = T(o, ”1)||CZ’O‘EBK0 S 9 [v2 = Vil ez,

and
||T(<Z52, Uz) - T(¢17 Ul)Hciﬂ@Ko S Cr€ ||¢2 - ¢1||<327a(51)

for all v, vy, vy € Ci’a(Z) @ Ky whose norm is bounded by 2 ¢, €2 and for all boundary data
¢, P1, P2 that are orthogonal to the constant function and to § — cos@ and satisfy (4.39).

Proof. We use the result of Proposition 74 to obtain the estimate
IEXQUX + we))lege < NOX + 1) © Balla oy + (X + )l < ek
As for the second estimate, we recall that
T(p,v):=F,0& (Q(X +wy+0)).
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Then
T(¢,v2) = T(¢,v1) = Fj, 0 & (Q (X + wy + 1)) — Fu 0 & (Q (X + wy + v1))

and
1T(¢,v2) = T(p, v1) ez sy, S € (Q (X +wg + 1) = Q (X + wy + 12)) |00 syar, S

1
< | X + w¢‘|c2’a(2)@KOHU2 - Uchﬁ’a(z)@Ko < cpe?||vg — Ul”cﬁvo‘(z)@Ko'

O
The previous lemma shows that, provided € is chosen small enough, the nonlinear mapping
T (¢, -) is a contraction mapping from the ball of radius 2 ¢, €2 in C>*(Z — Bs) into itself.
Consequently the equation (4.40) admits a solution v in this ball. The graph over ¥ — Bg
for the function X + w, + v is a minimal surface close to the graph of the function X
about ¥ — By, it has a Scherk type end and one boundary. This surface is by construction
a vertical graph over the annulus By; — B; for some function Ug that can be expanded as

Ug(r,0) = elnr + Hy(r,0) + Vi (r, 0)
where VK(e, ¢) depends nonlinearly on € and ¢. The boundary of the surface corresponds
to r = y/€/2. Furthermore the following estimates hold
||‘7K(€7 ¢) (TE ')||C2’O‘(BQ*Bl) S ce

and
- - 1
1Vic(e, ) (re ) — Vic(e, ') (e )le2a(By—3y) < €2 [|¢ — ¢ lle2asy) (4.42)
where the constant ¢ > 0 does not depend on e.

By the equations written above it is easy to get the solution of our initial problem: that
is finding a Scherk type minimal graph Sk about ¥ — B, with Dirichlet condition on
OB,,. This surface is by construction a vertical graph over the annulus B,, — B, for some
function Uy that can be expanded as

Uk(r,0) =Inr + Hy(r,0) + Vg (r,0)

where Vi (€, ¢) depends nonlinearly on € and . It is important to remark that the norm
of the Dirichlet data satisfies ||¢[|c2.a(s1) < we. The boundary of the surface corresponds

tor=r.= 2%& Furthermore the following estimates hold
||VK(€7 @) (Tﬁ ) ||C2’a(32731) S ce
and )
Vi (e, 0)(re-) = Vi (&, @) (re)llezam, -5y < ce2 [l — ¢llezacs) (4.43)

where the constant ¢ > 0 does not depend on e.
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4.9 The matching of Cauchy data

In the following we will need a new notation. Given an even function f € C**(S') with
the following Fourier expansion

£(0) =" a, cos(nb),

neN

then we denote with 7”(f) the function

Z a, cos(nh)

n>2

and with 7'(f) the function
ag + ay cos(0).

Along this section r. = %ﬁ and ¢ is a function in 7”C%%(S') such that [|¢||c2.e < ce.

In Section 4.7 we have shown the existence of a surface which is a graph on ¥ — B, and is
asymptotic to it. In other words we are able to solve the minimal surface equation, that
we will write for short as follows

L,u® Qs(u’) on X - B,
'’ = on 0B,

where L, denotes the linearized mean curvature operator about the plane.

So chosen a function ¢, we can obtain a surface S°, whose parametrization X, in a
neighbourhood of its boundary (a curve defined on 0B,,), satisfies

Xop =+ 7' (u0)
87~X0#, = aruo

In Section 4.6 we showed how to obtain a surface which is a graph on M (or Z/\\/[/zoﬂ)

o,a,0
and is asymptotic to it. We have solved a problem of the form

£0U+ = QO’(U+) on M/gta,o (M;;Q,/ﬁ)
m'ut = p—7"g on OM[S,, (OMJ,,)

where £, denotes the Lamé operator and ¢g; = O(e).
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So we can obtain two surfaces SZ; o and Sy 5. whose parametrizations X, ;f o0 X;(p satisfy in
a neighbourhood of its boundary

Xi,=—(1+r)In(2r)+2sin §rcost + o + 7'(u* + gy),

(’%X;SD =—(1+ /*i)% + 2sin 5 cos 0 + g4 + dut,

X5, =—(1+r)In(2r) 4 2sin Srsing + ¢ + 7' (ut + g1),
8TXEM =—(1+ Ii)% + 2sin g sin€ + grq+ Ou™,
where g; 4 = O(e). In the following to simplify the notation we will write for short S* and

Xy

Analogously, in Section 4.8 we showed the existence of a surface close to a Scherk type
surface, whose boundary is a curve on 0B5,,. In other words we are able to solve a problem

of the form
{ Lyu~ = Q™) on X—DB,

", —

u" = p—7"g, on 0B,

where L), denotes the linearized mean curvature operator and g, = O(e).

So we can obtain a surface S~ that has a parametrization X_ ,, which in a neighbourhood
of its boundary satisfies

Xop==@2r) + o+ (u” + ),
87”X—,Lp = _% + 9v,d + arui
where g4 = O(e).
Finally, in Section 4.3 we have obtained the surface My(e/2, @), whose boundaries are

curves about 9B, . In particular we are able to solve, for ® = (¢4, vy, o) € (7"C**(S1))3
and ||;||c2e < € the problem

Ly e2ue = Quc) on M (¢/2)
uc = (o — 7" fr, 00 — 7" fo, om — ' fim) on  IMF(e/2).

The functions fy, fy, f.n denote the higher order terms appearing in lemma 53. This result
gives the parametrizations of part of the ends of My (e/2) seen as graphs of appropri-
ate functions over the x3 = 0 plane. fi 4, fpa, fm.qa denote their derivatives. As for the
catenoidal type ends these functions, that are defined on a neighbourhood of 0B, _, have
the following expressions

Ui(r,0) = oy + In(2r) + %r cos@ + fi(r,0), (4.44)
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1
O Uy(r,0) = . + %cosﬁ + fra(r, ),

Up(r,8) = —0op, — In(2r) + %r cosf + fy(r,0), (4.45)

1
8,Uy(r,0) = - + gcosﬁ + foa(r,0),

where f; = O(e), fiqa = O(e¥/?), i =t,b. As for the parametrization of the planar end, it
satisfies

Un(r,0) = fulr,0) = O(r™), (4.46)
O Un(r,0) = fm,alr,0) = O(™"1),
in a neighbourhood of 05,,.

Then we can obtain in particular a minimal graph over the planar end whose parametriza-
tion, X,, ¢ in a neighbourhood of its boundary, satisfies

Xm,@ = QOm T W,(UC + fm>
8er,¢° = fm,d + aruC~

Then we can obtain in particular a minimal graph over the top end whose parametrization,
X in a neighbourhood of its boundary, satisfies

Xio = —In(2r) 4+ Srcos + ¢ + 7' (uc + fi)
hXio=—145cosl+ frq+ Oruc.
Now we can define
B (1O (S) s (CP(81)) x (C1())
D = (&, Py, dm) — [(X 00, X Xo,om)s (0r Xt 1, 0r X, 0, X0,6,0) 0B, -
and
F, . 7"C%%(8Y) — C?%(Sh) x Che(Sh)
D = (01, 0, 0m) — [(Xegrr Xogy» Ximon): (0r X6, 0r Xigy, 0 X )08,
We set C, := E. — F..

We want to prove that the surfaces ST, 57, 5% and M! (¢/2,®) can be glued along their
boundaries to obtain a C'*°-surface. Firstly we will show that these surface correspond
in a C! way along the boundaries curves. This is true if it exists ¥ = (¢, s, 13) such
that C.(¥) = 0. The existence of the appropriates boundary functions is proven in the
following theorem. Finally, to show that the surface is C'*°, it is sufficient to apply the
regularity theory.
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Theorem 77. For some ¢y and every 0 < € < €, there exists ¥ = (11,19,13) €
[7"C%(SN)]3 which solves C(¥) = 0.

Proof. We consider the harmonic extensions of v, i = 1,2, 3, on the ends of M(&,e€),
that is

1. w, = x+ Hy, (se — s,-), on the upper end,;
2. wy = x— Hy,(s — s, ), on the lower end;

3. W = Xp H,,4,(1/7,-) on the middle end
and its harmonic extensions

1. wy = H, 4, on ST,
2. wy=—H_,, 4, on S7;

3. Wy, = Hy, on S°

(see Section 4.3 for the definitions of the cut-off functions). We recall that the operators
H, H, 'H and 'H have been introduced respectively in Propositions 79, 80, 81 and 74. We
consider the following maps
EO . [7?”02’0‘(51)]3 _ 02704(51)3 % Cl,a(51>3
\I/ — [(wt7 Wy, wm)) (a'rwt7 a’rwlh a?‘wm)hrs

and
FO . [71_//02,04(511)]3 N C2,a(sl)3 < Cl,a(sl)?,
v — [(wh 'LDb, wm)y (arwta 81/(2)1), arwm)hre-
Now using Fourier expansion of the function, we can see that Cy = Ey — Fy has an inverse
which is bounded independently of e. In particular, the equation Cy(¥) = 0 has the
unique solution ¥ = (0,0,0). Now we consider (C. — Cy)(V), whose expression is
(r cos0(2b, — €/2) + 7' (ut —ue) +7'(g: — f1),
rcosO(—&) + 7' (u” —ueg) + 7' (g6 — fo),
(= uo) + 7' (= fm) ,
(0 (u" —w) — Oy (uc — W) + gra — fra
cosO(—€/2) + 0.(u™ — wyp) — Or(uc — Wp) + God — fod
87°<u0 - wm) - 87"(“0 - u_]m) - fm,d) .
It is easy to prove that
H(Ce - CO)(\II)"CQ,a(sl)i&XCI,a(Sl)B < CeE.
In order to solve C.(¥) = 0, we find a fixed point for the mapping
D (V) := C’0_1 ((Ce = Co)(W)) .
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4.10 Appendix A

Definition 78. Given { € N, a € (0,1) and v € R, the space C4%(B,,(0)) is defined to
be the space of functions in Cz’a(BpO(O)) for which the following norm is finite

loc
lp™" wllee B,y 0)-
Now we can state the following result.

Proposition 79. There exists an operator
H : C**(S") — Cy(8' x [p, +00)),

such that for each even function ¢(0) € C**(S"), which is L*-orthogonal to the constant
function, then w, = Hj , solves

Aw,=0 on S'x[p,+0o0)
Wy = ¢ on S'x {p}.

Moreover, 3
Hp0ll 2o 51 x (400 < €ll@llc2e(sm, (4.47)

for some constant ¢ > 0.

Proof. We consider the decomposition of the function ¢ with respect to the basis

{cos(i0)}, that is
Y= Z ©; cos(if).
i=1

Then the solution w,, is given by
wy(p,0) = Z (;) ;i cos(if).
i=1

Since g < 1, then (g)Z < (%) , we can conclude that |w(r,0)] < cp'p(f)| and then

[lw|lg2.e < cllpl|c2e O
Calcolo 1
sup 6765|w<b‘0,a;[s,s+1} < sup 6768576(&78)‘@’2@ <
[SO,tE]Xsl [SO,tE]XSI
sup et Bila.a < o€ 02,

[s0,te] xS1
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Calcolo 2

763/2675(25673)

—ds 2 2 2
sup € |w‘0,a;[s,s+l] < HU) 2,00,1/2 < C|¢‘2,a sup €
s€[s0,te] xSt [s0,te]x St

2 “(te—s/2 5t 20 12 ~5/2 20 12 2-5/2
< ez, sup e Olte=s/2) L e tee%/ lpl2.q < ce 0/2gds0/ l¢l2.0 < cre 8/2,
[So,tg]xsl

Now we give the statement of an useful result whose proof is contained in [7].

Proposition 80. There exists an operator
H : C**(S") — C25([0, +00) x "),

such that for all o € C**(S%Y), even function and orthogonal to 1 and cos 0, in the L*-sense,
the function w = H, solves

(P+0Hw = 0 in [0,+00) x S?
w = ¢ on {0}xS!

Moreover
[Hylls < clglese,

for some constant ¢ > 0.

Proposition 81. There exists an operator
Hoy, : CH(SY) — C’i’a(Sl X [vg, +00)),

p € (=2,-1), such that for every function (v) € C*>*(S"), which is L*-orthogonal to
egi(u) with i = 0,1 and even, the function w, = H,,(p) solves

2w, + 02w, =0 on S X [vy,+00)
Wy = ¢ on S* x {v}.

Moreover, B
|[Hu, ()] |C§*a(51 Kortos]) S € |llo2a(sr), (4.48)

for some constant ¢ > 0.

Proof. We consider the decomposition of the function ¢ with respect to the basis {eg;(u)},
that is

Y= Z pi€o,i(u).
=2
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Then the solution w,, is given by

wy(u,v) = Z e~ =) e (1),
i=2
We recall that 1 € (=2,—1) so we have —i < p from which it follows |wy |2 a:pe+1] <
etv=v) ||, and

lwpllgze = sup e [wlapesny < sup e e T ply o < €Tl
vE[vg,00] vE[vg,00]

4.11 Appendix B

In section 4.5 we introduced the Jacobi operator about the surface Mg’a“@. Its expression is

. 7K . — . .
J = Wﬁg. Here we want to verify that the factor TG0 ) is bounded. It is well

known that the Gauss curvature has the following expression in terms of the Weierstrass

data g, dh:
1\ d
K16 (lol + ) 1<2PIan
9] g
We recall that dh = pdz . Since |22+ X\?||22 + A 72| and T'(z,y) = ¢* cos® z(u) +

V(22422)(224+2-2)
p?sin? y(v) have the same zeroes, that is the points D, D', D" D" then — K /T is bounded.

We can give an estimate of the derivatives of K and /—K. We can write v—K =
VT \/ % So it is sufficient to study the derivatives of T.

We recall that

I(x) = \/1 —sin?osin?z m(y) = /1 — cos? o cos?y.

From the expression of T, using (4.12) it is easy to get:

3} sin? o sin 22 (u)
~ T =— l(x(u)),
ou 2VT (o(w)
9, cos? o sin 2y(v)
2T = m(y(v)).
Then
2\/—‘ _ sin? | sin 2z ()|l (u) < Sin'2 o|sin 2z(u)| < sino,
du 2+/sin? o cos? z(u) 4 cos? osin’y(v)  2sinofcosz(u)|
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_ = < - < coso.
v 2v/sin? o cos? z(u) 4 cos? osiny(v)  2coso|siny(v)|

0 \/T’ cos? o sin 2y (v)|m(v) cos? o sin 2y(v)|

We can conclude that the derivatives of v/T (and trivially also the derivatives of T') are
bounded.

4.12 Appendix C

Proof of proposition 69. In section 4.4.2 we parametrized the surface Mg,aﬁ on the
cylinder S' x R. We introduced the map z(x,y) : S* x [0, 7[— C where z,y denote the
sphero-conal coordinates. Let p,q be the real and the imaginary part of z € C. If Z
denotes the immersion of the surface in R?, N its normal vector, then it holds that

Z,)2 = 1Z,)* = A, IN,[> = [N, J* = —KA,
<NpaN> = <Nan> =0, <Zp7Zq> =0, <Np7Nq> =0,
(quZq> = _<Np’Zp>7 <quzp> - <Np’Zq>7

SO
(Ny, Z,) = |Np||Zp| cos 1 = V—KAcos,
(Np, Zy) = |Np||Zy| cos o = V—KA cos .
Here 7, is the angle between the vectors N, and Z,, 7, is the angle between the vectors

N, and Z,.

The proof of proposition 69 is articulated in some lemmas. We recall that Z; = Z + fN.
We denote by Ef, F, Gy the coefficiens of the second fundamental form for Z;. The
following lemma gives the expression of the area energy functional.

A(f) ::/,/Efo —FJ?dpdq,

E:Gy— FJ% =A%+ A(fg + fq2) + 2K A% f? + 2f(fq2 — fg)\/—KAcos%
AffyfV =R A cos s — KA(f2 + f2) + FCA,

Lemma 82.

with
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Proof. The coefficients of the second fundamental form are:

Er =10,Z* = Zp* + [} + [P IN,|* + 2f (Np, Zy,)
G =10,251 = | Zg* + [2 + [P N> + 2f(Ny, Zy),
Ff = |8pi ) anf‘ = fpfq + f(<vaNq> + <Zq7Np>)-
Then

E;Gr =2, P\ Zy* + 1 241 + £312:1" + [N | 2o + [N *1 2| )+
PR NG+ £ IN )+ FHUNG P ING P44 ((Np Zp) ((Ng Zg)) + 2 (£, (Ngy Zg) + 14 (No, Z))+
Fold + 2 (Ng, Z)| Z,[* + (Np, Zp)| Zg*) + 2 (Noy Za) | Zp | + (Np, Z) | Z4|*)

Py ~p
Since (N,, Z,) + (N, Z,) = 0 and |Z,|? = |Z,]* we can conclude that the last two terms
of the previous expression are zero. Since (Ny, Z,) = (N, Z,) we have

Ff = fpfq + 2f<Npa Zq>-
Then

Ff2 = fgfj + 4f2(<Np>Zq>)2 + 4ffpfq<N Z >
So the expression of EfGy — F} is:
Zo*1Z4|* + [ Zo|* + [ 2ol + F2(ING P12 + NP1 Z4|*)+
FAURING P+ FRING )+ FHNG P NG P+ 42 ((Nyy Z) ((Ngs Zg)) +2.f (f5 (Nos Zg) + 17 (Nps Zp))
_4f2(<Np7 Zq>>2 - 4ffpfq<va Zq>'
Ordering the terms we get:

|ZoP1Zg]* + £\ 24 + [1 21 + PN Zp | + INGPIZ,P) — 42 ((Np, Z,))?
42 ((Np, Zp)) ((Ny, Zg)) + 2f (f3 (Ngs Zg) + [ Nps Zp)) — Af fofo(Np, Zg)+
HF2(FING + foINP) + FHNG [P N 2.
The expression of E¢Gy — F} becomes:
A? + A(fg + qu) —2KA?f? 4 42K A? (0082 71 + cos? 72) +
+21(f7 — [HV=KAcosys —Af fpfyV—KAcosy, — KA (f7 + f7) + fUCPA%

Using the relations (N,, Z,) = (N,, Z,) and (N, Z,) = —(N,,Z,), it is possible to
understand that the relative positions of these vectors are such that ~

cos? 5 = cos?(Z £ 1) =sin®y; and cos?y; + cos? 72 = 1. Then we can write:

% + Y1- SO
A2 A(f2+ f2) + 2K A2 2+ 2f (f2 — fA)V—EKAcosm
—Af fyfV/ =K\ cos s — KAFA(f + ) + f1ROA°,
O
The next lemma completes the proof of the proposition 69.
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Lemma 83. The surface whose immersion is given by Z + fN, is minimal if and only if
f satisfies
‘Caf + Qa(fa fu7 fva fuu7 fum fvv) =0

Proof. The surface parameterized by Z; = Z + fN is minimal if and only the first
variation of A(f) is 0. That is

/\/W

Thanks to the previous lemma it holds that

2DA;(g) 1(EsGy = Ff) (g) dpdg.

1
(EfGy — FF)

Df(Efo - Ff)(g) = % (2A(fpgp + fng> + 4KA2f9‘|‘
|f=0
+2vV—=KAcosm [fong + gqu —2f fogp — gfp2:| +
_4\/ _KACOS’YQ [ffqu + fgqu + gfpfq] +
—2KAN[faf) + fogpf? + faf + fo94f7] +4K7A fPg) .

Reordering the summands, we have:

1
(EfGy — Ff)

Df<Efo - Ff)(g) =2 (fpgp + fng +2KAfg+
|f=0
V=K cos 1 [2f(fag0 — Jo0) + (15 = £;)] +
—2 Vv -K COS 72 [f(fqu + gqu) + gfpfq] +
—K [fg(fz + fqz) + fQ(fpgp + fng)} + 2K2Af39) .

In the next computation we can skip the factor 2 in front of the last expression.

fpgp + fng + QKAfg + Ql(fa fpa fq)g - QQ(fa fp7fq)gp - Q3(f7 fpa fq)gq -

where

Qi(fs for fo) = = (f5 = fO V=K cosm = 2f, foV/ =K cosya — K f(f + f7) + 2K\ f°,

QQ(f?fpafq) szp\/ C0571+2ffq\/ COS/VZ“_K]C fpa
Q3(f>fpafq):_2ffq\/_ COS'YI"‘fopV C0572+Kf2fq

141



An integration by parts and a change of sign give us the equation:

(fpp + qu - ZKAf - Ql(f7 fp’fq>+
+P2(fa fpa fqv fppvqua qu) + P3(f7 fp7fq7fpp7 quaqu))g = 0;

where

P2(f7 fp7 fQ7 fpp7 qu’ qu) = 8pQ2<f’ fp7 fq)
and

B(f, Tos Fa Tovs g qu) = anS(fa oy fq)-
That is

(f fp> fq>fppaqu>qu) _2(f2+ffpp)V C0871+2<fpfq+fqu)\’ _KCOS’YQ‘F
(fo + f? fop) + 2f (fp(V =K cos 1), + fo(V—K cosa), )+f2prp

and

P3<f7fpafqafpp>quaqu) <f2+fqu)\/ COS’Yl+2(fpfq+fqu)V_KCOS’Y2+
+K<2ffq2+f2qu)+2f( fq(\/ COS%) "’fp(\/ COS'YZ) )+f2qu

Now we change the variables passing from the variables (p, ¢) to the (u, v) variables. Then
we want to understand how the minimal surfaces equation changes. We recall that p and ¢
are the real and imaginary part of the variable z, the same that appears in the Weierstrass
representation of the surface. It is known that the metric g induced on a surface whose
immersion Z is given by the Weierstrass representation on a domain of the complex z-
plane, can be expressed in terms of the metric ds* = dp?+dq?, by g = A(dp*+dq?), where

= |Z,|*> = |Z,|*. Tt is well known that in this case then there exists a simple relation
between the Laplace-Beltrami operators written with respect to the metrics ds? and g.
As a fact they differ for a conformal factor:

Aggz = %Ag.

In section 69 we observed that the conformal factor related to the change of coordinates
(x,y) — (u,v) is —K/T. So the conformal factor due to the change of coordinates (p, ¢) —
(u, v) is obtained by multiplication of the conformal factors described above. Summarizing
it holds that

fpp+qu (fuu+fvv)
So we can write

—KA
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where

Rl(fafwfv): ;(A |: (f2 f2)V COSPYl_qufUV C0872 Kf(f3+f3):|_2K2Af3

= TR (2 - VR cosyy 4+ 2, fV "R cosya + KF(F2 4 £2) — 2KTf] =

KA

Pl(f fu7fv)

(fafuafv7fuuafuvafvv): K (f)fUan?fuuafuvafvv)

and
—KA

RB(fv fuafvafumfuvafvv) = PB(fv fuafvafuuafuvafvv)'

We can write

—KA

= [fuu+ foo +2T(w0)f + Pi(f) + Po(f) + Pa(F)] = 0.

We can recognize the Lamé operator,
Lof = fuu+ foo + 2(sin? o cos® z(u) + cos® osin® y(v)) f,
then, if we set Q, = Pi(f) + Pa(f) + Ps(f), the equation can be written

£0f+Qa<f) =0

The estimate about @), is an easy cnsequence of the fact that all its coefficients are
bounded. That completes the proof. O
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