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Summary of the thesis

This thesis is devoted to the solution of some problems of various nature about the min-
imal surfaces.

The study of minimal surfaces in R3 started with Lagrange in 1762. He studied the prob-
lem of determining a graph over an open set W in R2, with the least possible area among
all surfaces that assume given values on the boundary of W.

In 1776, Meusnier supplied a geometric interpretation of the minimal graph equation: the
mean curvature H vanishes. Nowadays it has become customary to use the term minimal
surface for any surface satisfying H = 0, notwithstanding the fact that such surfaces often
do not provide a minimum for the area.

In all of the questions I dealed with in this work, one minimal surface plays the key role.
It is the Costa-Hoffmann-Meeks surface, the most famous minimal surface. The discovery
of the Costa surface was responsible for the rekindling of interest in minimal surfaces in
1982. In that year C. Costa showed the existence of a complete (i.e., it has no boundary)
minimal surface of finite topology. It has genus 1 and three ends. D. Hoffman and W. H.
Meeks III showed the embeddedness of this surface (i.e. it does not intersect itself). Until
that moment the only other known embeddable complete minimal surfaces in R3 were the
plane, the catenoid and the helicoid. They were discovered over two hundred years ago,
and it was conjectured that these were the only embedded complete minimal surfaces.
Later D. Hoffman and W. H. Meeks III generalized the work of C. Costa showing the
existence of a family of complete embedded minimal surfaces with three ends and genus
k > 1. We denote by Mk the surface of genus k. It is known as Costa-Hoffman-Meeks of
genus k.

An important property of the minimal surfaces is the non degeneracy. The non degen-
eracy is defined in terms of the space of the Jacobi functions on the surface, that is the
functions which belong to the kernel of the Jacobi operator. This operator is defined as
the linearized of the mean curvature operator.

J. Pérez and A. Ros showed that the set of the non degenerate properly embedded min-
imal surfaces with finite total curvature and fixed topology in R3, has a structure of
finite dimensional real-analytic manifold. As application they showed that for Mk with
2 6 k 6 37, there exists a family of minimal surfaces with three horizontal ends that
are obtained by infinitesimal deformations by Mk. This result is based on a work of S.
Nayatani which assures the non degeneracy of the Costa-Hoffman-Meeks surface only if
its genus assumes the values described above. In his work S. Nayatani computed the
dimension of the kernel and the index (i. e. the number of the negative eigenvalues) of
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the Jacobi operator about Mk but only if 1 6 k 6 37. He showed that the dimension of
the kernel equals 4. From that it follows the non degeneracy of Mk. In chapter 1 I show
that it is possible to extend the result of S. Nayatani for bigger values of k. To be more
precise I show that for k > 38 the dimension of the kernel and the index of the Jacobi
operator about Mk, are respectively equal to 4 and 2k + 3. That allows us to state that
the surface Mk is non degenerate also for k > 38.

The non degeneracy of the surface Mk is one of the essential ingredients of the proof due
to L. Hauswirth and F. Pacard of the existence of a new family of examples of minimal
surfaces. Thanks to result described in 1, their construction extends automatically to
higher values of k. The same result is used in the other sections of the thesis. Without
it the constructions that I will describe briefly in the following, would hold only for k 6 37.

In chapter 2 following J. Pérez and A. Ros, I show the existence of a family of immersed
minimal deformations of Mk for k > 1 having three embedded ends. In difference with
Mk, the generic element of this family does not enjoy any property of symmetry. In fact,
the admitted deformations are: the rotation about a vertical axis, the translation and
dilation of any of the three ends of the surface. In addition, it is possible to bend the two
catenoidal type ends and change the type of the middle end obtaining a catenoidal type
end.

Here it is the statement of the main result.

Theorem 1. For each possible choice of the limit values of the normal vectors of the three
ends, there is, up to isometries, a 1-dimensional real analytic family of smooth minimal
deformations of Mk, for k > 1, letting the middle planar end horizontal.

The last two chapters of the thesis are devoted to the construction of new families of
examples of minimal surfaces. Their construction is based on a gluing procedure which
involves the surface Mk.
In chapter 3 I show the existence in the space H2 × R, where H2 denotes the hyperbolic
plane, of a family of minimal examples inspired to Mk. The statement of the main theorem
is

Theorem 2. For all k > 1 there exists in H2×R a minimal surface of genus k with three
horizontal ends: two catenoidal type ends and a middle planar end.

I glue the image by a homothety of parameter 2ε, with ε sufficiently small, of a compact
part of Mk along its three boundary curves to two minimal graphs that are respectively
asymptotic to an upper half catenoid and a lower half catenoid defined in H2 ×R and to
a minimal graph asymptotic to H2 × {0}.

5



The chapter 4 is devoted to the construction of two new families of examples of periodic
minimal surfaces with genus bigger than 1. This result has been obtained in collaboration
with Laurent Hauswirth and M. Magdalena Rodŕıguez Pérez.

We denote by K = {Mσ,α,β}σ,α,β the family of minimal surfaces called Karcher-Meeks-
Rosenberg examples or toroidal halfplane layers. They have been classified as the only
doubly periodic minimal surfaces in R3 with genus one and finitely many parallel Scherk-
type ends in the quotient. We denote by M̃σ,α,β the lifting of {Mσ,α,β}σ,α,β to S1 × R2 by
forgetting its non horizontal period.

The construction is based on a gluing procedure which involves a compact part of the
surface Mk with the catenoidal type ends slightly bent, which is glued with a minimal
graph about a strip of finite breadth along its middle boundary curve, to one half of
M̃σ,α,β, (one time with α = 0 and a second time with β = 0) along the upper boundary
curve and a Scherk type surface along the lower boundary curve.

We obtain two families of properly embedded minimal surfaces in S1 × R2 with genus
k > 1, infinitely many parallel Scherk-type and two limit ends.
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Chapter 1

Index and nullity of the Gauss map
of the Costa-Hoffman-Meeks surfaces

Introduction

In the years 80’s and 90’s the study of the index of minimal surfaces in Euclidean space
has been quite active. D. Fisher-Colbrie in [8], R. Gulliver and H. B. Lawson in [10]
proved independently that a complete minimal surface M in R3 with Gauss map G has
finite index if and only if it has finite total curvature. D. Fisher-Colbrie also observed
that if M has finite total curvature its index coincides with the index of an operator LḠ
(that is the number of its negative eigenvalues) associated to the extended Gauss map Ḡ
of M̄, the compactification of M. Moreover N(Ḡ), the null space of LḠ, if restricted to
M consists of the bounded solutions of the Jacobi equation. The nullity, Nul(Ḡ), that is
the dimension of N(Ḡ), and the index are invariants of Ḡ because they are independent
of the choice of the conformal metric on M̄.

The computation of the index and of the nullity of the Gauss map of the Costa surface
and of the Costa-Hoffman-Meeks surface of genus g = 2, . . . , 37 appeared respectively in
the works [30] and [29] of S. Nayatani. The aim of this work is to extend his results to
the case where g > 38.

In [30] he studied the index and the nullity of the operator LG associated to an arbitrary
holomorphic map G : Σ → S2, where Σ is a compact Riemann surface. He considered
a deformation Gt : Σ → S2, t ∈ (0,+∞), with G1 = G (see equation (1.2)) and gave
lower and upper bounds for the index of Gt, Ind(Gt), and its nullity, Nul(Gt), for t near
to 0 and +∞ and t = 1. The computation of the index and the nullity in the case of the
Costa surface is based on the fact that the Gauss map of this surface is a deformation
for a particular value of t of the map G defined by π ◦G = 1/℘′, that is its stereographic
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projection is equal to the inverse of the derivative of the Weierstrass ℘-function for an
unit square lattice. S. Nayatani computed Ind(Gt) and Nul(Gt) for t ∈ (0,+∞), where G
is the map defined above. So the result concerning the Costa surface follows as a simple
consequence from that. He obtained that for this surface the index and the nullity are
equal respectively to 5 and 4.

In [29] S. Nayatani extended the last result treating the case of the Costa-Hoffman-Meeks
surface of genus g but only for 2 6 g 6 37. He obtained that the index is equal to 2g + 3
and the nullity is equal to 4. Here we will show that these results continue to hold also
for g > 38.

J. Pérez and A.Ros in [34] call a minimal surface non degenerate if the bounded Jacobi
functions about the surface are induced by the isometries of the ambient space. As con-
sequence of the works [29] and [30], the Costa-Hoffman-Meeks surface was known to be
non degenerate with respect to this definition, but only for 1 6 g 6 37.

The result of S. Nayatani about the nullity of the Gauss map of the Costa-Hoffman-Meeks
surface is essential for the construction due to L. Hauswirth and F. Pacard [11] of a family
of minimal surfaces with two limit ends asymptotic to half Riemann minimal surfaces and
of genus g with 1 6 g 6 37. Their construction is based on a gluing procedure which
involves the Costa-Hoffman-Meeks surface of genus g and two half Riemann minimal sur-
faces. In particular the authors needed show the existence of a family of minimal surfaces
close to the Costa-Hoffman-Meeks surface, invariant under the action of the symmetry
with respect to the vertical plane x2 = 0, having one horizontal end asymptotic to the
plane x3 = 0 and having the upper and the lower end asymptotic (up to translation)
respectively to the upper and the lower end of the standard catenoid whose axis of revo-
lution is directed by the vector sin θ e1 + cos θ e3, θ 6 θ0 with θ0 sufficiently small. That
was obtained by Schauder fixed point theorem and using the fact that the nullity of the
Gauss map of the surface is equal to 4. In [11] the authors refer to this last result as a
non degeneracy property of the Costa-Hoffman-Meeks surface. It is necessary to remark
that here the choice of working with symmetric deformations of the surface with respect
to the plane x2 = 0, has a key role. Because of the restriction on the value of the genus
which affects the result of S. Nayatani, it was not possible to prove the existence of this
family of minimal surfaces for higher values of the genus.

So one of the consequences of our work is the proof of the non degeneracy of the Costa-
Hoffman-Meeks surface for g > 1 in the sense of the definition given in [34] and also, only
in a symmetric setting, in [11]. So we can state that the family of examples constructed
by L. Hauswirth and F. Pacard exists for all the values of the genus. Moreover our result
allows us to show in chapter 2 the existence of a family of minimal deformations of the
Costa-Hoffman-Meeks surface for each value of the genus.
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1.1 Preliminaries

Let M be a complete oriented minimal surface in R3. The Jacobi operator of M is

L = −4+ 2K

where 4 is the Laplace-Beltrami operator and K is the Gauss curvature. Moreover we
suppose that M has finite total curvature. Then M is conformally equivalent to a compact
Riemann surface with finitely many punctures and the Gauss map G : M → S2 extends
to the compactified surface holomorphically. So in the following we will pay attention to a
generic compact Riemann surface, denoted by Σ and G : Σ → S2 a not constant holomor-
phic map, where S2 is the unit sphere in R3 endowed with the complex structure induced
by the stereographic projection from the north pole (denoted by π). We fix a conformal
metric ds2 on Σ and consider the operator LG = −4+ |dG|2, acting on functions on Σ.

We denote by N(G) the kernel of LG. We define Nul(G), the nullity of G, as the dimension
of N(G). Since L(G) = {a · G | a ∈ R3} is a three dimensional subspace of N(G), then
Nul(G) > 3. We denote the index of G, that is the number of negative eigenvalues of LG,
by Ind(G). The index and the nullity are invariants of the map G: they are independent
of the metric on the surface Σ. So we can consider on Σ the metric induced by G from
S2.

N. Ejiri and M. Kotani in [6] and S. Montiel and A. Ros in [25] proved that a non linear
element of N(G) is expressed as the support function of a complete branched minimal
surface with planar ends whose extended Gauss map is G. In the following we will review
briefly some results contained in [25] used by S. Nayatani in [30].

We will use some definitions and concepts of the algebraic geometric. They are recalled
in subsection 1.5.1.

Let γ be the meromorphic function defined by π ◦ G. Let pj and ri be respectively the
poles and the branch points of γ. We denote by P (G) =

∑ν
i=1 njpj, S(G) =

∑µ
i=1miri

respectively the polar and ramification divisor of γ. Here nj,mi denote, respectively, the
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multiplicity of the pole pj and the multiplicity with which γ takes its value at ri. We
define on the surface Σ the divisor

D(G) = S(G)− 2P (G)

and introduce the vector space H̄(G) (see [25], theorem 4)

H̄(G) =

{
ω ∈ H0,1(kΣ +D(G)) |Resriω = 0, 1 6 i 6 µ,

Re

∫
α

(1− γ2, i(1 + γ2), 2γ)ω = 0, ∀α ∈ H1(Σ,Z)

}
,

where kΣ is a canonical divisor of Σ and H1(Σ,Z) is the first group of homology of Σ. Sup-
pose that the divisor D has an expression of the form

∑
njvj −

∑
miui, with nj,mi ∈ N.

An element of H0,1(D) can be expressed as fdz, where f is a meromorphic function on Σ
with poles of order not bigger than nj at vi and zeroes of order not smaller than mi at ui.
Equivalently, if gdz, where g is a meromorphic function, is the differential form associated
with the divisor D, the product fg must be holomorphic.

For ω ∈ H̄(G), let X(ω) : Σ \ {r1, . . . , rµ} → R3 be the conformal immersion defined by

X(ω)(p) = Re

∫ p

(1− γ2, i(1 + γ2), 2γ)ω.

Then X(ω) · G, the support function of X(ω), extends over the ramification points
r1, . . . , rµ smoothly and thus gives an element of N(G). Conversely, every element of
N(G) is obtained in this way. In fact the map

i : H̄(G) → N(G)/L(G)
ω → [X(ω) ·G]

(1.1)

is an isomorphism. This result, used in association with the Weierstrass representation
formula, gives a description of the space N(G). To obtain the dimension of N(G) it is
sufficient to compute the dimension of H̄(G). Since the dimension of L(G) is equal to 3,
then Nul(G) = 3 + dim H̄(G).

We denote by At a one parameter family (0 < t < +∞) of conformal diffeomorphisms of
the sphere S2 defined by

π ◦ At ◦ π−1w = tw, w ∈ C ∪ {∞}.

We define for 0 < t <∞
Gt = At ◦G. (1.2)
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S. Nayatani in [30] gave lower and upper bounds for the index and, applying the method
recalled above, for the nullity of Gt, t ∈ (0,∞), a deformation of an arbitrary holomorphic
map G : Σ → S2, where Σ is a compact Riemann surface. In the same work, choosing
appropriately the map G and the surface Σ, he computed the index and the nullity for
the Gauss map of the Costa surface. In fact the extended Gauss map of this surface is a
deformation of G for a particular value of t. We describe briefly the principal steps to get
this result.

Firstly it is necessary to study the vector space H̄(Gt). A differential ω ∈ H0,1(kΣ+D(G))
with null residue at the ramification points, is an element of H̄(Gt) if and only if the pair
(tγ, ω) defines a branched minimal surface by the Weierstrass representation. If one
sets γ = 1/℘′ then there exist only two values of t, denoted by t′ < t′′, for which the
condition above is verified and moreover dimH(Gt) = 1. In other words, thanks to the
characterization of the non linear elements of N(Gt) by the isomorphism described by
(1.7), if t = t′, t′′, Nul(Gt) = 4. As for the index, if t = t′, t′′ then Ind(Gt) = 5. Since Gt′′

is the extended Gauss map of the Costa surface, one can state:

Theorem 3. Let Ḡ be the extended Gauss map of the Costa surface. Then

Nul(Ḡ) = 4, Ind(Ḡ) = 5.

The same author in [29] treated the more difficult case of the Costa-Hoffman-Meeks sur-
faces of genus 2 6 g 6 37. That is the subject of next section.

1.2 The case of the Costa-Hoffman-Meeks surface of

genus smaller than 38

In this section we expose some of the background details at the base of section 3 of the
work [29]. S. Nayatani provided them to us in [31].

We denote by Mg the Costa-Hoffman-Meeks surface of genus g. Let Σg be the compact
Riemann surface

Σg = {(z, w) ∈ (C ∪ {∞})2 |wg+1 = zg(z2 − 1)} (1.3)

and let Q0 = (0, 0), P+ = (1, 0), P− = (−1, 0), P∞ = (∞,∞). It is known that Mg =
Σg \ {P+, P−, P∞}.

The following result describes the properties of symmetry of Mg and Σg.
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Lemma 4. ([14]) Consider the conformal mappings

κ(z, w) = (z̄, w̄) λ(z, w) = (−z, ρw), (1.4)

where ρ = e
iπg
g+1 of (C∪{∞})2. The map κ is of order 2 and λ is of order 2g+2. The group

generated by κ and λ is the dihedral group D2g+2. This group of conformal diffeomorphisms
leaves Mg invariant, fixes both Q0 and P∞ and extend to Σg. Also κ fixes the points P±
while λ interchanges them.

We set γ(w) = w. Let G : Σg → S2 be the holomorphic map defined by

π ◦G(z, w) = γ(w). (1.5)

We denote by ri, i = 1, . . . , µ, the ramification points of γ and by R(G) the divisor∑µ
i=1 ri. Theorem 5 of [25] shows that the space N(G)/L(G), that we have introduced

in previous section, is also isomorphic to a space of meromorphic quadratic differentials.
This alternative description of N(G)/L(G) that we present in the following, was adopted
by S. Nayatani in [29]. We start defining the vector spaces Ĥ(G) and H(G).

Ĥ(G) =

{
σ ∈ H0,2(2kΣ +R(G)) |Resri

σ

dγ
= 0, i = 1, . . . , µ

}
, (1.6)

H(G) =

{
σ ∈ Ĥ(G) |Re

∫
α

(1− γ2, i(1 + γ2), 2γ)
σ

dγ
= 0, ∀α ∈ H1(Σ,Z)

}
,

where kΣ is a canonical divisor of Σ. We remark that the elements of H0,2(2kΣ + R(G))
are quadratic differentials (see subsection 1.5.1). Since hereafter we will work only with
quadratic differentials, we can set H0(·) = H0,2(·) to simplify the notation. If we sup-
pose that the divisor 2kΣ + R(G) has an expression of the form

∑
njvj −

∑
miui, with

nj,mi ∈ N, an element of H0(2kΣ +R(G)) can be expressed as f(dz)2, where f is a mero-
morphic function on Σ with poles of order not bigger than nj at vi and zeroes of order
not smaller than mi at ui. Equivalently, if g(dz)2, where g is a meromorphic function,
is the differential form associated with the divisor 2kΣ + R(G), the product fg must be
holomorphic.

For σ ∈ H(G), let X(σ) : Σ \ {r1, . . . , rµ} → R3 be the conformal immersion defined by

X(σ)(p) = Re

∫ p

(1− γ2, i(1 + γ2), 2γ)
σ

dγ
.

ThenX(σ)·G, the support function ofX(σ), extends over the ramification points r1, . . . , rµ
smoothly and thus gives an element of N(G). Conversely, every element of N(G) is ob-
tained in this way. In fact the map

i : H(G) → N(G)/L(G)
σ → [X(σ) ·G]

(1.7)
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is an isomorphism. So to obtain the dimension of N(G) it is sufficient to compute the
dimension of H(G). We recall that the dimension of L(G) is equal to 3, so Nul(G) =
3 + dimH(G).

Since the extended Gauss map of the Costa-Hoffman-Meeks surfaces is a deformation in
the sense of the definition (1.2) of the map G, we need to study the space H(Gt). From
(1.6) and (1.2) it is clear that Ĥ(G) = Ĥ(Gt) and

H(Gt) =

{
σ ∈ Ĥ(Gt) |Re

∫
α

(1− t2γ2, i(1 + t2γ2), 2tγ)
σ

dγ
= 0, ∀α ∈ H1(Σg,Z)

}
.

Long computations ([31], see subsection 1.5.2 for some details) show that a basis of the
differentials of the form σ/dγ, where σ ∈ Ĥ(G) = Ĥ(Gt), and whose residue at the
ramification points of γ(w) = w is zero, is formed by

ω
(1)
k =

zk−1

wk
dz

w
, with k = 0, . . . , g − 1,

ω
(2)
k =

((k − 2)z2 − kA2)

(z2 − A2)2

( z
w

)k−1 dz

w
, with k = 0, . . . , g,

ω
(3)
k =

((k − 2)z2 − kA2)

w(z2 − A2)2

( z
w

)k−1 dz

w
, with k = 0, . . . , g − 1,

where A =
√

g
g+2

.

Now we put attention to the space H(Gt). We recall that we are interested in the com-
putation of its dimension. By the definition of H(Gt), a differential σ ∈ Ĥ(Gt) belongs
to H(Gt) if and only if ∀α ∈ H1(Σg,Z) the differential form ω = σ

dγ
= σ

dw
satisfies∫

α

ω = t2
∫
α

γ2(w)ω, (1.8)

Re

∫
α

γ(w)ω = 0. (1.9)

If these two conditions are satisfied then (γ, w) are the Weierstrass data of a branched min-
imal surface. Of course, it is sufficient to impose that these equations are satisfied when α
varies between the elements of a basis of H1(Σg,Z). The convenient basis of H1(Σg,Z) is
constructed as follows. Let β(t) = 1

2
+ ei2πt, 0 6 t 6 1. Let β̃(t) = (β(t), w(β(t))) be a lift

of β to Σg such that, for example, β̃(0) = (3
2
, w(0)), with w(0) ∈ R. As stated in lemma 4

the group of conformal diffeomorphisms of Σg is isomorphic to the dihedral group D2g+2.
The collection {λl ◦ β̃, l = 0, . . . , 2g−1}, where λ is the generator of D2g+2 of order 2g+2,
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is a basis of H1(Σg,Z).

Now we must impose (1.8) and (1.9) for α = λl ◦ β̃, with l = 0, . . . , 2g− 1. To do that we
collapse β to the unit interval. In other terms we deform continously β in such a way the
limit curve is the union of two line segments lying on the real line. We set

ω =

g−1∑
0

c
(1)
k ω

(1)
k +

g∑
0

c
(2)
k ω

(2)
k +

g−1∑
0

c
(3)
k ω

(3)
k ,

where c
(i)
k ∈ C.

Taking into account these assumptions, it is possible to show that the equation (1.8), if
the genus g is 2, is equivalent to the following system of four equations (see subsection
1.5.3) 

f0 = −t2h̄0

f1 = 0
p1 = −t2q̄1
p2 = −t2q̄0.

(1.10)

If g > 3 there are the following additional 2g − 4 equations to consider{
fk = −t2q̄g−k+2

pg−k+2 = −t2h̄k
(1.11)

where k = 2, . . . , g − 1 and

f0 =
(g + 2)2

2(g + 1)
c
(3)
0 sin

(
π

g + 1

)
K0,

fk =

(
−c(1)k +

(g + 2)(g + 2 + k)

2(g + 1)
c
(3)
k

)
sin

(
(k + 1)π

g + 1

)
Kk, k = 1, . . . , g − 1,

h0 =
(g + 2)2

2(g + 1)
c
(3)
0 sin

(
−π
g + 1

)
J0,

hk =

(
c
(1)
k +

(g + 2)(g + 2− k)

2(g + 1)
c
(3)
k

)
sin

(
(k − 1)π

g + 1

)
Jk, k = 2, . . . , g − 1,

pk = −(g + 2)k

2(g + 1)
c
(2)
k sin

(
kπ

g + 1

)
Ik, k = 1, . . . , g,
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qk =
(g + 2)(2g + 4− k)

2(g + 1)
c
(2)
k sin

(
(k − 2)π

g + 1

)
Lk, k = 0, 1, 3, . . . , g,

and

Im =
g + 1

m

Γ
(
1 + m

2(g+1)

)
Γ
(
1− m

g+1

)
Γ
(
1− m

2(g+1)

) ,

Jm =
g + 1

g −m+ 2

Γ
(

1
2

+ m−1
2(g+1)

)
Γ
(
1− m−1

g+1

)
Γ
(

1
2
− m−1

2(g+1)

) ,

Km = Jm+2,

Lm =
m− 2

2g −m+ 4
Im−2.

The equation (1.9) if the genus g is 2, is equivalent to the following system of two equations
(see subsection 1.5.3) {

d1 = 0
e2 = ē0.

(1.12)

If g > 3 there are the following additional g − 2 equations to consider

dk = ēg−k+2 (1.13)

where k = 2, . . . , g − 1, and

dk =

(
c
(1)
k − k(g + 2)

2(g + 1)
c
(3)
k

)
sin

(
kπ

g + 1

)
Ik, k = 1, . . . , g − 1,

ek =
(g + 2)(g + 2− k)

2(g + 1)
c
(2)
k sin

(
(k − 1)π

g + 1

)
Jk, k = 0, 2, . . . , g.

We are looking for the values of t such that the previous systems have non trivial solutions
in terms of c

(j)
i . Only for these special values of t it holds dimH(Gt) > 0 or equivalently

Nul(Gt) > 3.

We start with the analysis of the system (1.10). This system admits non trivial solutions
if and only if t assumes three values denoted by t1, t2, t3. Obviously they are functions of g.
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If we set s = 1
g+1

then we can write

t1 =

√
K0

J0

=

√
1− s2

2

√
Γ (1− s)

Γ (1 + s)

Γ
(
1− s

2

)
Γ
(
1 + s

2

) ,
t2 =

√
I1

(2g + 3)L1

=

√
Γ (1− s)

Γ (1 + s)

Γ
(
1 + s

2

)
Γ
(
1− s

2

) ,
t3 =

√
I2J0

gL0K0

=
2

1− s

√(
Γ(1 + s)

Γ(1− s)

)3
√

Γ(1− 2s)

Γ(1 + 2s)

Γ(3/2− s/2)

Γ(1/2 + s/2)
.

We recall that if g > 3 there are other equations to consider. They are
fk = −t2q̄g−k+2

pg−k+2 = −t2h̄k
dk = ēg−k+2

where k = 2, . . . , g − 1. Thanks to the particular structure of the equations, it is possible
to study separately for each set of three equations the existence of solutions. Each set
of three equations admits non trivial solutions if and only if the following matrix has
determinant equal to zero −Kk (g + 2 + k)Kk (g + 2 + k)t2Lg−k+2

t2Jk (g + 2− k)t2Jk (g + 2− k)Ig−k+2

Ik −kIk −kJg−k+2

 .

After the change of variable l = g − k + 1 so that 2 6 l 6 g − 1, it is possible to show
that the determinant is

−(g + 2)(at4 + bt2 + c), (1.14)

with
a = (2g − l + 3)Ig−l+1Jg−l+1Ll+1

b = −2(g − l + 1)Jl+1Jg−l+1Kg−l+1

c = (l + 1)Ig−l+1Il+1Kg−l+1.

We are interested in finding the positive values of t such that

at4 + bt2 + c = 0. (1.15)

To simplify the notation we introduce the following three functions

F (v) =

(
Γ(1

2
+ v

2
)

Γ(1
2
− v

2
)

)2
Γ(1− v)

Γ(1 + v)
,
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I(v) =

(
Γ(1− v

2
)

Γ(1 + v
2
)

)2
Γ(1 + v)

Γ(1− v)
,

L(v) =

(
Γ(1 + v

2
)

Γ(1− v
2
)

)2
Γ(1− v)

Γ(1 + v)
=

1

I(v)
.

The discriminant b2 − 4ac of the equation (1.15), seen like an equation of degree two in
the variable t2, is negative if and only if X = b2/4ac < 1. It is possible to show that

X =
l2

l2 − 1
F 2

(
l

g + 1

)
I

(
l − 1

g + 1

)
I

(
l + 1

g + 1

)
. (1.16)

S. Nayatani in [31] showed that if 2 6 g 6 37, thenX < 1 and as consequence the equation
(1.15) has not any solution since its discriminant is negative. Then dimH(Gt) > 0 only
for t = t1, t2, t3. Summarizing we can state (see [29] for other details):

Theorem 5. If 2 6 g 6 37 and t ∈ (0,+∞), then

Nul(Gt) =


4 if t = t1, t2
5 if t = t3
3 elsewhere.

Since the extended Gauss map of the Costa-Hoffman-Meeks surfaces is exactly Gt2 , it is
possible to state that the null space of the Jacobi operator of Mg has dimension equal to
4 for 2 6 g 6 37.

Other values of t for which Nul(Gt) > 3 are admitted only if g > 38. In [29] S. Nayatani
conjectured these values were bigger than t3. The proof of the conjecture and its conse-
quences will be showed in sections 1.3 and 1.4.

1.3 The case g > 38

Thanks the previous observations it is clear that if we assume g > 38 It is possible to
prove that X is a decreasing function in the variables

x =
l

g + 1
, y =

l + 1

g + 1
, z =

l − 1

g + 1

with 2 6 l 6 g−1. We recall that we have set s = 1
g+1

. We know that for l = 2 and g = 37

the discriminant of the equation (1.15) is negative. For these values of l and g the vari-
ables x, y, z, s are respectively equal to xmax = 2smax, ymax = 3smax, zmax = smax = 1/38.
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Then we will study the solutions of (1.15) for i ∈ [0, imax] (we call these admissible values)
where i denotes x, y, z, s because for bigger values of the three variables the discriminant
continues to be negative and so the equation (1.15) does not admit solutions. Numerical
tests show that the value imax, become smaller as g is bigger. Since it is not possible to
explicit the dependence of imax on g we shall work with constant quantities.

All the solutions of (1.15), that we denote by t±(l, g), satisfy t2±(l, g) = T1 ± T2, with

T1 =
l

l − 1
F (x) I (z) (1.17)

and

T2 =

√(
l

l − 1

)2

F 2 (x) I2 (z)− l + 1

l − 1
L (y) I (z). (1.18)

We will prove that, for 0 6 l
g+1

6 xmax = 2
38
, with 2 6 l 6 g − 1 and g > 38, it holds

t23 (s) < t2−(l, g). (1.19)

We need study the behaviour of the functions F, I, L, F 2, I2 that appear in (1.17) and
(1.18). This aim is pursued by the use of first order series of these functions.
The Mac-Laurin series of the functions F (x), G(z), L(y), F 2(x), I2(z) for admissible values
of x, y, z are

F (x) = 1 +RF (d1x)x, I(z) = 1 +RI(d2z)z, L(y) = 1 +RL(d3y)y, (1.20)

F 2(x) = 1 +RF 2(c1x)x, I2(x) = 1 +RI2(c2x)x,

where ci, di ∈ (0, 1). So we can write

F (x)I(z) = 1 +RFI(x, z), F
2(x)I2(z) = 1 +RF 2I2(x, z), L(y)I(z) = 1 +RLI(y, z),

with
RFI(x, z) = RF (d1x)x+RI(d2z)z +RF (d1x)RI(d2z)xz,

RF 2I2(x, z) = RF 2(c1x)x+RI2(c2z)z +RF 2(c1x)RI2(c2z)xz,

RLI(y, z) = RL(d3y)y +RI(d2z)z +RI(d2z)RL(d3y)zy.

In the following ψ(x) the digamma function. It is related to Γ(x), the gamma function,
by

ψ(x) =
d

dx
(ln Γ(x)) .

For the properties of this special function we refer to [1].

The following proposition gives useful properties of the functions just introduced.
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Proposition 6. If x ∈ [0, xmax], z ∈ [0, zmax], and y ∈ [0, ymax], the following assertions
hold:

1. RF (x) < 0

2. RI(z) 6 0

3. RL(y) > 0

4. (RF )′x(x) > 0

5. min(RI)
′
z(z) = −0.095 · · ·

6. RFI(x, z) > Cx with C = −4 ln 2

7. RLI(y, z) > 0

8. RI2(z) 6 0

9. W (x) = RF 2(x) < 0

10. W ′
x(x) > 0, so RF 2(x) is an increasing function

11. W ′′
xx(x) < 0

12. W ′′′
xxx(x) > 0

13. If we set Y (x) = xW (x), then Y ′
x(x) 6 0

14. Y ′′
xx(x) > 0

15. Y ′′′
xxx(x) 6 0.

Proof.

1. RF (x) = F ′
x(x) = F (x)ΨF (x), where

ΨF (x) = −ψ(1− x)− ψ(1 + x) + ψ

(
1

2
− x

2

)
+ ψ

(
1

2
+
x

2

)
.

We observe that

ΨF (x) = 2
∞∑
k=0

1

(2k)!

(
1

22k
ψ(2k)

(
1

2

)
− ψ(2k)(1)

)
x2k.

Since ΨF (0) = 2ψ
(

1
2

)
− 2ψ(1) = −4 ln 2, ψ(2k)(1) < 0 and ψ(2k)

(
1
2

)
= (22k+1 −

1)ψ(2k)(1) < 0, if k > 1 (see formulas 6.4.2 and 6.4.4 of [1]), we can conclude that
ΨF (x) < 0 and it is a decreasing function. Since F (x) > 0 then RF (x) < 0 and
F (x) is a decreasing function.
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2. RI(z) = I ′z(z) = I(z)ΨI(z), where

ΨI(z) = ψ(1− z) + ψ(1 + z)− ψ
(
1− z

2

)
− ψ

(
1 +

z

2

)
.

We observe that

ΨI(z) = 2
∞∑
k=1

1

(2k)!
ψ(2k)(1)

(
1− 1

22k

)
z2k.

Since ψ(2k)(1) < 0 for k > 1 then ΨI(z) 6 0 and it is a decreasing function. Since
I(z) > 0 then RI(z) 6 0.

3. RL(y) = L′y(y) = L(y)ΨL(y), where ΨL(y) = −ΨI(y). Then ΨL(y) > 0 and it is an
increasing function. Since L(y) = 1/I(y) > 0, then RL(y) > 0.

4. The derivative of RF is F ′′
xx(x) = F (x)(Ψ2

F (x)+(ΨF )′x(x)). Since ΨF (x) < 0 and it is
a decreasing function, Ψ2

F (x) > 0 and increasing. It holds Ψ2
F (x) > Ψ2

F (0) = 16 ln2 2.

(ΨF )′x(x) = 2
∞∑
k=1

1

(2k − 1)!

(
1

22k
ψ(2k)

(
1

2

)
− ψ(2k)(1)

)
x2k−1.

All the coefficients of the series are negative (see the point 1) so (ΨF )′x(x) 6 0 and it
is a decreasing function. In particular (ΨF )′x(x) > (ΨF )′x(xmax) = −0.19 · · · . Since
F (x) > 0 and it is a decreasing function we can conclude that

F ′′
xx(x) > F (xmax)(Ψ

2
F (0) + (ΨF )′x(xmax)) = 6.4 · · · .

5. The derivative of RI is I ′′zz(z) = I(z)(Ψ2
I(z) + (ΨI)

′
z(z)). Since ΨI(z) 6 0 and it

is a decreasing function (see the point 2), Ψ2
I(z) > 0 and increasing. It holds

Ψ2
I(z) 6 Ψ2

I(zmax) = 1.5 · · · · 10−6.

(ΨI)
′
z(z) = 2

∞∑
k=1

1

(2k − 1)!
ψ(2k)(1)

(
1− 1

22k

)
z2k−1.

All the coefficients of the series are negative so (ΨI)
′
z(z) 6 0 and it is a decreasing

function. In particular (ΨI)
′
z(z) > (ΨI)

′
z(zmax) = −0.095 · · · . Since I(z) > 0 and it

is a decreasing function we can conclude that

I ′′zz > I(zmax)(Ψ
2
I(0) + (ΨI)

′
z(zmax)) = −0.095 · · · .
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6. Since RF < 0 and RI 6 0, it holds that

RFI(x, z) > RF (d1x)x+RI(d2z)z,

where di ∈ (0, 1). In the point 4 we have proved that RF is an increasing function
and we have computed the minimum value of its derivative. Moreover it is also
clear thanks to the point 5 that this value is always bigger than the maximum of
the absolute value of the derivative of RI . Now it is sufficient to remember that the
variables t and z are not independent. We can conclude that RFI is an increasing
function. Then RFI > RF (0)x+RI(0)z = Cx.

7. We recall that RLI(y, z) = L(y)I(z)− 1, L(t) = 1/I(t) and

y =
l + 1

g + 1
>
l − 1

g + 1
= z.

We want to prove that L(y)I(z)− 1 > 0 or equivalently L(y) > 1/I(z). But thanks
to the point 3, L is an increasing function, so

L(y) > L(z) =
1

I(z)
.

8. RI2(z) = (I2)′z(z) = 2I2(z)ΨI(z). From the proof of the point 2, ΨI(z) 6 0 and it is
a decreasing function. Since 2I2(z) > 0, then also RI2(z) 6 0.

9. W (x) = (F 2)′x(x) = 2F 2(x)ΨF (x). In the point 1 we have observed that ΨF (x) is a
negative and decreasing function. Since 2F 2(x) > 0, then also W (x) is a negative
function.

10. W ′
x(x) = F 2 (4Ψ2

F (x) + 2(ΨF )′x(x)) . Since ΨF (x) < 0 and it is a decreasing function,
Ψ2
F (x) is a positive and increasing function. In the proof of the point 4 we observed

that (ΨF )′x(x) 6 0 and it is a decreasing function. Since 2(ΨF )′x(xmax) = −0.38 · · ·
and 4Ψ2

F (x) > 4Ψ2
F (0) = 64 ln2 2 = 30.74 · · · , we can conclude that W ′

x(x) > 0.

11. The explicit expression of W ′′
xx is

W ′′
xx =

1

2
F 2(x)

(
16Ψ3

F (x) + 24ΨF (x)(ΨF )′x(x) + 4(ΨF )′′xx(x)
)
.

In the proof of the point 1 we observed that ΨF (x) is a negative and decreasing
function. So 16Ψ3

F (x) 6 16Ψ3
F (0) = −1024 ln3 2 = −341. · · · . Thanks to the proof

of the point 10 we know that (ΨF )′x(x) 6 0 and it is a decreasing function. In
particular 0 > (ΨF )′x(x) > (ΨF )′x(xmax) = −0.19 · · · . We can conclude that

24ΨF (x)(ΨF )′x(x) 6 24(ΨF )′x(xmax)ΨF (xmax) = 12. · · · .
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As for the last summand, it is negative. In fact

(ΨF )′′xx(x) = 2
∞∑
k=1

1

(2k − 2)!

(
1

22k
ψ(2k)

(
1

2

)
− ψ(2k)(1)

)
x2k−2.

Since all the coefficients of the series are negative, we get

4(ΨF )′′xx(x) 6 4(ΨF )′′xx(0) = −12ζ(3) = −14.4 · · · ,

where ζ(·) denotes the Riemann zeta function.

Summarizing we can conclude that

16Ψ3
F (x) + 24ΨF (x)(ΨF )′x(x) + 4(ΨF )′′xx(x) 6

6 16Ψ3
F (0) + 24ΨF (xmax)(ΨF )′x(xmax) + 4(ΨF )′′xx(0) = −342.7 · · · .

That assures W ′′
xx < 0.

12. The explicit expression of W ′′′
xxx is

W ′′′
xxx =

1

4
F 2(x)

(
64Ψ4

F + 192Ψ2
F (ΨF )′x + 48((ΨF )′x)

2+

+64ΨF (ΨF )′′xx + 8(ΨF )′′′xxx) .

We start observing that, since ΨF is a negative decreasing function,

64Ψ4
F (x) > 64Ψ4

F (0) = 64(4 ln 2)4 = 3782. · · · .

Since (ΨF )′x(x) is a not positive and decreasing function (point 10), then 192Ψ2
F (ΨF )′x

enjoys the same property. In particular

192Ψ2
F (ΨF )′x > 192Ψ2

F (xmax)(ΨF )′x(xmax) = −282. · · · .

From the previous observations it follows that 64ΨF (ΨF )′′xx > 0, 48((ΨF )′x)
2 > 0

and they are increasing functions.

As for the last summand which appears in the expression of W ′′′
xxx, we observe that

(ΨF )′′′xxx = 2
∞∑
k=1

1

(2k − 1)!

(
1

2(2k+2)
ψ(2k+2)

(
1

2

)
− ψ(2k+2)(1)

)
x2k−1.

It is a not positive and decreasing function. We can conclude that

8(ΨF )′′′xxx(x) > 8(ΨF )′′′xxx(xmax) = −19.9 · · · .
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Summarizing we can state W ′′′
xxx(x) > 0. Furthermore from our observations it fol-

lows that
W ′′′
xxx(x) 6

(
16Ψ4

F (xmax) + 24((ΨF )′x)
2(xmax)

+16ΨF (xmax)(ΨF )′′xx(xmax)) < CW

with CW = 1125.

13. It holds that Y ′
x(x) = W (x) + xW ′

x(x). From the points 9, 10 and 11 we know that
W (x) is a negative increasing function and W ′

x(x) is positive and decreasing for
x ∈ [0, xmax]. So we can write W (x) 6 W (xmax) = −4.1 · · · and W ′

x(x) 6 W ′
x(0) =

64 ln2 2 = 30.7 · · · . Then Y ′
x(x) 6 W (xmax) + xmaxW

′
x(0) < 0.

14. It holds that Y ′′
xx(x) = 2W ′

x(x) + xW ′′
xx(x). From the points 10, 11 and 12 we know

that W ′
x(x) is a positive decreasing function and W ′′

xx(x) is negative and increasing.
So we can write W ′

x(x) > W ′
x(xmax) = 22. · · · . and W ′′

xx(x) > W ′′
xx(0) = −64 ln3 4−

6ζ(3) = −177. · · · . Then Y ′
x(x) > 2W ′

x(xmax) + xmaxW
′′
xx(0) > 0.

15. It holds that Y ′′′
xxx(x) = 3W ′′

xx(x) + xW ′′′
xxx(x). From the points 11 and 12 we know

that W ′′
xx(x) is a negative increasing function and W ′′′

xxx(x) < CW is positive. Then
Y ′′′
xxx(x) 6 3W ′′

xx(xmax) + xmaxCW < 0.

Proposition 7. For all the admissible values of x, y, z it holds that

T2 6
1 + Cl2x

l − 1
,

where C = −4 ln 2.

Proof. The epression of T2 is given by (1.18). We rewrite it in the following way

T2 =
1

l − 1

√
l2F 2 (x) I2 (z)− (l2 − 1)L(y)I(z).

If 1 + R̄(x, y, z, l) is the Mac-Laurin series of the function under the square root then we
can write

T2 =
1

l − 1

√
1 + R̄(x, y, z, l),

where R̄(x, y, z, l) = l2(RF 2(c1x)x(1 + RI2(c2z)z) + RI2(c2z)z) − (l2 − 1)RLI(y, z), and
c1, c2 ∈ (0, 1). Thanks to the points 7,8,9 and 10 of proposition 6, we know that RLI(y, z) >
0, RI2(x) 6 0 and that RF 2(x) is a negative increasing function, so RF 2(c1x) 6 RF 2(x).
We can conclude that, if we set

R(x, z, l) = l2RF 2(x)x(1 +RI2(c2z)z),
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R̄(x, y, z, l) 6 l2RF 2(c1x)x(1 +RI2(c2z)z) 6 R(x, z, l),

then

T2 =
1

l − 1

√
1 + R̄(x, z, l) 6

1

l − 1

√
1 +R(x, z, l).

We know that √
1 + f(x) =

√
1 + f(0) +

f ′t(t)

2
√

1 + f(t)
|t=cxx,

where c ∈ (0, 1). If we apply this result to the function f(x) = R(x, z, l), we get

T2 6

√
1 +R(x, z, l)

l − 1
=

1

l − 1

(√
1 +R(0, z, l) +

R′
t(t, z, l)

2
√

1 +R(t, z, l)
|t=cxx

)
,

where c ∈ (0, 1). We observe that R(0, z, l) = 0. Then

T2 6
1

l − 1

(
1 +

R′
t(t, z, l)

2
√

1 +R(t, z, l)
|t=cxx

)
.

The proof will be completed after having proved the following result.

Proposition 8. For all the admissible values of t, y, z,

R′
t(t, z, l)

2
√

1 +R(t, z, l)
6 Cl2,

where C = −4 ln 2.

Proof. We set H(z, l) = l2(1 +RI2(c2z)z) 6 l2 and Y (t) = RF 2(t)t. From the expression
of R(t, z, l) = H(z, l)Y (t), it follows that R′

t(t, z, l) = H(z, l)Y ′
t (t). Furthermore we can

write
R′
t(t, z, l)

2
√

1 +R(t, z, l)
=

H(z, l)Y ′
t (t)

2
√

1 +H(z, l)Y (t)
.

We know from proposition 6 that Y (t) 6 0 and Y ′
t (t) < 0, then R′

t(t, z, l) = H(z, l)Y ′
t (t) >

l2Y ′
t (t), and

− 1

2
√

1 +R(t, z, l)
> − 1

2
√

1 + l2Y (t)
.

We can conclude that

− R′
t(t, z, l)

2
√

1 +R(t, z, l)
> − l2Y ′

t (t)

2
√

1 + l2Y (t)
.
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We shall show that this last function is increasing with respect to the variable t. The
derivative with respect to the variable t of this function is

D(t, l) = − l
2

2

Y ′′
tt

√
1 + l2Y − l2

(Y ′
t )2

2
√

1+l2Y

1 + l2Y
.

We want to show that D(t, l) > 0. We start observing that 1 + l2Y > 0. So it is sufficient
to prove that the quantity

E(t, l) = 2Y ′′
tt (1 + l2Y )− l2(Y ′

t )
2

is always not positive. It holds that

Y ′
t (t) = RF 2(t) + t(RF 2)′t(t)

and
Y ′′
tt (t) = 2(RF 2)′t(t) + t(RF 2)′′tt(t).

Then Y (0) = 0, Y ′
t (0) = RF 2(0) = 2C and Y ′′

tt (0) = 2(RF 2)′t(0) = 8ΨF (0)2 = 8C2.
Furthermore we observe that l > 2. So

E(0, l) = 16C2 − 4l2C2 6 0

and the equality holds if l = 2. The next step is to show that E ′
t(t, l) 6 0. It is possible

to find the following relation

E ′
t(t, l) = Y ′′′

ttt(1 + l2Y )

Observing that 1 + l2Y > 0 and Y ′′′
ttt 6 0 (see the point 15 of proposition 6), we can

conclude that D(t, l) > 0. We have showed that

− l2Y ′
t (t)

2
√

1 + l2Y (t)

is an increasing function. It gets the minimum for t = 0 and its value is −Cl2. Then

− R′
t(t, z, l)

2
√

1 +R(t, z, l)
> −Cl2,

and the proof is completed.

As for the first summand which appears in the expression of t2−, that is T1, the following
result holds.
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Proposition 9. For all the admissible values of x, z, it holds that

T1 >
l

l − 1
(1 + Cx)

where C = −4 ln 2.

Proof. We recall that

T1 =
l

l − 1
F (x)I(z) =

l

l − 1
(1 +RFI(x, z)).

Thanks to the point 6 of proposition 6 we have RFI(x, z) > Cx. Then the result is
immediate.
The following result gives the estimate of t2−.

Proposition 10. For all the admissible values of x, y, z

t2− > 1− Clx,

where C = −4 ln 2.

We recall that t2− = T1 − T2. Thanks to propositions 7 and 9 we get

t2− >
l

l − 1
(1 + Cx) +

1

l − 1
(−1− Cl2x) =

1 +

(
Cl

l − 1
− Cl2

l − 1

)
x = 1 +

(
−Cl
l − 1

(l − 1)

)
x = 1− Clx.

Now we turn our attention to the function t3. We recall that smax = 1
38
.

Proposition 11. For s ∈ [0, smax]

t23(s) 6 1 +
7

2
s.

Proof. We recall that

t23(s) = T (s) =
4

(1− s)2

(
Γ(1 + s)

Γ(1− s)

)3
Γ(1− 2s)

Γ(1 + 2s)

(
Γ(3/2− s/2)

Γ(1/2 + s/2)

)2

.

It holds that

T ′s(s) =
1

(1− s)
T (s)B(s),

where

B(s) = 2 + (1− s) (−2ψ(1− 2s)− 2ψ(1 + 2s) + 3ψ(1− s) + 3ψ(1 + s)−

−ψ
(

3

2
− s

2

)
− ψ

(
1

2
+
s

2

))
.

To complete the proof we need the following result.
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Proposition 12. If s ∈ [0, smax] then 1 < B(s) < 3.

Proof. We observe that for s ∈ [0, smax]

0 < ψ

(
3

2
− s

2

)
< ψ

(
3

2

)
= 0.036 · · · , 3

2
< −ψ

(
1

2
+
s

2

)
< −ψ

(
1

2

)
< 2.

We can conclude that

1 < −ψ
(

1

2
+
s

2

)
− ψ

(
3

2
− s

2

)
< 2.

Furthermore

ψ(1− s) + ψ(1 + s) = 2
∑
k>0

ψ(2k)(1)

(2k)!
s2k,

from which it follows that

D(s) = −2ψ(1− 2s)− 2ψ(1 + 2s) + 3ψ(1− s) + 3ψ(1 + s) = 2
∑
k>0

ψ(2k)(1)

(2k)!
s2k(3− 22k+1).

If k > 1 then 3− 22k+1 < 0 and ψ(2k)(1) < 0 (see formula 6.4.2 of [1]) then

2ψ(1) = −2γEM = D(0) 6 D(s) 6 D(smax) = −1.146 · · · ,

where γEM = 0.577 · · · is the Euler-Mascheroni constant. So

1 < B(s) 6 2 + (1− s)(2 +D(smax)) < 4 +D(smax) < 3.

Since B(s) > 0 then T (s) is an increasing function and we can deduce that

T ′(s) =
1

1− s
T (s)B(s) 6

3

1− smax
T (smax) < 7/2.

The Mac-Laurin series of order 1 of T (s) is 1+T ′s(cs)s, where c ∈ (0, 1). So it is immediate
to conclude that

T (s) 6 1 +
7

2
s.

We want to remark that with more work it is possible to show that

T (s) 6 1− Cs.

The following proposition shows that the eventual solutions of the equation (1.15) are
always bigger than t3.
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Proposition 13. t3(s) < t−(l, g) for g > 1.

Proof. From our observations, it is sufficient to show that t23(s) < t2−(l, g) holds for
g > 38. The propositions 10 and 11 assure that

t2− > 1− Clx,

t23(s) 6 1 +
7

2
s.

We recall that x = ls and 2 6 l 6 g − 1. Then the result is obvious.

1.4 The index and the nullity of the Costa-Hoffman-

Meeks surfaces

We start recalling some results described in previous sections. We denoted by Gt, t ∈
(0,+∞), a deformation of the map G defined by (1.5). Thanks to theorem 5 Nul(Gt) > 3
only if t assumes special values. If 2 6 g 6 37 these values are t1, t2, t3. If g > 38 there
are additional values. They are the positive solutions of the equation (1.15). We denoted
them by t±(l, g), where 2 6 l 6 g − 1, and for definition t+ > t−. In previous section
we have proved that the inequality t3(s) < t−(l, g) holds. S. Nayatani showed in [29]
that t3 > t2 for g > 2. We can conclude that no one of the t± can be equal to t2. As
consequence Nul(Gt2) continues to be equal to 4 also for g > 38, because dimH(Gt2) is
equal to 1 for all g > 2.

We recall that Mg denotes the Costa-Hoffman-Meeks surface of genus g. Since the ex-
tended Gauss map of Mg is exactly Gt2 , and taking into account the result of S. Nayatani
about the Costa surface (theorem 3) showed in [30] we have proved the following result.

Theorem 14. The null space of the Jacobi operator of Mg has dimension equal to 4 for
all g > 1.

Using the definition of non degeneracy given in [34], we can also rephrase this result giving
the following statement.

Corollary 15. The surface Mg is non degenerate for all g > 1.

Now we turn our attention to the results relative to the index of the map Gt.We recall that
Σg denotes the compactification of Mg. S. Nayatani proved in [29] the following result.

Theorem 16. Let G : Σg → S2 be the holomorphic map defined by (1.5). If 2 6 g 6 37,
then

Ind(Gt) =


2g + 3 if t 6 t1, t2 6 t < t3, t > t3,
2g + 4 if t1 < t < t2,
2g + 2 if t = t3.
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For t = t1, t2, t3 we have Nul(Gt) > 3, that is the kernel of LGt contains at least one non
linear element. The eigenvalue associated to this function is zero. The proof of theorem
16 is based on the analysis of the behaviour of these null eigenvalues under a variation of
the value of t. Let’s suppose that t 6= t1, t2, t3 but remaining in a neighbourhood of one of
these values. For example we choose t1. Then the eigenvalue E that before the variation
was associated to a non linear element of N(Gt1), is not more equal to zero. To compute
the index, it was necessary to understand which is the sign assumed by E, respectively
for t > t1 and t < t1. Similar considerations are applicable to the eigenvalues associated
with t2 and t3. See [29] for the details.

If g > 38, we have just proved that the other values for which Nul(Gt) > 3 are bigger
than t3. The presence of these additional values t± does not influence the value of Ind(Gt)
if t 6 t3. In other terms theorem 16 continues to hold for g > 38 if we consider 0 < t 6 t3.
Taking into account also the result of S. Nayatani about the Costa surface (g = 1) showed
in [30], we can give the following statement

Theorem 17. For all g > 1 the index of the Gauss map of Mg is equal to 2g + 3.

1.5 Appendix

This section contains some additional details of the computations made by S. Nayatani.

1.5.1 Divisors and Riemann-Roch theorem

Here we introduce some definitions and concepts of the algebraic geometry. See for ex-
ample [5].

Let Σg be a compact Riemann surface of genus g. A divisor on Σg is a finite formal sum
of integer multiples of points of Σg,

D =
∑
x∈Σg

nxx, nx ∈ Z, nx = 0 for almost all x.

The set of the divisors on Σg is denoted by Div(Σg). The degree of a divisor is the integer
deg(D) =

∑
nx.

Let C(Σg) be the field of the meromorphic functions on Σg and let C(Σg)
∗ be its multi-

plicative group of nonzero elements. Every f ∈ C(Σg)
∗ has a divisor

div(f) =
∑

νx(f)x,
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where νx(f) denotes the order of f at x.

Let ω be a nonzero meromorphic differential n-form on Σg. Then ω has a local represen-
tation ωx = fx(z)(dz)

n about each point x of Σg, where z is the local coordinate about x
and fx(z) ∈ C(Σg)

∗. So we can define in a natural way νx(ω) = ν0(fx) and also associate
a divisor with a differential form:

div(ω) =
∑

νx(ω)x.

A canonical divisor on Σg is a divisor of the form div(ω) where ω is a nonzero meromor-
phic differential form.

Let D ∈ div(Σg). We denote by H0,n(D) the vector space of the meromorphic differential
n-forms ω such that

div(ω) +D > 0.

In other terms, if D = div(η), with η differential form with local representation ηx =
gx(z)(dz)

n, then the elements of H0,n(D) are the differential forms ω having a local rep-
resentation ωx = fx(z)(dz)

n with fx ∈ C(Σg) vanishing to high enough order to make the
product f · g holomorphic. We set dimH0,n(D) = `(D).

We are ready to state the following result.

Theorem 18 (Riemann-Roch). Let Σg be a compact Riemann surface of genus g. Let
kΣg be a canonical divisor on Σ. Then for any divisor D ∈ Div(Σg),

`(D) = deg(D)− g + 1 + `(kΣg −D).

The next result gives information about the canonical divisor and a simpler version of
Riemann-Roch theorem for divisors of large enough order.

Corollary 19. Let Σg, g,D, kΣg as above.

• deg(kΣg) = 2g − 2,

• If deg(D) > 2g − 2 then `(kΣg −D) = 0. Equivalently `(D) = deg(D)− g + 1.

1.5.2 The determination of a basis of differential forms with null
residue at the ramification points

The ramification points (or branch points) of γ(w) = w are the zeroes of

dw

dz
= (g + 2)

zg−1(z2 − A2)

(zg(z2 − 1))
g

g+1

,
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with A = g
g+2

, where g denotes the genus. They are given by Q0 = (0, 0), P∞ = (∞,∞),

Pm = (A,Bm) and Sm = (−A,Cm) for m = 0, . . . , g, where Bm, Cm denote, respectively,
the m-th complex value of g+1

√
Ag(A2 − 1) and g+1

√
(−A)g(A2 − 1). We have set P± =

(±1, 0). We recall that

Ĥ(G) =
{
σ ∈ H0(2kΣg +R(G)) |Resri

σ

dw
= 0, i = 1, . . . , µ

}
, (1.21)

where kΣg is a canonical divisor of Σg and R(G) =
∑µ

1 ri where ri are the branch points
of γ(w) = w. In our case it is given by R(G) = Q0 +P∞ +

∑g
m=0(Pm +Sm). Furthermore

it holds Ĥ(G) = Ĥ(Gt).

As for the canonical divisor kΣg , we consider kΣg = (g − 1)P+ + (g − 1)P−. We observe
that deg(kΣg) = 2g − 2 like stated by corollary 19.

To study the space Ĥ(Gt) we need understand which are the members of the space
H0(2kΣg +R(G)). Taking into account the definitions of kΣg and R(G), then 2kΣg +R(G) =
2(g−1)P+ +2(g−1)P−+Q0 +P∞+

∑g
m=0 Pm+

∑g
m=0 Sm. We deduce that the quadratic

differentials σ that are in H0(2kΣg +R(G)) can have two possible structures:

zkwj
(
dz

w

)2

, (1.22)

zkwj
1

z ± A

(
dz

w

)2

. (1.23)

In fact from the definition of H0, it follows that the quadratic differentials to consider can
have a pole of order 0 (differentials of the type (1.22)) or of order 1 (differentials of the
type (1.23)) at Pm and Sm for k = 0, . . . , g. Furthermore we observe that the quadratic

differential
(
dz
w

)2
has

• a zero of order 1 at Q0

• a zero of order 1 at P∞

• a zero of order 2(g − 1) at P+ and P−.

The quadratic differential 1
z±A

(
dz
w

)2
has

• a zero of order 1 at Q0

• a zero of order 2(g − 1) at P+ and P−

• a zero of order g + 2 at P∞
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• a pole of order 1 at Pm if we consider sign ”-” or at Sm if we consider the sign ”+”.

We will determine separately the interesting differential forms of type (1.22) and (1.23).
To find the differential forms of type (1.23) it is convenient to introduce an auxiliar divisor.

D = Q0 + (g + 2)P∞ + 2(g − 1)P+ + 2(g − 1)P−.

We observe that the elements of the vector space H0(D) after the multiplication by the
factor z±A are members of H0(2kΣg +R(G)). It is necessary to remark that to obtain a
basis ofH0(2kΣg +R(G)), we will not take into account the differentials ofH0(2kΣg +R(G))
that can be constructed from an element of H0(D) as described above. Otherwise the
number of the founded differential forms exceeds the dimension of H0(2kΣg +R(G)), that
we can compute as follows. We observe that deg(2kΣg + R(G)) = 6g. Then thanks to
corollary of Riemann-Roch theorem 19 we conclude that dimH0(2kΣg +R(G)) = 5g + 1.
So the basis we are looking for counts 5g+1 elements. From the observations made above
we can deduce that between the forms of type (1.22), we will consider the ones which
satisfy the following conditions.

k(g + 1) + jg > −1,

j > −2(g − 1),

−k(g + 1)− j(g + 2) > −1.

These relations assure that the selected differentials of type zkwj
(
dz
w

)2
, are holomorphic,

respectively, at the points Q0, P± and P∞. These differentials can be classified in three
families. Each family is characterized by particular values of l and k. That is

1. j = −g + 1, . . . , 0, 1 and k = −j,

2. j = 2− 2g, . . . ,−g and k = −j,

3. j = 2− 2g, . . . ,−g and k = −j − 1.

As for the forms of type (1.23) we shall consider only the ones which satisfy

k(g + 1) + jg > −1,

j > −2(g − 1),

−k(g + 1)− j(g + 2) > −(g + 2).

These relations assure that the selected differentials of type zkwj 1
z±A

(
dz
w

)2
, are holomor-

phic, respectively, at the points Q0, P± and P∞. We obtain that j = −g + 1, . . . , 0, 1 and
k = −j + 1.
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Since we are looking for a basis of a vector space we can replace each couple of differentials
f

z−A

(
dz
w

)2
, f
z+A

(
dz
w

)2
by an appropriate linear combination. We observe that

1

z − A
± 1

z + A
=

{
η1 = z

z2−A2

η2 = 1
z2−A2 .

So in the following we will work with the forms fη1

(
dz
w

)2
and fη2

(
dz
w

)2
, where f = zkwj

as described above.

The 5g + 1 quadratic differentials we have found forms a basis of Ĥ(Gt). The last step
is to divide each elements of this basis by dw. After simple algebraic manipulations, we
obtain the following 5g + 1 differential 1-forms:

wk

zk−1
dz

(z2−A2)2
for k = −1, 0, . . . , g − 1,

wk

zk
dz

(z2−A2)2
for k = −1, 0, . . . , g − 1,

wk

zk+1
dz

(z2−A2)
for k = −1, 0, . . . , g − 1,

zk

wk+1
dz

(z2−A2)
for k = 1, . . . , g − 1,

zk−1

wk+1
dz

(z2−A2)
for k = 1, . . . , g − 1.

(1.24)

Now it is necessary to select the 1-forms having residue equal to zero at the points Q0, Pm
and Sm with m = 0, . . . , g. Thanks to the properties of symmetry of the surface it is suffi-

cient to verify the null residue condition at the points Q0, P1 = (A, e
2πi
g+1 g+1

√
Ag(A2 − 1)).

In fact from the coordinates of the points Pm and Sm, we can deduce that for each
Q ∈ {Pm, Sm, k = 0, . . . , g} there exists n ∈ {0, . . . , 2g + 1} such that Q = λn(P1), where
λ is the conformal diffeomorphism described in lemma 4. So we can state that the residue
of an arbitrary form ω at the point Q is related to the residue at P1 by

ResQω = ResP1(λ
n−1)∗ω.

Applying this result to the differential forms of the list (1.24) and using the the definition
(1.4) of λ, it is easy to obtain that ResQω is equal to ResP1ω times a power of ±ρ. So if
ResP1ω = 0 then ResQω = 0.

Thanks to algebraic manipulations inspired by the simpler cases where g = 2, 3, it is pos-
sible to find 3g linear independent differential forms satisfying the null residue condition.
They constitute the wanted basis.

ω
(1)
k =

zk−1

wk
dz

w
for k = 1, . . . , g − 1,

ω
(2)
k =

zk−1((k − 2)z2 − kA2)

wk(z2 − A2)2
dz for k = 0, . . . , g,
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ω
(3)
k =

zk−1((k − 2)z2 − (k)A2)

wk+1(z2 − A2)2
dz for k = 0, . . . , g − 1.

1.5.3 The equations equivalent to the condition of existence of
a branched minimal surface.

Let ω1 and ω2 two meromorphic differential forms on Σg. We write ω1 ∼ ω2 if there exists
a meromorphic function f on Σg such that ω2 = ω1 + df. It is possible to prove that:

ω
(2)
k ∼ −k(g + 2)

2(g + 1)

zk−1

wk
dz for k = 0, . . . , g,

ω
(3)
k ∼ −(g + 2)(g + k + 2)

2(g + 1)

zk−1

wk+1
dz for k = 0, . . . , g − 1.

Using these relations we get:∫
β̃

ω
(1)
k = −2i sin

(k + 1)π

g + 1
Kk,

∫
β̃

ω
(2)
k = −(g + 2)k

2(g + 1)
2i sin

kπ

g + 1
Ik,∫

β̃

ω
(3)
k =

(g + 2)(g + 2− k)

2(g + 1)
2i sin

(k + 1)π

g + 1
Kk,∫

β̃

γω
(1)
k = 2i sin

kπ

g + 1
Ik,

∫
β̃

γω
(2)
k =

(g + 2)(g + 2− k)

2(g + 1)
2i sin

(k − 1)π

g + 1
Jk,∫

β̃

γω
(3)
k = −(g + 2)k

2(g + 1)
2i sin

kπ

g + 1
Ik,∫

β̃

γ2ω
(1)
k = 2i sin

(k − 1)π

g + 1
Jk,

∫
β̃

γ2ω
(2)
k =

(g + 2)(2g + 4− k)

2(g + 1)
2i sin

(k − 2)π

g + 1
Lk,∫

β̃

γ2ω
(3)
k =

(g + 2)(g + 2− k)

2(g + 1)
2i sin

(k − 1)π

g + 1
Jk.

We recall that we must impose that ω =
∑g−1

0 c
(1)
k ω

(1)
k +

∑g
0 c

(2)
k ω

(2)
k +

∑g−1
0 c

(3)
k ω

(3)
k , where

c
(i)
k ∈ C, satisfies ∫

α

ω = t2
∫
α

γ2(w)ω, Re

∫
α

γ(w)ω = 0

for α = λl◦β̃ for l = 0, . . . , 2g−1. Now it is convient to introduce some additional notation.

Let

L =

[
Rθ 0
0 1

]
(1.25)
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where Rθ is the rotation in the plane by θ = gπ/(g + 1).
If we denote Φ(ω) = (1− γ2, i(1 + γ2), 2γ)ω, then it is possible to prove∫

λl◦β̃
Φ(ω) =

∫
β̃

λ∗Φ(ω).

Since we want to apply this last relation to the differential form ω, it is convenient to
remark that:

λ∗Φ(ω
(1)
k ) = (−1)kρ−kLΦ(ω

(1)
k ),

λ∗Φ(ω
(2)
k ) = (−1)kρ−k+1LΦ(ω

(2)
k ),

λ∗Φ(ω
(3)
k ) = (−1)kρ−kLΦ(ω

(3)
k ),

where ρ = ei
gπ

g+1 . Then the equations

Re

∫
λl◦β̃

(1− t2γ2, i(1 + t2γ2))ω = 0, for l = 0, . . . , 2g − 1,

are equivalent to:

Im

[
g−1∑
k=0

{(−1)kρ−k}lfk +

g∑
k=1

{(−1)kρ−(k−1)}lpk

]
=

t2Im

[
g−1∑

k=0,k 6=1

{(−1)kρ−k}lhk +

g∑
k=0,k 6=2

{(−1)kρ−(k−1)}lqk

]

Re

[
g−1∑
k=0

{(−1)kρ−k}lfk +

g∑
k=1

{(−1)kρ−(k−1)}lpk

]
=

−t2Re

[
g−1∑

k=0,k 6=1

{(−1)kρ−k}lhk +

g∑
k=0,k 6=2

{(−1)kρ−(k−1)}lqk

]
,

l = 0, . . . , 2g−1. These last equations can be arranged as in the systems (1.10) and (1.11).
The equations

Re

∫
λl◦β̃

2tγω = 0, for l = 0, . . . , 2g − 1,

are equivalent to:

Im

[
g−1∑
k=1

{(−1)kρ−k}ldk +

g∑
k=0,k 6=1

{(−1)kρ−(k−1)}lek

]
= 0,

l = 0, . . . , 2g−1. These last equations can be arranged as in the systems (1.12) and (1.13).
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Chapter 2

About a family of deformations of
the Costa-Hoffman-Meeks surfaces

2.1 Introduction

C. Costa in [3, 4] described a genus one minimal surface with two ends asymptotic to the
two ends of a catenoid and a middle end asymptotic to a plane. D. Hoffman and W.H.
Meeks in [14], [15] and [16] proved the global embeddedness for the Costa surface, and
generalized it for higher genus. We will denote the Costa-Hoffman-Meeks surface of genus
k > 1 by Mk. For each k > 1 is a properly embedded minimal surface and has three ends
of finite total curvature.

J. Pérez and A. Ros in [34] studied the space M of minimal surfaces of finite total curva-
ture, genus k and r ends, properly immersed in R3 and with embedded horizontal ends.
Given M ∈M, the infinitesimal deformations of M are generated by the elements of the
J(M), the space of the Jacobi functions u on M, that is functions such that Lu = 0, where
L denotes the Jacobi operator of M, which have logarithmic growth at the ends. They
showed that dim J(M) > r + 3. They denoted by M∗ = {M ∈ M : dim J(M) = r + 3}
the subspace of non degenerate surfaces and founded that it is an open subset of M and
a (r + 3)-dimensional real-analytic manifold.

The dimension of the space J(M) just introduced is known for M = Mk for k > 1. In
fact thanks to the works [29] and [30] of S. Nayatani, dim J(Mk) = 6, since r = 3, but
only for 1 6 k 6 37. Now this result has been extended also for k > 38 (see chapter
1). The elements of J(Mk) are the Jacobi fields associated to the horizontal translations,
the rotation about the vertical direction and three functions (one for each end) whose
form in a neighbourhood of an end is a log |w|, being a the logarithmic growth. Thus, the
one parameter family of deformations of these surfaces described by D. Hoffman and H.
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Karcher in [13], contains all the embedded surfaces nearby Mk with a symmetry group
generated by k vertical planes, up to dilations preserving the vertical direction.

In this work, following [34], we show the existence of a bigger family of immersed minimal
deformations of Mk for k > 1 having three embedded ends. These surfaces do not enjoy
any property of symmetry. In fact we admit the possibility to rotate, translate and dilate
any of the three ends of the surface and, in addition, to bend the two catenoidal type
ends and to change the type of the middle end from a planar type end into a catenoidal
type end (we recall that the planar end can be thought to be as a catenoidal type end
with null vertical flux). Admitting a bigger number of deformations of Mk, one has, as
consequence, the rise of dim J(Mk). Actually it rises from the value 6 of [34] to 8.

To be more precise we will prove the following result.

Theorem 20. For for each possible choice of the limit values of the normal vectors of
the three ends, there is, up to isometries, a 1-dimensional real analytic family of smooth
minimal deformations of Mk, for k > 1, letting the middle planar end horizontal.

Our result is a consequence of the moduli space theory and of the implicit function theo-
rem. We do not treat the case where also the middle planar end is not horizontal because
it can be reconduced to the previous one by an isometry.

The family of surfaces described in the statement of the theorem here, contains the 1-
parameter family of deformations of Mk, for 1 6 k 6 37, obtained by L. Hauswirth and
F. Pacard in [11] bending the top and the bottom end and letting horizontal the middle
planar end. All the surfaces of this family are not embedded and are symmetric with
respect to the vertical plane x2 = 0 that in particular contains the axis of the catenoidal
type ends (it is assumed to be the same for the two ends). The parameter is the angle
between this axis and the vertical direction. This family is used in the same work to
construct some new examples of minimal surfaces by a gluing technique.

One important property of the Costa-Hoffman-Meeks surface, is the non degeneracy. In
section 2.3.2 we will prove that Mk is non degenerate for all k > 1 with respect to the
definition given in [34].

In [11] F. Pacard and L. Hauswirth studied the mapping properties of the Jacobi operator
of Mk acting on the space of the C2,α

δ functions defined on Mk and that are invariant under
the action of the symmetry with respect to the plane x2 = 0. In particular if f ∈ C2,α

δ (Mk),
then f = O(eδs) on the catenoidal type ends. The mapping properties of the Jacobi op-
erator (denoted by Lδ) acting on functions of C2,α

δ (Mk) depend on the choice of δ. The
authors give another definition of non degeneracy. They define the surface Mk to be non
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degenerate if the operator Lδ is injective for all δ < −1.

Thanks to the works [29] and [30] of S. Nayatani and result of chapter 1, the space
K ⊂ J(Mk) of the bounded Jacobi functions, is known to be generated by the functions
〈N, e1〉, 〈N, e2〉 and 〈N, e3〉, 〈N, e3 × p〉, where N denotes the normal vector field about
Mk and (e1, e2, e3) is the canonical basis of R3. These functions are associated to 4 isome-
tries of the ambient space: the three translations and the rotation about the e3-axis. In
[11] the authors remark that the Jacobi function 〈N, e3 × p〉 associated to the rotation
about the e3-axis and the translation along the e2-axis do not respect the mirror symme-
try described above, that is they are not invariant with respect to the action of the map
(x1, x2, x3) → (x1,−x2, x3). So they did not taken into account them and could conclude
that Mk are non degenerate, in the sense of their definition.

The surfaces of the family described in our work do not enjoy any property of symme-
try, since we admit to bend the catenoidal type ends in arbitrary directions. Then the
Jacobi functions described above must be taken into account. Since the Jacobi function
〈N, e3 × p〉 belongs to the space C2,α

δ (Mk) for δ = −k − 1 6 −2, the property of non
degeneracy does not hold any more. Actually the operator Lδ acting on C2,α

δ (Mk) is no
more injective for all δ < −1. As consequence, we can state that for all k > 1 the Costa-
Hoffman-Meeks surface Mk is degenerate in the sense of the definition given in [11].

2.2 Preliminaries and notation

We denote by X : Mk → R3 the conformal minimal immersion of the Costa-Hoffman-
Meeks surface Mk in R3. If g and η are the Weierstrass data of Mk, we can write:

X(z) =

(
1

2

∫
g−1η − 1

2

∫
gη,Re

∫
η

)
∈ C× R = R3.

The meromorphic function g is the stereographic projection from the north pole of the
Gauss map N : Mk → S2. The total curvature is finite and Mk is conformally diffeomor-
phic to Mk \{pt, pb, pm}, being Mk a compact surface and pi three points. The Weierstrass
data extend in a meromorphic way at each puncture pi. In particular the Gauss map of
X(z) is well defined at pi. The points pi are identified with the ends and a neighbourhood
of a puncture will parametrize the corresponding end. In the following we will refer to
various quantities related to the three ends of the surface using the index t for the top
end, the index b for the bottom end and the index m for the planar end. The Gauss map
N takes the limit values (0, 0, 1) at the ends pt and pb and (0, 0,−1) at the end pm.
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We parametrize the ends pi in the graph coordinate x = x1 + ix2 on D∗
i (εi) = {x ∈ C; 0 <

|x| 6 εi} by the immersions

Xi(x) =

(
1

x
,−ãi ln |x|+ hi(x)

)
∈ C× R = R3

for i = t, b, where hi is a smooth real valued function on D∗
i (εi). The quantities ãi and

hi(0) are called the logarithmic growth and the height of the end. We can observe that,
for the null flux condition, ãt = −ãb. The Gauss map for an end with logarithmic growth
a is given by (see p. 182, [34])

N(x) = Q− 1
2

(
−ax̄+ x̄2∇0h, 1

)
, (2.1)

where Q = 1 + |x|2(a2 + |x|2|∇0h|2 − 2a〈x,∇0h〉) and x̄2∇0h means the product of the
complex number x̄2 with the gradient ∇0h respect to the flat metric ds2

0 of the x-plane.

As for the planar end pm, we will use the following parametrization

Xm(x) =

(
1

x
, hm(x)

)
on D∗

m(εm).

So its logarithmic growth is zero.

2.3 The deformation of the surface and its Jacobi

operator

In this section we describe how we deform the surface Mk and we give the expressions of
the immersions in R3 of the three ends of the deformed surface. In subsection 2.3.1 we
introduce the Jacobi operator of Mk and we study its kernel and its range.

We deform the surface Mk in the following way. Using a smooth cut-off function we glue
X : Mk\(D∗

t ∪D∗
b ∪D∗

m) → R3 with the parametrizations of the three ends with a different
value of the logarithmic growths (that we denote with at, ab, am). Furthermore we rotate
the ends pt and pb, that is we change the directions of their axes of revolution. We denote
with F (θ1,i, θ2,i) the frame defined by the following unit vectors:

e1(θ1,i, θ2,i) = cos θ1,ie1 + sin θ1,i sin θ2,ie2 + sin θ1,i cos θ2,ie3, (2.2)

e2(θ1,i, θ2,i) = cos θ2,ie2 − sin θ2,ie3,

39



e3(θ1,i, θ2,i) = − sin θ1,ie1 + cos θ1,i sin θ2,ie2 + cos θ1,i cos θ2,ie3,

where (e1, e2, e3) denotes the canonical base of R3.

The immersions of the rotated catenoidal type ends on D∗
i (εi) are given by

Xi,θ1,i,θ2,i
(x) =

x1

|x|2
e1(θ1,i, θ2,i)−

x2

|x|2
e2(θ1,i, θ2,i) + (−ai ln |x|+ hi(x))e3(θ1,i, θ2,i),

for i = t, b. As for the planar end, we consider on D∗
m(εm) in the canonical frame (e1, e2, e3)

the immersion

Xm,0,0(x) =

(
1

x
,−am ln |x|+ hm(x)

)
.

We define y = (at, ab, am, θ1,t, θ1,b, θ2,t, θ2,b). Thanks to the deformation we obtain a family
of immersions that we denote with Xy : Mk → R3, not necessarily minimal and depending

smoothly on y. Now let Ñ(y) ∈ C∞(Mk,R3) be a vector field such that 〈Ñ(y), N〉 = 1 on
Mk\(D∗

t ∪D∗
b ) and

Ñ(y) =
e3(θ1,i, θ2,i)

〈N, e3(θ1,i, θ2,i)〉
onD∗

i for i = t, b.We remark that we do not modify the normal vector field on D∗
m because

we keep the the middle planar end horizontal. Let A be a neighbourhood of (ãt, ãb, 0)
(the logarithmic growths of the ends of Mk), U a neighbourhood of zero in C2,α(Mk). For
y ∈ A× [−ε, ε]4 and a function u ∈ U , we consider the family of immersions

Xy + uÑ(y) : Mk −→ R3. (2.3)

Such a family depends analytically on (y, u).

Let λ ∈ C∞(Mk) be a positive function which in terms of the graph coordinate is defined
by

λ(x) =

{ 1
|x|4 onD∗

t (εt), D
∗
b (εb), D

∗
m(εm),

1 onMk\(D∗
t (2εt) ∪D∗

b (2εb) ∪D∗
m(2εm)).

(2.4)

We know from [34] that ds̄2 = (1/λ) ds2
0 is a Riemannian metric on Mk. We denote the

associated area mesure by dĀ. If H(y, u) is the mean curvature function of the immersion

Xy + uÑ(y), we consider the operator H(y, u) = λH(y, u). Since at the ends pt and pb,
the rotation does not change the value of the mean curvature, we can apply lemma 6.4
proved in [34] at each end to conclude that the operator

H : A× U → C0,α(Mk)

is real-analytic.
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2.3.1 The Jacobi operator

We define ỹ = (ãt, ãb, 0, 0, 0, 0, 0) and ẏ = (ȧt, ȧb, ȧm, θ̇1,t, θ̇2,t, θ̇1,b, θ̇2,b). and consider a
smooth curve

γ(t) = (at(t), ab(t), am(t), θ1,t(t), θ2,t(t), θ1,b(t), θ2,b(t), u(t)), (2.5)

with |t| < ε, passing by (ỹ, 0) with acceleration γ′(0) = (ẏ, u′(0)).

To introduce the Jacobi operator we need consider the continuous family of smooth de-
formations Xγ(t) + u(t)Ñ(γ(t)) : Mk → R3 of the Costa-Hoffman-Meeks surface. Denote

by H(t) the mean curvature of Xγ(t) + u(t)Ñ(γ(t)).

If w = 〈 d
dt |t=0

(
Xγ(t) + u(t)Ñ(γ(t))

)
, N〉 is the variation field, we have:

d

dt |t=0
H(t) =

1

2
Lw =

1

2

(
∆ds20

w + |A|2ds20w
)

(2.6)

where |A|ds20 denotes the norm of the second fundamental form computed with respect to

the metric ds2
0. L is the Jacobi operator of Mk. It can be ”compactified” to obtain the

operator L = ∆ds̄2 + |A|2ds̄2 = λL on Mk. The function λ is defined by (2.4). It is related
to the differential of H(t) = λH(t) by a relation similar to (2.6).

In the following we will give the expression of a Jacobi function. To express it we need
introduce additional notation. Let f1, f2, f3 be the functions defined by:

f1(x, i) =
x1

|x|2
〈N, e3〉 − (−ãi ln |x|+ hi(x))〈N, e1〉,

f2(x, i) =
x2

|x|2
〈N, e3〉+ (−ãi ln |x|+ hi(x))〈N, e2〉,

f3(x, ȧi) = −ȧi ln |x|〈N, e3〉

in D∗
i (εi) for i = t, b,m and fn(x, i) = 0, n = 1, 2, 3, in Mk\D∗

i (2εi).We recall that ãt, ãb
are the logarithmic growths of the top and of the bottom end of Mk, and being the middle
planar end horizontal, we assume ãm = 0.

Proposition 21. The Jacobi functions about Mk have, in D∗
i (εi), the following expression

θ1,if1(x, i) + θ2,if2(x, i) + f3(x, ȧi) + ui

for i = t, b,m, with θ1,m = θ2,m = 0, ãm = 0 and ui ∈ C2,α(Di(εi)).
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Proof. A Jacobi function is defined by

〈 d
dt |t=0

(
Xγ(t) + u(t)Ñ(γ(t))

)
, N〉. (2.7)

We start observing that Xγ(t) in D∗
i (εi) is given by

x1

|x|2
e1(θ1,i(t), θ2,i(t))−

x2

|x|2
e2(θ1,i(t), θ2,i(t)) + (−ai(t) ln |x|+ hi(x))e3(θ1,i(t), θ2,i(t)),

for i = t, b and in D∗
m(εm) by (

1

x
,−am(t) ln |x|+ hm(x)

)
.

We recall (see (2.5)) that ai(0) = ãi with ãm = 0, γ′(0) = (ẏ, u′(0)).
To obtain d

dt |t=0
Xγ(t) we need compute

ėi =
d

dt
ei(ϕ(t), φ(t)) =

∂ei(ϕ, φ)

∂ϕ

dϕ

dt
+
∂ei(ϕ, φ)

∂φ

dφ

dt

and to evaluate it for t = 0.We will apply the result in the case ϕ(t) = θ1,i(t), φ(t) = θ2,i(t).
So we suppose that ϕ(0) = φ(0) = 0. To this aim it is useful to observe that from the
equation (2.2) and the following ones we obtain(

∂e1(ϕ, φ)

∂ϕ

)
|ϕ=φ=0

= −
(
∂e2(ϕ, φ)

∂φ

)
|ϕ=φ=0

= e3,

(
∂e1(ϕ, φ)

∂φ

)
|ϕ=φ=0

=

(
∂e2(ϕ, φ)

∂ϕ

)
|ϕ=φ=0

= 0,(
∂e3(ϕ, φ)

∂ϕ

)
|ϕ=φ=0

= −e1,
(
∂e3(ϕ, φ)

∂φ

)
|ϕ=φ=0

= e2.

Then it is easy to obtain
ė1(0) = ϕ′(0)e3,

ė2(0) = −φ′(0)e3,

ė3(0) = −ϕ′(0)e1 + φ′(0)e2.

Then in D∗
i (εi)

d

dt |t=0
Xγ(t) =

x1

|x|2
θ′1,i(0)e3 −

x2

|x|2
(−θ′2,i(0)e3)+

+(−ai(0) ln |x|+ hi(x))(−θ′1,i(0)e1 + θ′2,i(0)e2) + (−a′i(0) ln |x|)e3.
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Reordering the summands we get

〈 d
dt |t=0

Xγ(t), N〉 = θ′1,i(0)f1(x, i) + θ′2,i(0)f2(x, i) + f3(x, ȧi).

As for the last term of (2.7), we recall that u(0) = 0 (see (2.5)) and, on D∗
i (εi), we defined

Ñ(γ(t)) =
e3(θ1,i(t), θ2,i(t))

〈N, e3(θ1,i(t), θ2,i(t))〉
.

Then d
dt
u(t)Ñ(γ(t)), evaluated in t = 0, is equal to

u′(0)Ñ(γ(0)) + u(0)
d

dt
Ñ(γ(t))|t=0 = u′(0).

If ui denotes the restriction of u′(0) toD∗
i (εi) for i = t, b,m, then the result is obvious.

The following lemma shows the existing relation between the logarithmic growths and the
Jacobi operator.

Lemma 22. Let U, V ∈ C2,α(Mk) be the functions defined in D∗
i (εi), for i ∈ {t, b,m}, by

Ui(x) = θ1,if1(x, i) + θ2,if2(x, i) + f3(x, ai) + ui(x)

and
Vi(x) = ϕ1,if1(x, i) + ϕ2,if2(x, i) + f3(x, bi) + vi(x),

with θj,i, ϕj,i ∈ R and ãm = 0, θj,m = ϕj,m = 0, j = 1, 2, and ui, vi ∈ C2,α(Di(εi)). Then we
have ∫

Mk

(UL̄V − V L̄U)dĀ =

∫
Mk

(ULV − V LU)dA =

= 2π
∑
i∈{t,b}

[〈Φi,∇ui(0)〉 − 〈Θi,∇vi(0)〉] + 2π
∑

i∈{t,b,m}

[biui(0)− aivi(0)],

with Θi = (θ1,i, θ2,i), Φi = (ϕ1,i, ϕ2,i) and ∇· = (∂x1·, ∂x2·).

Proof. In the following we will need use the Green identity, so we must use the conformal
coordinate z = reiα around the ends pt, pb and pm. Thus for the catenoidal type ends, we
have

1

x
=
ãi
2z

(1 + |z|2 + zti(z)) =
si(z)

z

with si(0) = ãi

2
∈ R, where ãt, ãb are the logarithmic growths of the top end and of the

bottom end of Mk.
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As for the planar end
1

x
=
sm(z)

z

where sm(0) = c. We can assume that c = 1.

Since we want to find the expressions of U and V near the ends in terms of coordinates
(r, α), it is useful to observe that from (2.1) for a generic end with logarithmic growth a
it holds that:

〈N, e3〉 = Q− 1
2 =

(
1 + |x|2(a2 + |x|2|∇0h|2 − 2a〈x,∇0h〉)

)− 1
2 ,

〈N, e1〉 = 〈N, e3〉Re(−ax̄+ x̄2∇0h),

〈N, e2〉 = 〈N, e3〉Im(−ax̄+ x̄2∇0h).

Then in a neighbourhood of each end we can write:

〈N, e3〉 =
(
1 +O(|x|2)

)− 1
2 = 1 +O(|x|2), (2.8)

〈N, e1〉 =
(
1 +O(|x|2)

) (
−ax1 +O(x̄2)

)
= −ax1 +O(|x|2), (2.9)

〈N, e2〉 =
(
1 +O(|x|2)

) (
ax2 +O(x̄2)

)
= ax2 +O(|x|2). (2.10)

In the coordinates (r, α) Ui and Vi have the following expression:

Ui(r) = θ1,if1(r, i) + θ2,if2(r, i) + f3(r, ai) + ui(r),

Vi(r) = ϕ1,if1(r, i) + ϕ2,if2(r, i) + f3(r, bi) + vi(r)

where

f1(r, i) =
ãi cosα

2r
+O(r ln r),

f2(r, i) =
ãi sinα

2r
+O(r ln r),

f3(r, a) = −a ln r +O(r).

If Di(0, r) are conformal disks and M(r) = M\(∪i∈{t,b,m}Di(0, r)), then the conformal
invariance of the integral implies:

I(r) =

∫
M(r)

(ULV − V LU) dA =

∫
∂M(r)

(
U
∂V

∂η
− V

∂U

∂η

)
ds0 =

−
∑

i∈{t,b,m}

∫
∂Di(0,r)

(
Ui
∂Vi
∂r

− Vi
∂Ui
∂r

)
|dz|, (2.11)
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where dA is the area mesure associated to ds0, η is the exterior conormal field to the
immersion along ∂M(r) and |dz| = rdα. To get the lemma it will be sufficient to let r go
to zero.
Of course we have for i ∈ {t, b,m} :

∂Ui
∂r

= θ1,i
∂f1(r)

∂r
+ θ2,i

∂f2(r)

∂r
+
∂f3(r, ai)

∂r
+
∂ui(r)

∂r

and a similar expression for ∂Vi

∂r
:

∂Vi
∂r

= ϕ1,i
∂f1(r)

∂r
+ ϕ2,i

∂f2(r)

∂r
+
∂f3(r, bi)

∂r
+
∂vi(r)

∂r
.

As for the functions ui and vi, we will adopt in the neighbourhood of the origin an
expression of the form (we recall that z = z1 + iz2 = reiα):

l = l(0) + r cosα(∂z1l)(0) + r sinα(∂z2l)(0) +O(r2). (2.12)

Now we proceed with the evaluation of each summand that appears in (2.11). For i ∈
{t, b,m} we have (to simplify the notation, we will omit the dependence on r and i)

lim
r→0

∫
∂Di(0,r)

(
Ui
∂Vi
∂r

− Vi
∂Ui
∂r

)
|dz| =

lim
r→0

(∫
{|z|=r}

(
ϕ1,iui(z)

∂f1

∂r
− θ1,ivi(z)

∂f1

∂r

)
+

(
∂vi
∂r

θ1,if1 −
∂ui
∂r

ϕ1,if1

)
+

+

(
ϕ2,iui(z)

∂f2

∂r
− θ2,ivi(z)

∂f2

∂r

)
+

(
∂vi
∂r

θ2,if2 −
∂ui
∂r

ϕ2,if2

)
+(

ui(z)
∂f3(bi)

∂r
− vi(z)

∂f3(ai)

∂r

)
+

(
ui
∂vi
∂r

− vi
∂vi
∂r

)
|dz|
)
.

We define (the expression of l is given by (2.12)):

G(l) = lim
r→0

∫
{|z|=r}

l(r)
∂f1

∂r
|dz| =

− lim
r→0

∫
{|z|=r}

(
l(0) + r(cosα(∂z1l)(0) + sinα(∂z2l)(0)) +O(r2)

)
·
(
ãi cosα

2r2
+O(ln r)

)
rdα =

= − lim
r→0

∫
{|z|=r}

ãi cos2 α

2
(∂z1l)(0)dα = −π

2
ãi(∂z1l)(0)
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and in a similar way:

T (l) = lim
r→0

∫
{|z|=r}

l(r)
∂f2

∂r
|dz| =

− lim
r→0

∫
{|z|=r}

(
l(0) + r(cosα(∂z1l)(0) + sinα(∂z2l)(0)) +O(r2)

)
·
(
ãi sinα

2r2
+O(ln r)

)
rdα =

= − lim
r→0

∫
{|z|=r}

ãi sin
2 α

2
(∂z2l)(0)dα = −π

2
ãi(∂z2l)(0).

Then we can conclude that for i ∈ {t, b,m} :

lim
r→0

∫
{|z|=r}

(ϕ1,iui(z)− θ1,ivi(z))
∂f1

∂r
)|dz| =

ϕ1,iG(ui)− θ1,iG(vi) =
π

2
ãi(θ1,i(∂z1vi)(0)− ϕ1,i(∂z1ui)(0)).

In the same way we get

lim
r→0

∫
{|z|=r}

(ϕ2,iui(z)− θ2,ivi(z))
∂f2

∂r
|dz| =

ϕ2,iT (ui)− θ2,iT (vi) =
π

2
ãi(θ2,i(∂z2vi)(0)− ϕ2,i(∂z2ui)(0)).

We define another couple of functions:

R(l) = lim
r→0

∫
{|z|=r}

∂l

∂r
f1|dz| =

lim
r→0

∫
{|z|=r}

(cosα(∂z1l)(0) + sinα(∂z2l)(0) +O(r)) ·
(
ãi cosα

2r
+O(r ln r)

)
rdα =

lim
r→0

∫
{|z|=r}

ãi cos2 α

2
(∂z1l)(0)dα =

π

2
ãi(∂z1l)(0)

and

F (l) = lim
r→0

∫
{|z|=r}

∂l

∂r
f2|dz| =

lim
r→0

∫
{|z|=r}

(cosα(∂z1l)(0) + sinα(∂z2l)(0) +O(r)) ·
(
ãi sinα

2r
+O(r ln r)

)
rdα =
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lim
r→0

∫
{|z|=r}

ãi sin
2 α

2
(∂z2l)(0)dα =

π

2
ãi(∂z2l)(0).

Then we find:

lim
r→0

∫
{|z|=r}

(
∂vi
∂r

θ1,if1 −
∂ui
∂r

ϕ1,if1

)
|dz| =

θ1,iR(vi)− ϕ1,iR(ui) =
π

2
ãi(θ1,i(∂z1vi)(0)− ϕ1,i(∂z1ui)(0)).

Analogously:

lim
r→0

∫
{|z|=r}

(
∂vi
∂r

θ2,if2 −
∂ui
∂r

ϕ2,if2

)
|dz| =

θ2,iF (vi)− ϕ2,iF (ui) =
π

2
ãi(θ2,i(∂z2vi)(0)− ϕ2,i(∂z2ui)(0)).

As for the fifth summand, we have

lim
r→0

∫
{|z|=r}

(
ui(z)

∂f3(bi)

∂r
− vi(z)

∂f3(ai)

∂r

)
|dz| =

− lim
r→0

∫
{|z|=r}

((
ui(0) + r cosα(∂z1ui)(0) + r sinα(∂z2ui)(0) +O(r2)

) bi
r
−

−
(
vi(0) + r cosα(∂z1vi)(0) + r sinα(∂z2vi)(0) +O(r2)

) ai
r

)
rdα =

−2π(biui(0)− aivi(0)).

To finish we show that

lim
r→0

∫
{|z|=r}

(
ui
∂vi
∂r

− vi
∂vi
∂r

)
|dz| = 0.

In fact:

lim
r→0

∫
{|z|=r}

ui
∂vi
∂r
|dz| = lim

r→0

∫
{|z|=r}

((ui(0) +O(r))(cosα(∂z1vi)(0)+

sinα(∂z2vi)(0) +O(r))) rdα = 0.

A similar result is true for the other summand.

If we collect the previous results, we find that for i = t, b,m :

lim
r→0

∫
∂Di(0,r)

(
Ui
∂Vi
∂r

− Vi
∂Ui
∂r

)
|dz| =
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−πãi [(ϕ1,i(∂z1ui)(0)− θ1,i(∂z1vi)(0)) + (ϕ2,i(∂z2ui)(0)− θ2,i(∂z2vi)(0))]

−2π(biui(0)− aivi(0)) = 0,

with θj,m = ϕj,m = 0 for j = 1, 2.

In conclusion we have:

lim
r→0

∫
M(r)

(ULV − V LU) dA = πãi
∑
i∈{t,b}

[ϕ1,i(∂z1ui)(0)− θ1,i(∂z1vi)(0)]+

πãi
∑
i∈{t,b}

[ϕ2,i(∂z2ui)(0)− θ2,i(∂z2vi)(0)] + 2π
∑

i∈{t,b,m}

[biui(0)− aivi(0)].

We must do a change of variables to return in the graph coordinate. It is sufficient to
observe that

1

x
=
ãi
2z

+O(1)

at each catenoidal type end. Then we get

∂z1ui(0) =
2

ãi
∂x1ui(0) ∂z2ui(0) =

2

ãi
∂x2ui(0)

and the same equations involving the functions vi. After a change of sign we can conclude∫
Mk

(ULV − V LU)dA =

2π
∑
i∈{t,b}

[ϕ1,i(∂z1ui)(0)− θ1,i(∂z1vi)(0)]+

+2π
∑
i∈{t,b}

[ϕ2,i(∂z2ui)(0)− θ2,i(∂z2vi)(0)] + 2π
∑

i∈{t,b,m}

[biui(0)− aivi(0)].

Reordering the terms, we get the statement of the lemma.

2.3.2 The properties of the kernel and of the range of the Jacobi
operator

Let B = B(Mk) ⊂ C2,α(Mk) the space of functions v such that their expression in a
neighbourhood of pi, with i = t, b,m, is

θ1,if1(x, i) + θ2,if2(x, i) + f3(x, ai) + vi(x), (2.13)
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in the graph coordinate x (here we use the same notation of the lemma 22) with vi ∈
C2,α({|x| 6 ε}). We recall that ãm = 0, θj,m = 0 for j = 1, 2.

We are interested to study the kernel and the image of the ”compactified” Jacobi operator
L̄ : B(Mk) → C0,α(Mk). We define the following subspaces of the Banach space B :

J = J(Mk) = ker(L̄), K = K(Mk) = J ∩ C2,α(Mk), K0 = K0(Mk) = L̄(B)⊥.

The elements of the space K are the Jacobi functions on Mk bounded at the ends. From
the previous definitions it follows that

L̄ : B(Mk) = J ⊕ J⊥ → L̄(B)⊕K0.

Lemma 23. In the situation described above, it holds that:

1. K0 = {v ∈ K; ∂xi
vj(0) = 0, for i = 1, 2, j = t, b, and vj(0) = 0, for j = t, b,m} =

{〈N, e3 × p〉}

2. dimJ = 7 + dimK0 = 8.

Proof.

1. Given v ∈ K, we have v ∈ K0 if and only if
∫
Mk
vL̄UdĀ = 0 ∀U ∈ B. Here we con-

tinue to use the notation of lemma 22. Then we suppose that U on a neighbourhood
of the end pi, i = t, b,m has the following expression:

ϕ1,if1(x, i) + ϕ2,if2(x, i) + f3(x, bi) + ui(x),

with ãm = 0, ϕj,m = 0, j = 1, 2. Then by the lemma 22 we get∫
Mk

UL̄vdĀ =

∫
Mk

ULvdA =

= 2π
∑
i∈{t,b}

[〈Φi,∇ui(0)〉 − 〈Θi,∇vi(0)〉] + 2π
∑

i∈{t,b,m}

[aiui(0)− bivi(0)]

for each ui. This is equivalent to

2π
∑
i∈{t,b}

〈Θi,∇vi(0)〉+ 2π
∑

i∈{t,b,m}

bivi(0) = 0.

This gives K0. Now we have to determine the Jacobi fields that are the generators of
the spaceK. Thanks to the works [29] and [30] of S. Nayatani and result contained in
1, for all k > 1, the bounded Jacobi fields are associated to the following isometries
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of the ambient space: the three translations along the coordinate axes and the
rotation about the vertical axis e3. The space K0 is generated only by the Jacobi
functions which satisfy the conditions just proved. Making use of (2.8), (2.9) and
(2.10) with the appropriate values of the logarithmic growths, we want to determine
which of the following functions belongs to K0 : 〈N, e3〉, 〈N, e1〉, 〈N, e2〉. We find the
following relations:

∂xj
〈N, e3〉(pi) = 0, ∂xj

〈N, e1〉(pi) = −ãiδ1,j, ∂xj
〈N, e2〉(pi) = ãiδ2,j,

with j = 1, 2. So we can conclude that these functions do not belong to the space
K0.

Now we consider the Jacobi function associated to the rotation about the vertical
axis, that is 〈N, e3 × p〉 = det(e3, p, N), where p = (s1, s2, s3) denotes the position
vector. We observe that its expression is given by

s1〈N, e2〉 − s2〈N, e1〉 =
x1

|x|2
(aix2 +O(|x|2))−

(
− x2

|x|2

)
(−aix1 +O(|x|2)) = O(x).

Then it is clear that K0 is generated by this Jacobi function.

2. We consider the space V ⊂ B of the functions defined on the disks D∗
i (εi) by

θ1,if1(x, i) + θ2,if2(x, i) + f3(x, ai)

It is a 7-dimensional space: in fact a function in V is determined by the values of
the following parameters: at, ab, am, θ1,t, θ1,b, θ2,t, θ2,b. The spaces B and V can be
decomposed in the following way:

B = V ⊕ C2,α V = V1 ⊕ V2,

where V1 = {f ∈ V : L̄f ∈ L̄(C2,α)} and V2 is a supplementary space. Then we
have L̄(B) = L̄(V2)⊕ L̄(C2,α). Since K0 = L̄(B)⊥ and K = L̄(C2,α) we deduce

dimK0 = codimL̄(B) = codimL̄(C2,α)− dimL̄(V2) =

dimK − dimV2 = dimK − dimV + dimV1,

that is
dimK0 = dimK − 7 + dimV1. (2.14)

Now we consider the restriction to J = ker(L̄) of the projection π : B → V. It is
clear that ker(π|J) = K = J ∩C2,α, then given a function f ∈ J such that f = v+u
with v ∈ V and u ∈ C2,α, we have

0 = L̄f = L̄v + L̄u
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and π(f) = v ∈ V1. Furthermore, for any v ∈ V1 there exists v′ ∈ C2,α such that
L̄v = L̄v′, that is v − v′ ∈ J. Then π(J) = V1 and

dimJ = dim ker(π|J) + dim Im(π|J) = dimK + dimV1. (2.15)

From the equations (2.14) and (2.15) we get

dimJ = 7 + dimK0 = 8.

Remark 24. In [34] a minimal surface is defined to be non degenerate if the space K
of the Jacobi fields induced by the isometries of the ambient space contains the space K0.
Thanks to the result of lemma 23 we can conclude that the Costa-Hoffman-Meeks surface
Mk is non degenerate for all k > 1 with respect to this definition.

2.4 The proof of the main result

We consider again the immersion Xy +uÑ(y) (see (2.3)) and its mean curvature function
H(y, u), where y = (at, ab, am, θ1,t, θ1,b, θ2,t, θ2,b). We denote with e3(y) the unit vector
defined in D∗

i (εi), for i = t, b,m, by e3(θ1,i, θ2,i) for i = t, b and by e3(0, 0) for i = m. We

denote with ds2
y,u the metric induced by Xy + uÑ(y). In the following, the subindex ·y,u

denotes that the corresponding object is computed with respect to the metric ds2
y,u. We re-

call that A and U denote, respectively a neighbourhood of (ãt, ãb, 0) and a neighbourhood
of zero in C2,α(Mk).

Lemma 25. The mean curvature function H(y, u), with (y, u) ∈ A × [−ε, ε]4 × U , is

orthogonal to 〈Ny,u, e3(y)× py,u〉, where Ny,u is the Gauss map of Xy + uÑ(y) and py,u is
the position vector.

Proof. Given ε > 0 small we consider a compact domain Mk(ε) of Mk obtained by
removing the disks Di(ε) which parametrize the ends. We have:

2

∫
M(ε)

H(y, u)〈Ny,u, e3(y)× py,u〉dAy,u =

−
∫
M(ε)

∆y,u det(Ny,u, Xy + uÑ(y), e3(y))dAy,u =

−
∫
∂M(ε)

det(ηy,u, Xy + uÑ(y), e3(y))dsy,u,

where ηy,u is the exterior conormal field to Xy + uÑ(y).
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We parametrize ∂Mk(ε) by three disjoint copies of the boundary of a disk of radius ε. On
this boundary we assume x = εeiψ, ψ ∈ [0, 2π]. In each neighbourhood of the ends we will
use the appropriate frame to simplify the computation. That is, in the neighbourhood of
the end pl, l = t, b,m, we will adopt the frame F (θ1,l, θ2,l) with θ1,m = θ2,m = 0. We set

αε,l(y) = (Xy + uÑ(y))(εeiψ) =

(
1

x
, vl

)
with vl = −al ln |x|+ hl(x). Then

ηy,u,ldsy,u = −α′ε,l ×Ny,udψ,

where α′ε,l =
(−i
x
, 〈ix,∇0vl〉

)
, for l = t, b,m, is the derivative of αε,l with respect to ψ,

i =
√
−1 and ∇0 denotes the gradient computed with respect to ds2

0, the flat metric of
the x-plane. It is possible to prove that (see p. 194 [34])

ηy,u,ldsy,u =

[(
1

x
, al

)
+

(
O(ε2)

x
+O(ε2), O(ε)

)]
dψ.

Then ∫
|x|=ε

det(Xy + uÑ(y), e3(y), ηy,u)dsy,u =

∑
l∈{t,b,m}

∫
|x|=ε

det

((
1

x
, vl

)
, (0, 1),

(
1

x
, al

)
+

(
O(ε2)

x
+O(ε2), O(ε)

))
dψ.

It is easy to conclude that this expression converges to zero as ε goes to zero.

And to finish, here it is our main result.

We set c = (0, ãt, ãb, 0, 0, 0, 0, 0, 0) and we consider the function v ∈ B given by (2.13).
We recall that ỹ = (ãt, ãb, 0, 0, 0, 0, 0).

Theorem 26. For each possible choice of the limit values of the normal vectors of the three
ends, there is, up to isometries, a 1-dimensional real-analytic family of smooth minimal
deformations of Mk, for k > 1, letting the planar end horizontal.

Proof. We consider the map

F : R×A× [−ε, ε]4 × U −→ C0,α(Mk)
(r, y, u) −→ H(y, u) + r〈Ny,u, e3(y)× py,u〉.

where Ny,u is the Gauss map of Xy+uÑ(y). The map F is real analytic. Since the values
r = 0, y = ỹ, u = 0 parametrize the Costa-Hoffman-Meeks surface Mk, the differential of
F at c,

DFc : R8 ×B(Mk) −→ C0,α(Mk)
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is given by

DFc(r, y, u) =
1

2
L̄(vy + u) + r〈Ny,u, e3(y)× py,u〉.

Since L̄(B)⊥ = K0, we have KerDF = {0}×J. The differential for (r, y, u) = c is surjective
and its kernel has dimension 8. Using the implicit function theorem we find a neighbor-
hoodW of c in R8×U such that V = F−1(0)∩W is a real analytic 8-dimensional manifold.
Thanks to the orthogonality between the mean curvature function and 〈Ny,u, e3(y)×py,u〉
proved in the lemma 25, we can conclude that V contains only minimal immersions, hence
V ⊂ {0} × A× [−ε, ε]4 × U .

To complete the proof, it remains to observe that up to now we have considered the
choice of the parameters at, ab, am, θ1,t, θ2,t, θ1,b, θ2,b arbitrary. But it’s necessary that the
null flux condition is satisfied. In our case the flux is given by the sum of the flux of
three catenoidal ends. So we have that the sum of three vectors must be the null vector.
The direction and the length of each vector are respectively given by the direction of axis
of revolution and by the logarithmic growth of the respective catenoidal end. It’s easy
to understand that these three vectors belong to a same vertical plane, that is we must
have always θ2,t = θ2,b. The common value of these angles determines the orientation
of this plane (see (2.2)). Furthermore the flux triangle described by the three vectors
is uniquely determined by three of the remaining parameters (the logarithmic growths
at, ab, am and the angles θ1,t, θ1,b). It is clear that the choice of the limit values of the
normal vectors (in other words of the angles θ1,t, θ1,b) of the three ends determines in
unique way, up to a dilation, the flux triangle. So we can conclude that for each possible
choice of the flux triangle, there exists a smooth 1-parameter family of minimal surfaces
that are deformations of the surface Mk.
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Chapter 3

A Costa-Hoffman-Meeks type
surface in H2 × R

3.1 Introduction

In the last years the study of the minimal surfaces in the product spaces M × R with
M = H2,S2 has been becoming more and more active. The development of the theory
of the minimal surfaces in these spaces started with [36] by H. Rosenberg and continued
with [25] and [26] by W. H. Meeks and H. Rosenberg. In [32] B. Nelli and H. Rosenberg
showed the existence in H2×R of a rich family of examples including helicoids, catenoids
and, solving Plateau problems, of higher topological type examples inspired by the theory
of minimal surfaces in R3.

C. Costa in [3, 4] and D. Hoffman and W.H. Meeks in [14], [15] and [16] described in R3

a minimal surface of genus k > 1 with two ends asymptotic to the two ends of a catenoid
and a middle end asymptotic to a plane. We will denote the Costa-Hoffman-Meeks surface
of genus k > 1 by Mk.

The aim of this work is to show the existence in the space H2 ×R of a family of surfaces
inspired to Mk. We shall prove the following result

Theorem 27. For all k > 1 there exists in H2 × R a minimal surface of genus k with
three horizontal ends: two catenoidal type ends and a middle planar end.

The construction is based on a gluing procedure. We consider a rescaled version of a
compact part of a Costa-Hoffman-Meeks type surface, such that it can be contained in a
cylindrical neighbourhood of {0, 0} × R ⊂ H2 × R of sufficiently small radius. Actually
it’s possible to prove that, in the same set, the mean curvature of such a surface with
respect the standard metric of H2 × R, up to an infinitesimal term, can be expressed in
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terms of the euclidean one. The main result is proved by a gluing procedure (see for
example [11]) usually adopted to construct in R3 new examples starting from known min-
imal surfaces. In particular we glue the surface described above along its three boundary
curves to two minimal graphs that are respectively asymptotic to an upper half catenoid
and a lower half catenoid defined in H2×R and to a minimal graph asymptotic to H2×{0}.

The author wishes to thank L. Hauswirth for invaluable conversations.

3.2 Minimal graphs in H2 × R
In this work we shall consider the disk model for H2. Let x1, x2 denote the coordinates in
H2 and x3 the coordinate in R. Then the space H2 × R is endowed with the metric

dσ2 =
dx2

1 + dx2
2

F
+ dx2

3,

where

F =
1

4

(
1− x2

1 − x2
2

)2
=

1

4

(
1− r2

)2
.

We denote with Hu the mean curvature of the graph of the function u over a domain in
H2. Its expression is

2Hu = Fdiv

(
∇u√

1 + F |∇u|2

)
, (3.1)

where div denotes the divergence in R2. For the details of the computation see [32].

Let Σu be the graph of the function u. In this section we want to obtain the expression
of the mean curvature of the surface Σu+v that is the normal graph of the function v
over Σu and close to it. We shall show how it follows from (3.1) that the linearized mean
curvature operator, that we denote with Lu, is given by:

Fdiv

(
∇v√

1 + F |∇u|2
− F∇u ∇u · ∇v√

(1 + F |∇u|2)3

)
. (3.2)

Furthermore we shall give the expression of Hu+v, the mean curvature of the graph of the
function u+ v, in terms of the mean curvature of Σu, that is Hu. In the following we shall
restrict our attention to two cases: the plane, that is u = 0, and (in section 3.6) a part of

catenoid defined on the domain {(r, θ) ∈ H2|r ∈ [rε, 1)}, where rε = ε
1
2/2.

Here we shall show that:

2Hu+v = 2Hu + Luv + FQu(
√
F∇v,

√
F∇2v), (3.3)
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where Qu is an operator with bounded coefficients if r ∈ [rε, 1) which satisfies

Qu(0, 0) = ∇Qu(0, 0) = 0.

To show this, we start observing that:

1√
1 + F |∇(u+ v)|2

=
1√

1 + F |∇u|2
− F

∇u · ∇v√
(1 + F |∇u|2)3

+Qu,1(v). (3.4)

The operator Qu,1(v) has the following expression

−F |∇v|2

(1 + F |∇(u+ t̄v)|2)3/2
+

3F 2 (∇u · ∇v + t̄|∇v|2)2

(1 + F |∇(u+ t̄v)|2)5/2
, (3.5)

with t̄ ∈ (0, 1), and it satisfies Q1(0) = ∇Q1(0) = 0. To prove (3.4) it’s sufficient to set

f(t) =
1√

1 + F |∇(u+ tv)|2

and to write down the Taylor’s series of order one of this function and to evaluate it
in t = 1. That is f(1) = f(0) + f ′(0) + 1

2
f ′′(t̄), with t̄ ∈ (0, 1). We insert (3.4) in the

expression that defines 2Hu+v to get

Fdiv

(
∇(u+ v)√
1 + F |∇u|2

− F∇(u+ v)
∇u · ∇v√

(1 + F |∇u|2)3
+∇(u+ v)Qu,1(v)

)
=

2Hu + Fdiv

(
∇v√

1 + F |∇u|2
− F∇u ∇u · ∇v√

(1 + F |∇u|2)3

)
+ FQu(

√
F∇v,

√
F∇2v).

Since we assume that Σu is a minimal surface, we will consider Hu = 0.

3.3 The linearized operator about the hyperbolic plane

Now we restrict our attention to the case of the minimal surfaces close to H2 × {0}, that
is the graph of the function u = 0. In this case we obtain immediately from (3.2) that
Lu=0 = F∆eucl, where ∆eucl denotes the Laplace operator in the euclidean metric. In this
section we will study the mapping properties of the operator L = ∆eucl. In the following
we will use the polar coordinates r, θ. In particular our aim is to solve in an unique way
the problem: {

Lw = f in S1 × [r0, 1)
w|r=r0 = ϕ
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with r0 ∈ (0, 1), considering a convenient normed functions space for w, f and ϕ, so that
the norm of w is bounded by the one of f .
Since

r2L =

(
r2 ∂

2

∂r2
+ r

∂

∂r
+

∂2

∂θ2

)
has separated variables, let us firstly consider the operator

Lθ = ∂2
θθ,

which acts on 2π-periodic even functions. It is uniformly elliptic and self-adjoint. In
particular, Lθ has discrete spectrum (λi)i>0 = i2. Each eigenvalue λi has multiplicity one.
We denote by ei(θ) the eigenfunction associated to λi, normalized so that∫ 2π

0

(ei(θ))
2 dθ = 1.

The Hilbert basis {ei}i∈N of the space of 2π-periodic even functions in L2(S1) induces
the following Fourier decomposition of L2 functions g = g(θ, r) which are 2π-periodic and
even in the variable θ,

g(θ, r) =
∑
i>0

gi(r) ei(θ).

From this, we deduce that the operator L, can be decomposed as L =
∑

i>0 Li, being

r2Li =

(
r2 ∂

2

∂r2
+ r

∂

∂r
− λi

)
, for every i > 0.

From the observations made above we get that the potential of r2Li is

Pi := −λi = −i2. (3.6)

Now we can prove a lemma which assures that L is injective.

Lemma 28. Given 0 < r0 < r1 < 1, let w be a solution of Lw = 0 on S1 × [r0, r1] such
that w(· , r0) = w(· , r1) = 0. Then w = 0.

Proof: We can decompose w =
∑

i>0wi(r) ei(θ). Since the potential Pi of the operator
Li is negative or zero for every i > 0 (see (3.6)) and the operator Li is uniformly elliptic,
the maximum principle holds. Then we get the lemma 28 from the hypothesis on the
boundary conditions.
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3.3.1 The mapping properties of the Laplace operator

Definition 29. Given ` ∈ N, α ∈ (0, 1), µ ∈ R and the closed interval I, we define

C`,αµ (S1 × I)

to be the space of functions w := w(θ, r) in C`,αloc (S1 × I) for which the following norm is
finite

‖w‖C`,α
µ

:= ‖(1− r2)−µw‖C`,α(S1×I).

Proposition 30. Given µ > 0, r0 ∈ (0, 1), there exists an operator

Gr0 : C0,α
µ (S1 × [r0, 1)) −→ C2,α

µ (S1 × [r0, 1))
f 7−→ w := Gr0(f)

satisfying the following statements

(i) Lw = f on S1 × [r0, 1),

(ii) w = 0 on S1 × {r0},

(iii) ||w||C2,α
µ (S1×[r0,1))

6 c ||f ||C0,α
µ (S1×[r0,1))

, for some constant c > 0 which does not depend
on r0.

Proof: As consequence of the lemma 28, the operator L = ∆eucl is injective. Hence,
Fredholm alternative let us assure that there exists, an unique w ∈ C2,α

µ (S1 × [r0, r1]),
with w(θ, r) satisfying: {

∆eucl w = f on S1 × [r0, r1]
w(·, r0) = w(·, r1) = 0.

(3.7)

We want to prove the following assertion.

Assertion 31. For every 0 < r0 < r1 < 1, f ∈ C0,α
µ (S1×[r0, r1]) and w ∈ C2,α

µ (S1×[r0, r1])
satisfying (3.7), it exists a constant c such that

‖w‖C0,α
µ (S1×[r0,r1]) 6 c ‖f‖C0,α

µ (S1×[r0,r1]).

We suppose by contradiction that the assertion 31 is false, that is it does not exist a
universal costant for which the previous estimate holds. Then, for each n ∈ N, there exist
r1,n > r0,n and fn, wn satisfying (3.7) (with r0,n, r1,n, fn, wn instead of r0, r1, f, w) such
that

‖fn‖C0,α
µ (S1×[r0,n,r1,n]) = 1 and ‖wn‖C0,α

µ (S1×[r0,n,r1,n]) → +∞, when n→∞.
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Since Ωn := S1 × [r0,n, r1,n] is a compact set, An := sup
S1×[r0,n,r1,n]

(1− r2)−µ |wn| is achieved

at a point (θn, rn) ∈ S1 × [r0,n, r1,n]. We define

w̃n(θ, r) :=
(1− r2

n)
−µ

‖wn‖C0,α
µ (Ωn)

wn(θ, rrn),

and

f̃n(θ, r) :=
(1− r2

n)
−µ

‖fn‖C0,α
µ (Ωn)

fn(θ, rrn),

for all (θ, r) ∈ S1 × In, with In = [r0,n/rn, r1,n/rn]. Clearly, An 6 ‖wn‖C0,α
µ (Ωn), and

|w̃n(θ, r)| 6 (1− r2)µ
(1− (rrn)

2)−µ|wn(θ, rrn)|
An

6 (1− r2)µ.

On the other hand, (1− r2)−µ|∇w̃n| 6 ‖w̃n‖C2,α
µ (S1×In) 6

‖wn‖C2,α
µ (Ωn)

‖wn‖C0,α
µ (Ωn)

. Thanks to Schauder

estimates, we obtain

||wn||C2,α
µ (Ωn) 6 c

(
||fn||C0,α

µ (Ωn) + ||(1− r2)−µwn||C0(Ωn)

)
= c (1 + An).

Hence,

|∇w̃n| 6 c (1− r2)µ
1 + ‖wn‖C0,α

µ
(Ωn)

‖wn‖C0,α
µ (Ωn)

6 c (1− r2)µ.

The sets In converge to a nonempty interval I∞. Since the sequences (w̃n)n and (∇w̃n)n are
uniformly bounded, Ascoli-Arzelà theorem assures that a subsequence of (w̃n)n converges
on compact sets of S1 × I∞ to a function w∞ that vanishes on S1 × ∂I∞.

We note that sup
S1×In

(1− r2)−µ|w̃n| =
An

‖wn‖C0,α
µ (Ωn)

, which does not converge to zero. In fact

An →∞, ‖wn‖C0,α
µ (Ωn) 6 ‖wn‖C2,α

µ (Ωn) 6 c′(1 + An) then

An
‖wn‖C0,α

µ (Ωn)

>
An

c′(1 + An)
→ 1

c′
> 0.

In particular, it holds
0 < sup

S1×I∞
(1− r2)−µ |w∞| 6 1. (3.8)

In the same way it’s possible to prove that a subsequence of (f̃n)n converges on compact
sets of S1 × I∞ to the function f∞ ≡ 0 since, if n→∞,

sup
S1×In

(1− r2)−µ|f̃n| =
1

An
→ 0.
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Then the limit function w∞ must satisfy the differential equation

∆euclw∞ = 0

on S1 × I∞ with null boundary conditions on ∂I∞. Furthermore r = 1 ∈ I∞, then
w∞(θ, 1) = 0. So, also in the case ∂I∞ = ∅, we can conclude that w∞(θ, r) = 0. This
function does not satisfy (3.8), a contradiction. This proves the assertion 31.

Thanks to Schauder estimates, we know that the function introduced in the assertion 31
is uniformly bounded and likewise its gradient. Hence Ascoli-Arzelà theorem assure us
that we can take the limit as r1 → 1 in a sequence of solutions which are defined on
S1 × [r0, r1]. This proves the existence of a solution of ∆euclw = f defined on S1 × [r0, 1)
for which it holds

‖w‖C0,α
µ (S1×[r0,1])

6 c ‖f‖C0,α
µ (S1×[r0,1])

.

Now it is sufficient to use again Schauder estimates to obtain the estimates for the deriva-
tives.

3.4 A family of minimal surfaces close to the hyper-

bolic plane

In this section we will show the existence of normal minimal graphs over the plane, Cm,
of equation x3 = 0 which are asymptotic to it. We will reformulate the problem to use
Schauder fixed point theorem. We recall that rε = ε1/2/2. We know already that the
graph of the function v, denoted with Σv, is minimal, if and only if the function v is a
solution of

F
(
L v +Q0

(√
F∇v,

√
F∇2v

))
= 0. (3.9)

This equation is a simplified version (since u = 0) of (3.3) introduced in section 3.2. The
operator Q0 has bounded coefficients for r ∈ [rε, 1). Its expression is div (∇vQ0,1) where
Qu,1 is given by (3.5).

Now let’s consider a function ϕ ∈ C2,α(S1) which is even with respect to θ, L2-orthogonal
to e0 and e1 and such that ‖ϕ‖C2,α 6 kε. We define

wϕ(·, ·) := Hrε,ϕ(·, ·),

where H is the operator of harmonic extension introduced in proposition 46. In order to
solve the equation (3.9), we choose µ ∈ (0, 1) and look for v of the form v = wϕ+w where

60



w ∈ C2,α
µ (S1 × [rε, 1)) and v = ϕ on S1 × {rε}. Using proposition 30, we can rephrase this

problem as a fixed point problem
w = S(ϕ,w) (3.10)

where the nonlinear mapping S which depends on ε and ϕ is defined by

S(ϕ,w) := −Grε (Lwϕ +Q0 (wϕ + w)) ,

where the operator G is defined in proposition 30. To prove the existence of a fixed point
for (3.10) we need the following result that states that S is a contracting mapping:

Lemma 32. There exist some constants ck > 0 and εk > 0, such that

‖S(ϕ, 0)‖C2,α
µ

6 ckε
2 (3.11)

and, for all ε ∈ (0, εk)

‖S(ϕ, v2)− S(ϕ, v1)‖C2,α
µ

6
1

2
‖v2 − v1‖C2,α

µ

for all v1, v2 ∈ C2,α
µ (S1 × [rε, 1)) such that ‖vi‖C2,α

µ
6 2ckε

2.

Proof. We know from proposition 30 that ‖Grε(f)‖C2,α
µ

6 c‖f‖C0,α
µ
, then

‖S(ϕ, 0)‖C2,α
µ

6 c‖Lwϕ +Q0 (wϕ) ‖C0,α
µ

6

6 c
(
‖Lwϕ‖C0,α

µ
+ ‖Q0 (wϕ) ‖C0,α

µ

)
.

So we need find the estimates for the two summands above. We recall that ‖ϕ‖2,α 6 kε.
Since µ ∈ (0, 1) and thanks to proposition 46 we obtain

‖wϕ‖C2,α
µ

6 c‖wϕ‖C2,α
1

6 c‖ϕ‖C2,α 6 ckε.

Being wϕ a harmonic function we have Lwϕ = 0. The last term is estimated by

‖Q0 (wϕ) ‖C0,α
µ

6 ckε
2.

In fact
‖Q0 (wϕ) ‖C0,α

µ
6 c‖w‖2

2,α,µ 6 c‖ϕ‖2
2,α 6 ckε

2.

Then we can conclude
‖S(ϕ, 0)‖C2,α

µ
6 ckε

2.

As for the second estimate, we consider

S(ϕ, v2)− S(ϕ, v1) = Grε (Q0 (wϕ + v2)−Q0 (wϕ + v1))
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and consequently

‖S(ϕ, v2)− S(ϕ, v1)‖C2,α
µ

6 c‖Q0 (wϕ + v2)−Q0 (wϕ + v1) ‖C0,α
µ
.

We observe that from the considerations made above it follows that

||Q0 (wϕ + v2)−Q0 (wϕ + v1)||C0,α
µ

6 c||v2 − v1||C2,α
µ
‖wϕ‖C2,α

µ
6

6 ckε||v2 − v1||C2,α
µ
.

Then
‖S(ϕ, v2)− S(ϕ, v1)‖C2,α

µ
6 ckε||v2 − v1||C2,α

µ
.

Theorem 33. Let be B := {w ∈ C2,α
µ (S1 × [rε, 1)) | ||w||C2,α

µ
6 2ckε

2}. Then the nonlinear
mapping S defined above has a unique fixed point v in B.

Proof: The previous lemma shows that, if ε is chosen small enough, the nonlinear map-
ping S is a contraction mapping from the ball B of radius 2ckε

2 in C2,α
µ (S1 × [rε, 1)) into

itself. This value follows from the estimate of the norm of S(0). Consequently thanks to
Schauder fixed point theorem, S has an unique fixed point w in this ball.

We have proved the existence of a minimal surface, denoted with Sm, which is close to
H2 × {0}, and close to its boundaryis the vertical graph over the annulus B2rε −Brε of a
function which can be expanded as

Hrε,ϕ(r, θ) + V̄m(r, θ), with ||V̄m||C2,α
µ

6 cε.

The function Vm depends non linearly on ε, ϕ. Furthermore it satisfies

‖V̄m(ε, ϕ)(rε·)− V̄m(ε, ϕ′)(rε·)‖C2,α(B̄1−B1/2) 6 cε‖ϕ− ϕ′‖C2,α(S1).

3.5 The catenoid in H2 × R
The catenoid in the space H2 × R can be obtained by the revolution around the x3 axis,
{0, 0} × R, of an appropriate curve γ (see [32]). We consider a vertical geodesic plane
containing the origin of H2 and the curve γ. Let r be the euclidean distance between the
point of γ at height t and the x3 axis: we denote with r = r(t) a parametrization of γ.
The surface obtained by revolution of γ, is minimal if and only if r = r(t) satisfies the
following differential equation:

4r(t)
∂2r

∂t2
− 4

(
∂r

∂t

)2

− (1− r(t)4) = 0. (3.12)
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A first integral for this equation is:(
∂r

∂t

)2

= Cr2 − 1 + r4

4
(3.13)

with C > 1
2
. It is possible to prove that the function r(t) has a minimum value rmin given

by:

rmin =

√
2C + 1

2
−
√

2C − 1

2
< 1.

Since we assume C = 1
4ε2
, we get

rmin =

√
2C + 1

2
−
√

2C − 1

2
=
√
C

(
1 +

1

4C
− 1 +

1

4C
+O(

1

C2
)

)
=

1

2
√
C

+O

(
1

C3/2

)
= ε+O(ε3).

We denote with Ct and Cb, respectively, the part of the catenoid contained in H2 × R+

and H2 × R−.

We set
tε = −ε ln ε.

We need find the parametrization of Ct and Cb as graphs on the horizontal plane respec-
tively for t ∈ [tε − ε, tε + ε] and t ∈ [−tε − ε,−tε + ε].

Lemma 34. For ε > 0 small enough, we have

rε(t) = ε cosh
t

2ε
+O(ε3e

t
2ε ) and ∂trε(t) =

1

2
sinh

t

2ε
+O(ε2e

t
2ε )

for t ∈ [0, tε + ε]. Moreover if t ∈ [tε − ε, tε + ε], we derive

rε(t) = O(ε1/2) and ∂trε = O
(
ε−1/2

)
.

Proof. We define the function v(t) such that rε(t) = rε(0) cosh v(t), with v(0) = 0 and
rε(0) which satisfies

Cr2
ε (0)− 1 + r4

ε (0)

4
= 0,

from which
1

4
= Cr2

ε (0)− r4
ε (0)

4
. (3.14)
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Plugging rε(t) in (3.13) and using (3.14), we have

(∂tv)
2 = C − r2

ε (0)

4
(1 + cosh2 v(t))

and under the hypothesis that v(t) = g( t
2ε

) and

t

2ε
6 g

(
t

2ε

)
6

t

2ε
+ 1

we obtain that (∂tv)
2 = C + O(ε2e

t
2ε ) and then v(t) =

√
Ct + O(ε3e

t
2ε ). We remark a

posteriori that t
2ε

6 v(t) 6 t
2ε

+ 1 holds for t ∈ [0, tε + ε], ε > 0 small enough and then

rε(t) = rε(0) cosh v(t) = ε cosh

(
t

2ε

)
+O(ε3e

t
2ε ) (3.15)

where we use that rε(0) = rmin = ε+O(ε3). Now we assume that t ∈ [tε − ε, tε + ε], then
rε(t) = O(ε1/2) and ∂trε(t) = 1

2
sinh

(
t
2ε

)
+O(ε2e

t
2ε ) = O(ε−1/2).

Now we can prove a lemma that give us the parametrization of the part of catenoid whose
height t belongs to a neighbourhood of tε.

Lemma 35. For ε > 0, small enough and t ∈ [tε − ε, tε + ε], the catenoid can be

parametrized on an annulus of Cε =
{
reiθ; rε√

e
6 r 6 rε

√
e
}

by the graph of the function

Ut(r, θ) which satisfies

Ut(r, θ) = 2ε ln
2r

ε
+ vt(r, θ), (3.16)

∂rUt(r, θ) =
2ε

r
+ vt,d(r, θ).

with vt(r, θ) = O(ε2) and vt,d(r, θ) = O(ε5/2).

Proof: The results follow easily from the hypothesis and the equation (3.15).

It’s easy to understand that the parametrization of the catenoid for values of t in a
neighbourhood of −tε is obtained by a change of the sign in the expression 3.16. Similar
consideration are true for the derivative. Then we obtain

Ub(r, θ) = −2ε ln
2r

ε
+ vb(r, θ),

∂rUb(r, θ) = −2ε

r
+ vb,d(r, θ)

with vb(r, θ) = O(ε2) and vb,d(r, θ) = O(ε5/2).
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3.6 A family of minimal surfaces close to a catenoid

on S1 × [rε, 1)

In this section we want to show the existence of minimal normal graphs over the catenoid
defined in S1× [rε, 1) ⊂ H2 and asymptotic to it. We know that the graph of the function
u + v is minimal, being u the function whose graph is the catenoid, if and only if v is a
solution of the equation

Hu+v = 0 (3.17)

whose expression is given by (3.3). The explicit expression of Luv is

F

(
1√
A

∆v +
∂

∂r

(
1√
A

)
∂v

∂r
− 1

A
3
2

∂u

∂r

∂

∂r

(
F
∂u

∂r

)
∂v

∂r
− F

∂u

∂r

∂

∂r

(
1

A
3
2

∂u

∂r

∂v

∂r

))
, (3.18)

where F = 1
4
(1− r2)2,

A = 1 + F |∇u|2 =
(4C − 2)r2

4Cr2 − 1− r4

and
∂u

∂r
= ± 2√

4Cr2 − 1− r4
,

as it is easy to obtain using (3.13). It’s useful to observe that since we assume C = 1
4ε2

and rε = ε
1
2/2, we have that, for r ∈ [rε, 1), A = 1 +O(ε), ∂u

∂r
= O(

√
ε),

∂A

∂r
=

(8C − 4)(−r + r5)

(4Cr2 − 1− r4)2
= O(

√
ε)

and
∂2u

∂r2
=

(8Cr − 4r3)√
(4Cr2 − 1− r4)3

= O(1).

Taking into account these estimates, we can conclude that it holds

L̄uv :=
√
A

(
∂

∂r

(
1√
A

)
∂v

∂r
− 1

A
3
2

∂u

∂r

∂

∂r

(
F
∂u

∂r

)
∂v

∂r
− F

∂u

∂r

∂

∂r

(
1

A
3
2

∂u

∂r

∂v

∂r

))
=

O(
√
ε)
∂v

∂r
+O(

√
ε)
∂2v

∂2r
. (3.19)

Then we can write
√
ALuv = F

(
Lv + L̄uv

)
.

We remark that we have already studied the mapping properties of the operator L in
section 3.3.
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Then the graph of a function v over Σu is minimal if and only if v is a solution of the
following equation

Lv + L̄uv +
√
AQu(v) = 0. (3.20)

Thanks to the observations on the functions A and ur, we can conclude that Qu has
bounded coefficients in [rε, 1). Now we consider a function ϕ ∈ C2,α(S1) which is even
with respect to θ, L2-orthogonal to e0 and e1 and such that ‖ϕ‖C2,α 6 kε. We define

wϕ(·, ·) := Hrε,ϕ(·, ·)

where the operatorH has been introduced in proposition 46. In order to solve the equation
(3.20), we choose µ ∈ (0, 1) and look for v of the form v = wϕ + w where w ∈ C2,α

µ (S1 ×
[rε, 1)) and v = ϕ on S1 × {rε}. We can rephrase this problem as a fixed point problem,
that is

w = S(ϕ,w) (3.21)

where the nonlinear mapping S is defined by

S(ϕ,w) := −Grε

(
Lwϕ + L̄u(wϕ + w) +

√
AQu (wϕ + w)

)
,

where the operator G is defined in proposition 30. To prove the existence of a solution
for (3.21) we need the following result which states that S is a contracting mapping.

Lemma 36. There exist some constants ck > 0 and εk > 0, such that

‖S(ϕ, 0)‖C2,α
µ

6 ckε
3/2 (3.22)

and, for all ε ∈ (0, εk)

‖S(ϕ,w2)− S(ϕ,w1)‖C2,α
µ

6
1

2
‖w2 − w1‖C2,α

µ

for all w1, w2 ∈ C2,α
µ (S1 × [rε, 1)) such that ‖wi‖C2,α

µ
6 2ckε

3
2 .

Proof. We know from the proposition 30 that ‖Grε(f)‖C2,α
µ

6 c‖f‖C0,α
µ
. Then

‖S(ϕ, 0)‖C2,α
µ

6 c‖Lwϕ + L̄u(wϕ) +
√
AQu (wϕ) ‖C0,α

µ
6

c
(
‖Lwϕ‖C0,α

µ
+ ‖L̄u(wϕ)‖C0,α

µ
+ ‖Qu (wϕ) ‖C0,α

µ

)
.

Here we have used the fact that A = 1 +O(ε).
So we need to find the estimates of each summand. We recall that ‖ϕ‖C2,α 6 kε. For all
µ ∈ (0, 1), ‖wϕ‖C2,α

µ
6 ‖wϕ‖C2,α

1
, and thanks to proposition 46 we get that

‖wϕ‖C2,α
µ

6 c‖ϕ‖C2,α(S1) 6 ckε
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and Lwϕ = 0. We use (3.19) for finding the estimate of L̄uwϕ. We obtain

‖L̄u(wϕ)‖C0,α
µ

6 cε1/2‖wϕ‖C2,α
µ

6 ckε
3/2.

The last term is estimated observing that

‖Qu (wϕ) ‖C0,α
µ

6 c‖wϕ‖2
C2,α

µ
6 ckε

2.

Putting together all these estimates we get

‖S(ϕ,wϕ)‖C2,α
µ

6 ckε
3/2.

As for the second estimate, we observe that

S(ϕ,w2)− S(ϕ,w1) = −Grε

(
L̄u(wϕ + w2) +

√
AQu (wϕ + w2)

)
+

Grε

(
L̄u(wϕ + w1) +

√
AQu (wϕ + w1)

)
and

‖S(ϕ,w2)− S(ϕ,w1)‖C2,α
µ

6

c‖L̄u(wϕ + w2)− L̄u(wϕ + w1) +Qu (wϕ + w2)−Qu (wϕ + w1) ‖C0,α
µ

=

= c‖L̄u(w2 − w1) +Qu (wϕ + w2)−Qu (wϕ + w1) ‖C0,α
µ

6

6 ‖L̄u(w2 − w1)‖C0,α
µ

+ ||Qu (wϕ + w1)−Qu (wϕ + w2)||C0,α
µ
.

We observe that from the considerations above it follows that

‖L̄u(w2 − w1)‖C0,α
µ

6 cε1/2||w2 − w1||C2,α
µ
,

and
||Qu (wϕ + w1)−Qu (wϕ + w2)||C0,α

µ
6 c||w2 − w1||C2,α

µ
‖wϕ‖C2,α

µ

6 ckε||w2 − w1||C2,α
µ
.

Then
‖S(ϕ,w2)− S(ϕ,w1)‖C2,α

µ
6 cε1/2||w2 − w1||C2,α

µ
.

Theorem 37. Let be B := {w ∈ C2,α
µ (S1×[rε, 1)) | ||w||2,α,µ 6 2ckε

3/2}. Then the nonlinear
mapping S defined above has a unique fixed point v in B.
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Proof: The previous lemma shows that, if ε is chosen small enough, the nonlinear map-
ping S is a contraction mapping from the ball B of radius 2ckε

3/2 in C2,α
µ (S1× [rε, 1)) into

itself. This value follows from the estimate of the norm of S(ϕ, 0). Consequently thanks
to Schauder fixed point theorem, S has a unique fixed point w in this ball.

We have proved the existence of a minimal surface St, which is close to the part of catenoid
Ct introduced in section 3.5 and close to its boundary is a graph over the annulus B2rε−Brε

of the function which can be expanded as

2ε ln

(
2r

ε

)
+Hrε,ϕ(r, θ) + V̄t(r, θ),

with ‖V̄t‖C2,α
µ

6 cε3/2.

Analogously we can show the existence of a minimal surface Sb, which is close to the part
of catenoid denoted by Cb introduced in section 3.5 and close to its boundary is a graph
over the annulus B2rε −Brε of the function

−2ε ln

(
2r

ε

)
−Hrε,ϕ(r, θ)− V̄b(r, θ),

with ‖V̄b‖C2,α
µ

6 cε3/2. The functions V̄t, V̄b depend non linearly on ε, ϕ. Furthermore they
satisfy

‖V̄ (ε, ϕ)(rε·)− V̄ (ε, ϕ′)(rε·)‖C2,α(B̄1−B1/2) 6 cε
1
2‖ϕ− ϕ′‖C2,α(S1).

3.7 The mean curvature in a neighbourhood of {0, 0}×
R in H2 × R

We recall that the model we use for H2×R the disk model endowed with the metric ghyp.
If x1, x2 denote the coordinates in H2 and x3 the coordinate in R, then

ghyp =
dx2

1 + dx2
2

F
+ dx2

3,

where

F =
1

4

(
1− x2

1 − x2
2

)2
=

1

4

(
1− r2

)2
.

In this section we want to express the mean curvature Hhyp of a surface, contained in a
cylindrical neighbourhood C of {0, 0} × R in H2 × R in terms of the mean curvature He

computed with respect to the euclidean metric geucl = dx2
1 + dx2

2 + dx2
3.
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Let ḡ be the metric defined on R3 by 4dx2
1 + 4dx2

2 + dx2
3. We consider the map f :

(R3, geucl) → (R3, ḡ) defined by

(x1, x2, x3) →
(x1

2
,
x2

2
, x3

)
. (3.23)

It is easy to see that it is an isometric embedding. That is the pull-back of the metric ḡ
by f equals geucl.

We denote by ∇̄ the riemannian connection on (R3, ḡ). Let X, Y be two vector fields on
(R3, geucl). We define X̄ := f∗(X), Ȳ := f∗(Y ), Then the connection defined on (R3, geucl).
by

∇XY = ∇̄X̄ Ȳ , (3.24)

coincides with the riemannian connection relative to the metric geucl. If Ne denotes the
normal vector to a surface Σ with respect to the euclidean metric, the mean curvature
He(Σ) of Σ in (R3, geucl) is defined to be half the trace of the mapping

X → −[∇XNeucl]
T ,

where [·]T denotes the projection on TΣ. We set Σ̄ = f(Σ). Similarly if N̄ denotes the
normal vector to Σ̄ with respect the metric ḡ, the mean curvature H̄(Σ̄) of Σ̄ in (R3, ḡ) is
defined to be half the trace of the mapping

X → −[∇̄XN̄]T ,

where [·]T denotes the projection on T Σ̄. Thanks to the relation (3.24) and from the fact
that T Σ̄ = f∗TΣ it is clear that

H̄(Σ̄) = He(Σ). (3.25)

Now we turn our attention toward the space H2 × R. Now our aim is to find a relation
between the mean curvature with respect to the metric ghyp of a surface contained in a
cylindrical neighbourhood C of {0, 0}×R in H2×R and the mean curvature of the same
surface seen in the riemannian manifold (C, ḡ).

The Christoffel symbols, Γkij, associated to ghyp all vanish except

Γ1
11 = Γ2

21 = Γ2
12 = −Γ1

22 =
2x1

1− r2
,

Γ1
12 = Γ2

22 = Γ1
21 = −Γ2

11 =
2x2

1− r2
.
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Let ∂1 = 1
2

∂
∂x1
, ∂2 = 1

2
∂
∂x2
, ∂1 = ∂

∂x3
be the elements of a basis of the tangent space. Now,

if X =
∑

iX
i∂i and Y =

∑
j Y

j∂j are two tangent vector fields, the expression of the

covariant derivative in (H2 × R, ghyp) is given by

∇h
XY =

∑
k

(∑
i,j

X iY jΓkij +X(Y k)

)
∂k.

It is clear that

∇h
XY = ∇̄XY +

2∑
k=1

∑
i,j

X iY jΓkij∂k. (3.26)

It is possible to show that
∑2

k=1

∑
i,j X

iY jΓkij∂k is the vector whose components with
respect the basis (∂1, ∂2, ∂3) are given by Y 1x1√

F
+ Y 2x2√

F

Y 1x2√
F
− Y 2x1√

F
0

−Y 1x2√
F

+ Y 2x1√
F

Y 1x1√
F

+ Y 2x2√
F

0

0 0 0


 X1

X2

X3

 .
The mean curvature Hhyp(S) of a surface S in (H2×R, ghyp) is defined to be half the trace
of the mapping

X → −[∇XNhyp]
T ,

where [·]T denotes the projection onto the tangent bundle of the surface and Nhyp =
(N1, N2, N3) the normal vector to S. Thanks to (3.26) we get the relation

[∇h
XNhyp]

T = [∇̄XNhyp]
T +

2∑
k=1

∑
i,j

X iN jΓkij∂k. (3.27)

Now we observe that the normal vector N̄ to S with respect the metric ḡ does not coincide
with Nhyp. Since ghyp is asymptotic to the metric ḡ, it is reasonable to think that Nhyp(S)

can be related to N̄(S). If we suppose that Nhyp(S) = (v1,v2,v3)
|(v1,v2,v3)|ghyp

and N̄(S) = (v1,v2,v3)
|(v1,v2,v3)|ḡ

then it is possible to show that

Nhyp(S) = 2
√
FN̄(S)

(
1 +O(r2)

)
.

Now we insert this result into (3.27) and we compute the opposite of half the trace. We
obtain

Hhyp(S) = (H̄(S)− 2(x1N1 + x2N2))(1 +O(r2)). (3.28)

Thanks to (3.25) we know that H̄(S) = He(f
−1(S)). We have proved the following result
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Proposition 38. Let S be a surface contained in a sufficiently small cylindrical neigh-
bourhood C of {0, 0} × R ⊂ H2 × R endowed with the metric ghyp. If N =

∑3
i=1Ni∂i and

Hhyp(·) denote respectively the normal vector to S and the mean curvature with respect to
ghyp, He(·) the mean curvature with respect to ge and f is the map defined by (3.23), then

Hhyp(S) = (He(f
−1(S))− 2(x1N1 + x2N2))(1 +O(r2)). (3.29)

3.8 A rescaled Costa-Hoffman-Meeks type surface

In this section we will describe the surface obtained by rescaling of the Costa-Hoffmann-
Meeks surface of genus k > 1, Mk, (see C. Costa [3], [4] and D. Hoffman and W. H.
Meeks [15], [16]) and we will study the mapping properties of its Jacobi operator. We
denote by Mk,ε the image of Mk by an homothety of parameter 2ε. We will adapt to our
situation some of the analytical tools used in [11] to show the existence of a family of
minimal surfaces close to Mk with one planar end and two slightly bent catenoidal ends
by an angle ξ ∈ (−ξ0, ξ0), ξ0 > 0 and small enough. We denote an element of this family
by Mk(ξ), then Mk(ξ)|ξ=0 = Mk.

3.8.1 The Costa-Hoffman-Meeks surface.

We start by giving a brief description of the surface Mk. After suitable rotation and
translation, Mk enjoys the following properties.

1. It has one planar end Em asymptotic to the x3 = 0 plane, one top end Et and one
bottom end Eb that are respectively asymptotic to the upper end and to the lower
end of a catenoid with x3-axis of revolution. The planar end Em is located between
the two catenoidal ends.

2. It is invariant under the action of the rotation of angle 2π
k+1

about the x3-axis, under
the action of the symmetry with respect to the x2 = 0 plane and under the action
of the composition of a rotation of angle π

k+1
about the x3-axis and the symmetry

with respect to the x3 = 0 plane.

3. It intersects the x3 = 0 plane in k + 1 straight lines, which intersect themselves at
the origin with angles equal to π

k+1
. The intersection of Mk with the plane x3 =

const (6= 0) is a single Jordan curve. The intersection of Mk with the upper half
space x3 > 0 (resp. with the lower half space x3 < 0) is topologically an open
annulus.

We denote with Xi, with i = t, b,m, the parametrization of the end Ei and with Xi,ε the
parametrization of the corresponding end Ei,ε of Mk,ε.
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Now we give a local description of the surface Mk,ε near its ends and we introduce coor-
dinates that we will use.

The planar end. The planar end Em,ε of the surface Mk,ε can be parametrized by

Xm,ε(x) :=

(
2εx

|x|2
, 2εum(x)

)
∈ R3, (3.30)

where x ∈ B̄ρ0(0)−{0} ⊂ R2 and the function um tends to 0 like um(x) = O(|x|k+1). Here

ρ0 > 0 is fixed small enough. We will assume ρ0 = O(ε
1
4 ). The minimal surface equation

has the following form
|x|4

4ε2
div

(
∇u

(1 + |x|4 |∇u|2)1/2

)
= 0. (3.31)

It can be shown (see [11]) that the function um can be extended at the origin continuously
using Weierstrass representation. We can prove that um ∈ C2,α(B̄ρ0).

If we linearize in u = 0 the nonlinear equation (3.31) we obtain the expression an operator
which is close, up to a multiplication by 4ε2, to the Jacobi operator about the plane, that
is LR2 = |x|4∆. To be more precise, the linearization of (3.31) gives

Lu =
|x|4

4ε2
div

(
∇v√

1 + |x|4|∇u|2
− |x|4∇u ∇u · ∇v√

(1 + |x|4|∇u|2)3

)
.

We will give the expression of Hu+v, the mean curvature of the graph of the function u+v,
in terms of the mean curvature of Σu, that is Hu. In the following we shall restrict our
attention to the planar case, that is u = 0, on a domain of the form {(r, θ) ∈ Br0(0)|r ∈
[r1, r2]}. Here we shall show that

2Hu+v = 2Hu + Luv +
|x|4

4ε2
Qu(

√
|x|4∇v,

√
|x|4∇2v), (3.32)

where Qu satisfies
Qu(0, 0) = ∇Q′

u(0, 0).

To show (3.32), we start observing that:

1√
1 + |x|4|∇(u+ v)|2

=
1√

1 + |x|4|∇u|2
− |x|4 ∇u · ∇v√

(1 + |x|4|∇u|2)3
+Qu,1(v) (3.33)

where the function Qu,1 satisfies Qu,1(0) = ∇Qu,1(0) = 0. The proof of that is very close
to the one that appears in section 3.2: it’s necessary only to replace F by |x|4. So we can
omit some details. Secondly we observe that 2Hu+v is given by

|x|4

4ε2
div

(
∇(u+ v)√

1 + |x|4|∇u|2
− |x|4∇(u+ v)

∇u · ∇v√
(1 + |x|4|∇u|2)3

+∇(u+ v)Qu,1(v)

)
.
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From this it follows the wanted expression.

Since we assume that Σu is a minimal surface, we will consider Hu = 0.

Following what we have done in section 3.6 replacing F by |x|4 we get the expression of
the minimal surfaces equation that we will use in the following sections:

|x|4

4ε2

(
Lv + L̄uv +Qu(

√
|x|4∇v,

√
|x|4∇2v)

)
= 0. (3.34)

The catenoidal ends. We denote by Xc the parametrization of the standard catenoid
C whose axis of revolution is the x3-axis. Its expression is

Xc(s, θ) := (cosh s cos θ, cosh s sin θ, s) ∈ R3

where (s, θ) ∈ R× S1. The unit normal vector field about C is given by

nc(s, θ) :=
1

cosh s
(cos θ, sin θ,− sinh s).

The catenoid C may be divided in two pieces, denoted C±, which are defined as the image
by Xc of (R± × S1). For any ε > 0, we define the catenoid Cε as the image of C by an
homothety of parameter 2ε. We denote with Xc,ε := 2εXc its parametrization. Of course,
by this transformation, to C±, correspond two surfaces denoted Cε,±.

Up to some dilation, we can assume that the two ends Et,ε and Eb,ε of Mk,ε are asymptotic
to some translated copy of the catenoid parametrized by Xc,ε in the vertical direction.
Therefore, Et,ε and Eb,ε can be parametrized, respectively, by

Xt,ε := Xc,ε + wt nc + σt,ε e3 (3.35)

for (s, θ) ∈ (s0,∞)× S1,
Xb,ε := Xc,ε − wb nc − σb,ε e3 (3.36)

for (s, θ) ∈ (−∞,−s0)× S1, where σt,ε, σb,ε ∈ R, functions wt, wb tend exponentially fast
to 0 as s goes to ∞ reflecting the fact that the ends are asymptotic to a catenoidal end.

In section 3 of [24] it is given the expression of the mean curvature operator about of a
surface close to a rescaled standard catenoid. We can adapt this result to our situation.
We obtain that the surface parametrized by Xc,ε + w nc is minimal if and only if the
function w satisfies the minimal surface equation Hw = 0, where

Hw = − 1

4ε2
LCw +

1

2ε cosh2 s
Q2,ε

(
w

2ε cosh s
,

∇w
2ε cosh s

,
∇2w

2ε cosh s

)
+
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1

2ε cosh s
Q3,ε

(
w

2ε cosh s
,

∇w
2ε cosh s

,
∇2w

2ε cosh s

)
. (3.37)

Here LC is the Jacobi operator about the catenoid, that is

LCw =
1

cosh2 s

(
∂2w

∂s2
+
∂2w

∂θ2
+

2w

cosh2 s

)
and Q2,ε and Q3,ε are functions which are bounded in Ck(R × S1) for all k, uniformly in
ε. They satisfy

Q2,ε(0, 0, 0) = Q3,ε(0, 0, 0) = 0 and ∇Q2,ε(0, 0, 0) = ∇Q3,ε(0, 0, 0) = 0, (3.38)

∇2Q3,ε(0, 0, 0) = 0. (3.39)

We will write for short

Qε(wΦ) =
1

2ε cosh2 s
Q2,ε

(
wΦ

2ε cosh s
,
∇wΦ

2ε cosh s
,
∇2wΦ

2ε cosh s

)
+

1

2ε cosh s
Q3,ε

(
wΦ

2ε cosh s
,
∇wΦ

2ε cosh s
,
∇2wΦ

2ε cosh s

)
. (3.40)

For all r < ρ0 and s > s0, we define

Mk,ε(s, r) := Mk,ε −
[
Xt,ε((s,∞)× S1) ∪Xb,ε((−∞,−s)× S1) ∪Xm,ε(Br(0))

]
. (3.41)

The parametrizations of the three ends of Mk,ε induce a decomposition of Mk,ε into slightly
overlapping components: a compact piece Mk,ε(s0 +1, ρ0/2) and three noncompact pieces
Xt,ε((s0,∞)× S1), Xb,ε((−∞,−s0)× S1) and Xm,ε(B̄ρ0(0)).

We define a weighted space of functions on Mk,ε.

Definition 39. Given ` ∈ N, α ∈ (0, 1) and ∆ ∈ R, the space C`,αδ (Mk,ε) is defined to be

the space of functions in C`,αloc (Mk,ε) for which the following norm is finite

‖w‖C`,α
δ (Mk,ε)

:= ‖w‖C`,α(Mk,ε(s0+1,ρ0/2)) + ‖w ◦Xm,ε‖C`,α(Bρ0 (0))

+ sup
s>s0

e−δs
(
‖w ◦Xt,ε‖C`,α([s,s+1]×S1) + ‖w ◦Xb,ε‖C`,α([−s−1,−s]×S1)

)
and which are invariant under the action of the symmetry with respect to the x2 = 0 plane.

We remark that there is no weight on the middle end. In fact we compactify this end
and we consider a weighted space of functions defined on a two ended surface. We will
perturb the surface Mk,ε by the normal graph of a function u ∈ C2,α

δ (Mk,ε). In particular
the middle end Em,ε will be just translated in the vertical direction.
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3.8.2 The Jacobi operator

The Jacobi operator about Mk,ε is

LMk,ε
:= ∆Mk,ε

+ |AMk,ε
|2

where |AMk,ε
| is the norm of the second fundamental form on Mk,ε.

In the parametrization of the ends introduced above, the volume forms dvolMk,ε
can be

written as γt ds dθ and γb ds dθ near the catenoidal type ends and as γm dx1 dx2 near the
middle end. Now we can define globally on Mk,ε a smooth function

γ : Mk,ε −→ [0,∞)

that is identically equal to 4ε2 on Mk,ε(s0 − 1, 2ρ0) and equal to γt (resp. γb, γm) on the
end Et,ε (resp. Eb,ε, Em). They are defined in such a way that on Xt,ε((s0,∞)× S1) and
on Xb,ε((−∞, s0)× S1) we have

γ ◦Xt,ε(s, θ) ∼ 4ε2 cosh2 s and γ ◦Xb,ε(s, θ) ∼ 4ε2 cosh2 s.

Finally on Xm,ε(Bρ0), we have

γ ◦Xm(x) ∼ 4ε2

|x|4
.

It is possible to check that:

Lε,δ : C2,α
δ (Mk,ε) −→ C0,α

δ (Mk,ε)

w 7−→ γ LMk,ε
(w)

is a bounded linear operator. The subscript δ is meant to keep track of the weighted space
over which the Jacobi operator is acting. Observe that, the function γ is here to coun-
terbalance the effect of the conformal factor 1√

|gMk,ε
| in the expression of the Laplacian in

the coordinates we use to parametrize the ends of the surface Mk,ε. This is precisely what
is needed to have the operator defined from the space C2,α

δ (Mk,ε) into the target space
C0,α
δ (Mk,ε).

To have a better grasp of what is going on, let us linearize the nonlinear equation (3.37)
at w = 0. We get the expression of the Jacobi operator about the rescaled catenoid Cε

LCε :=
1

4ε2 cosh2 s

(
∂2
s + ∂2

θ +
2

cosh2 s

)
.

We can observe that the operator 4ε2 cosh2 sLCε maps the space (cosh s)δ C2,α((s0,∞)×S1)
into the space (cosh s)δ C0,α((s0,∞)× S1).
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Similarly, if we linearize the nonlinear equation (3.31) at u = 0, we obtain the expression
of the Jacobi operator about the plane times 4ε2.

LR2
ε

:=
|x|4

4ε2
∆.

Again, the operator 4ε2

|x|4 LR2
ε

= ∆ clearly maps the space C2,α(B̄ρ0) into the space C0,α(B̄ρ0).
Now, the function γ plays, for the ends of the surface Mk,ε, the role played by the function
cosh2 s for the ends of the standard catenoid and the role played by the function |x|−4

for the plane. Since the Jacobi operator about Mk,ε is asymptotic to LR2
ε

at Em,ε and is

asymptotic to LCε at Et,ε and Eb,ε, we conclude that the operator Lε,δ maps C2,α
δ (Mk,ε)

into C0,α
δ (Mk,ε).

Now we recall the notion of non degeneracy introduced in [11].

Definition 40. The surface Mk,ε is said to be non degenerate if Lε,δ is injective for all
δ < −1.

It useful to observe that a duality argument in the weighted Lebesgue spaces, implies that

(Lε,δ is injective) ⇔ (Lε,−δ is surjective)

if δ /∈ Z. See [27] and [18] for more details.

The non degeneracy of Mk,ε is related to the mapping properties of Lε,δ and to the kernel
of this operator. From the observations made above, it follows that at the catenoidal type
ends and at the middle planar end the Jacobi operators of Mk,ε and Mk are respectively
asymptotic to LC and LCε which coincide up to a multiplication by 4ε2. So we could
transpose the all results about the surface Mk(0) contained in [11] related to the study of
its mean curvature operator, to the surface Mk,ε, including non degeneracy.

The Jacobi fields. It is known that a smooth one parameter group of isometries con-
taining the identity generates a Jacobi field, that is a solution of the equation LMk,ε

u = 0.
These solutions are generated by the following one parameter groups of isometries: the
vertical translations, the translations along the x1-axis, the dilations. See [11] for details.

The group of vertical translations generated by the Killing vector field Ξ(p) = e3 gives
rise to the Jacobi field

Φ0,+(p) := n(p) · e3.

The vector field Ξ(p) = p that is associated to the one parameter group of dilation
generates a Jacobi fields

Φ0,−(p) := n(p) · p.
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The Killing vector field Ξ(p) = e1 that generates the group of translations along the
x1-axis is associated to a Jacobi field

Φ1,+(p) := n(p) · e1.

Finally, we denote by
Φ1,−(p) := n(p) · (e2 × p)

the Jacobi field associated to the Killing vector field Ξ(p) = e2 × p that generates the
group of rotations about the x2-axis.

The Jacobi equation has other solutions which are not taken into account because in the
difference with the four Jacobi fields just introduced they are not invariant under the
action of the symmetry with respect to the x2 = 0 plane.

With these notations, we define the deficiency space

D := Span{χt Φj,±, χb Φ
j,± : j = 0, 1}

where χt is a cutoff function that is identically equal to 1 on Xt,ε((s0 + 1,∞) × S1),
identically equal to 0 on Mk,ε −Xt,ε((s0,∞)× S1) and that is invariant under the action
of the symmetry with respect to the x2 = 0 plane. Also, we agree that

χb(·) := χt(− ·).

Clearly
L̃ε,δ : C2,α

δ (Mk,ε)⊕D −→ C0,α
δ (Mk,ε)

w 7−→ γ LMk,ε
(w)

is a bounded linear operator. The linear decomposition Lemma proved in [23] for constant
mean curvature surfaces (see also [18] for minimal hypersurfaces) can be adapted to our
situation and thanks to the results of S. Nayatani contained in [29],[30] and extended in
chapter 1, stating that any bounded Jacobi field respecting the mirror symmetry with
respect to the x2 = 0 plane is linear combination of Φ0,± and Φ1,+, we get the following
result

Proposition 41. All bounded Jacobi fields on Mk,ε that are invariant with respect to the
x2 = 0 plane are linear combination of Φ0,± and Φ1,+ and choose δ ∈ (1, 2). Then the
operator L̃ε,δ is surjective and has a kernel of dimension 4. Moreover, there exists Gε,δ a
right inverse for L̃ε,δ whose norm is bounded.
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3.9 An infinite dimensional family of minimal sur-

faces which are close to a compact part of a rescaled

Costa-Hoffman-Meeks type surface in H2 × R.
We recall that in section 3.7 we found that the mean curvature with respect to the metric
ghyp of a surface S̄ contained in a cylindrical neighbourhood of {0, 0} × R of sufficiently
small radius in H × R can be expressed in terms of the euclidean mean curvature of a
surface S, which is related to S̄ by the relation S = f(S̄), being f the map defined by
(3.23).

In this section we will apply this result to prove the existence of a family of minimal
surfaces close to the surface M̄k,ε = f(Mk,ε) contained in a cylindrical neighbourhood of
radius rε =

√
ε/2 of {0, 0} × R. We remark that the image by the map f−1 of a surface

contained in such a domain is contained in a cylinder of radius 2rε.

We start giving the statement of a result that can be easily obtained by [11], lemma 2.2.
It describes the region of the surface Mk,ε which can be parametrized by a graph on a
annular neighbourhood of 2rε contained in the x3 = 0 plane.

Lemma 42. There exists ε0 > 0 such that, for all ε ∈ (0, ε0) an annular part of the ends
Et,ε, Eb,ε and Em,ε of Mk,ε can be written as vertical graphs over the horizontal plane of
the functions

Ut(r, θ) = σt,ε + 2ε ln

(
2r

ε

)
+ ft(r, θ), (3.42)

∂rUt(r, θ) =

(
2ε

r

)
+ ft,d(r, θ),

Ub(r, θ) = −σb,ε − 2ε ln

(
2r

ε

)
+ fb(r, θ), (3.43)

∂rUb(r, θ) = −
(

2ε

r

)
+ fb,d(r, θ),

where fi = O(ε2), fi,d = O(ε5/2), i = t, b. As for the parametrization of the planar end, it
satisfies

Um(r, θ) = fm(r, θ) = O(
( r

2ε

)−(k+1)

) (3.44)

∂rUm(r, θ) = fm,d(r, θ) = O(
( r

2ε

)−k
).
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Here (r, θ) are the polar coordinates in the x3 = 0 plane. The functions O(ε) are defined
in the annulus B4 ε1/2−Bε1/2/4 and are bounded in C∞b topology by a constant (independent
on ε) multiplied by ε, where the partial derivatives are computed with respect to the vector
fields r ∂r and ∂θ.

Then Mk,ε has two ends Et,ε and Eb,ε which are graphs over the x3 = 0 plane of functions
Ut and Ub defined on the annulus B4 ε1/2 −Bε1/2/4.

Taking into account the definition of M̄k,ε = f(Mk,ε), it is clear that a lemma with identic
statement can be proved also for this surface.

We set sε = −1
2
ln ε and we define MT

k,ε to be equal to Mk,ε from which we have removed
the image of (sε,+∞)× S1 by Xt,ε, the image of (−∞,−sε)× S1 by Xb,ε and the image
of Bρε(0) by Xm,ε with ρε := 2ε 1

2rε
= 2ε1/2. We set M̄T

k,ε = f(MT
k,ε). In this section we will

prove the existence of a family of surfaces close to M̄T
k,ε. To this aim we will use proposition

38 and we will follow the work [11].

First, we modify the parametrization of the ends Et,ε, Eb,ε for appropriates values of s, so
that, when r ∈ [ε1/2/4, 4 ε1/2] the curves corresponding to the image of

θ → (2εr cos θ, 2εr sin θ, Ut(r, θ)), θ → (2εr cos θ, 2εr sin θ, Ub(r, θ))

correspond, respectively, up to a vertical translation to the curves s = −2ε ln(2r) and
s = 2ε ln(2r).

The curve θ → (2εr cos θ, 2εr sin θ, Um(r, θ)) corresponds to ρ = 2ε
r
.

The second step is the modification of unit normal vector field on Mk,ε into a transverse
unit vector field ñε in such a way that it coincides with the normal vector field nε on Mk,ε,
is equal to e3 on the graph over B2ε1/2−B3ε1/2/8 of the functions Ut and Ub and interpolate

smoothly between the different definitions of ñε in different subsets of MT
k,ε.

The graph of a function u, using the vector field ñε, will be a minimal surface if and only
if u is a solution of a second order nonlinear elliptic equation of the form

LMT
k,ε
u = L̃ε u+Qε (u)

where LMT
k,ε

is the Jacobi operator about MT
k,ε, Qε is a nonlinear second order differ-

ential operator and L̃ε is a linear operator which takes into account the change of the
parametrization and of the change of the normal vector field. In [11] it is proved that this
last operator has coefficients uniformly bounded by a constant times ε2.
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Now, we consider three functions ϕt, ϕb, ϕm ∈ C2,α(S1) which are even, with respect to θ,
ϕt, ϕb are L2 orthogonal to 1 and cos θ while ϕm is L2 orthogonal to 1. Assume that they
satisfy

‖ϕt‖C2,α + ‖ϕb‖C2,α + ‖ϕm‖C2,α 6 κ ε.

We set Φ := (ϕt, ϕb, ϕm) and we define wΦ to be the function equal to

1. χ+Hϕt(sε − s, ·) on the image of Xt,ε where χ+ is a cut-off function equal to 0 for
s 6 s0 + 1 and identically equal to 1 for s ∈ [s0 + 2, sε]

2. χ−Hϕb
(s + sε, ·) on the image Xb,ε where χ− is a cut-off function equal to 0 for

s > −s0 − 1 and identically equal to 1 for s ∈ [−sε,−s0 − 2]

3. χm H̃ρε,ϕm(·, ·) on the image of Xm,ε, where χm is a cut-off function equal to 0 for
r > ρ0 and identically equal to 1 for ρ ∈ [ρε, ρ0/2]

4. zero on the remaining part of the surface MT
k,ε.

We recall that the operators H̃ and H have been introduced respectively in Propositions
48 and 47.

We would like to prove that, under appropriates hypotheses, the graph about M̄T
k,ε of the

function ū = f(u) with u = wΦ + v, is a minimal surface. If we denote it by Σ̄ū, this is
equivalent to solve the equation:

Hhyp(Σ̄ū) = 0.

If we define Σu = f−1(Σ̄ū) and denote by Nu = (N1(u), N2(u), N3(u)) the unit normal
vector to Σ̄ū, thanks to proposition 38 we can write the equation to solve as

(He(Σu)− 2(x1N1(u) + x2N2(u)))(1 +O(r2)) = 0.

He(Σu) is the mean curvature of the graph of the function u about MT
k,ε. Taking into

account that u = wΦ + v, its expression is given by

LMT
k,ε

(wΦ + v)− L̃ε(wΦ + v)−Qε(wΦ + v).

To simplify the notation we set −2(x1N1(u) + x2N2(u)) = P (wΦ + v). The resolution of
the previous equation is obtained thanks to the one of the following fixed point problem:

v = T (Φ, v) (3.45)

with

T (Φ, v) = Gε,δ ◦ Eε
(
γ
(
L̃ε(wΦ + v) + P (wΦ + v)− LMT

k,ε
wΦ +Qε(wΦ + v)

))
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where δ ∈ (1, 2), the operator Gε,δ is defined in proposition 41 and Eε is a linear extension
operator such that

Eε : C0,α
δ (MT

k,ε) −→ C0,α
δ (Mk,ε),

where C0,α
δ (MT

k,ε) denotes the space of functions of C0,α
δ (Mk,ε) restricted to MT

k,ε. It is
defined by Eεv = v in MT

k,ε, Eεv = 0 in the image of [sε+1,+∞)×S1 by Xt,ε, in the image
of (−∞,−sε − 1)× S1 by Xb,ε and in the image of Bρε/2 × S1 by Xm,ε. Finally Eεv is an
interpolation of these values in the remaining part of Mk,ε such that, for example,

(Eεv) ◦Xt,ε(s, θ) = ((1 + sε − s)v) ◦Xt,ε(sε, θ),

for (s, θ) ∈ [sε, sε + 1]× S1

(Eεv) ◦Xb,ε(s, θ) = ((1 + sε + s)v) ◦Xb,ε(sε, θ),

for (s, θ) ∈ [−sε − 1,−sε]× S1 and

(Eεv) ◦Xm,ε(ρ, θ) = ((
2

ρε
ρ− 1)v) ◦Xm,ε(ρε, θ)

for (ρ, θ) ∈ [ρε/2, ρε]× S1.

Remark 43. From the definition of Eε, if supp v ∩ (Bρ0 −Bρε) 6= ∅ then

‖(Eεv) ◦Xm,ε‖C0,α(Bρ0 ) 6 cε−α‖v ◦Xm,ε‖C0,α(Bρ0 ).

This phenomenon of explosion of the norm does not occur near the catenoidal type ends:

‖(Eεv) ◦Xt,ε‖C0,α([sε+1,+∞)×S1) 6 c‖v ◦Xt,ε‖C0,α([sε+1,+∞)×S1).

A similar equation holds for the bottom end. In the following we will assume α > 0 and
near to zero.

The existence of a solution v ∈ C2,α
δ (MT

k,ε) for the equation (3.45) is a consequence of the
following result which proves that T is a contracting mapping.

Lemma 44. There exist constants cκ > 0 and εκ > 0, such that

‖T (Φ, 0)‖C2,α
δ

6 cκ ε
2 (3.46)

and, for all ε ∈ (0, εκ)

‖T (Φ, v2)− T (Φ, v1)‖C2,α
δ (Mk,ε)

6
1

2
‖v2 − v1‖C2,α

δ (MT
k,ε)

for all v1, v2 ∈ C2,α
δ (MT

k,ε) and satisfying ‖v‖C2,α
δ

6 2 cκ ε
2
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Proof. We recall that the Jacobi operator associated to Mk,ε, is asymptotic to the opera-
tor LC,ε near the catenoidal ends, and it is asymptotic to the laplacian near of the planar
end. The function wΦ is identically zero far from the ends where the explicit expression
of LMk,ε

is not known: this is the reason of our particular choice in the definition of wΦ.
Then from the definition of wΦ and thanks to proposition 41 we obtain the estimate

‖Eε
(
γLMT

k,ε
wΦ

)
‖C0,α

δ (Mk,ε)
6 ||γtLC,ε(wΦ ◦Xt,ε)||C0,α

δ ([s0+1,sε]×S1) +

+ ||γbLC,ε(wΦ ◦Xb,ε)||C0,α
δ [−sε,−s0−1]×S1) 6 c

∣∣∣∣∣∣∣∣ 2

cosh2 s
wΦ ◦Xt,ε

∣∣∣∣∣∣∣∣
C0,α

δ [s0+1,sε]×S1)

6

cε‖wΦ ◦Xt,ε‖C2,α
δ [s0+1,sε]×S1) 6 cκ ε

2+ δ
2 .

Using the properties of L̃ε, we obtain

‖Eε
(
γL̃εwΦ

)
‖C0,α

δ (Mk,ε)
6 cε2‖wΦ ◦Xt,ε‖C2,α

δ ([s0+1,sε]×S1)+

cε2‖wΦ ◦Xm,ε‖(C2,α[ρε,ρ0/2]×S1) 6 cκ ε
2.

The estimate of ‖Eε (γP (wΦ)) ‖C0,α
δ (Mk,ε)

is related to the estimate of the horizontal compo-

nents of the normal vector to surface at the catenoidal type ends and the middle planar end
and to the definition of the function γ. It is possible to show that ‖Eε (γP (wΦ)) ‖C0,α

δ (Mk,ε)
≤

ε2.

As for the last term, we recall that the operator Qε has two different expressions if we
consider the catenoidal type end and the middle planar end (see equation (3.37) and
(3.32)). In particular we assume that at the middle planar end, Qε keeps track also of
the operator L̄u, for u = um (see (3.30)) that appears in the expression of the mean
curvature operator given by (3.34). It holds that ‖L̄umwΦ‖C2,α

δ ([ρε,ρ0/2]×S1) 6 cε‖wΦ ◦
Xm,ε‖C2,α

δ ([ρε,ρ0/2]×S1) 6 ckε
2. We find the following estimate

‖Eε (γQε (wΦ)) ‖C0,α
δ (Mk,ε)

6 ckε
2.

It is convenient to recall that the expression of Qε at the catenoidal type ends is given by
(3.40). So we obtain

‖Eε (γQε (wΦ)) ‖C0,α
δ (Mk,ε)

6 cε‖Q2,ε

(
wΦ

2ε cosh s
,
∇wΦ

2ε cosh s
,
∇2wΦ

2ε cosh s

)
‖C0,α

δ (Mk,ε)

6 cε‖ wΦ

2ε cosh s
◦Xt,ε‖2

C2,α
δ ([s0+1,sε]×S1)

+ cε‖ wΦ

2ε cosh s
◦Xb,ε‖2

C2,α
δ ([−sε,−s0−1]×S1)

+

+cε1−α‖wΦ ◦Xm,ε‖2
C2,α([ρε,ρ0/2]×S1) + ‖L̄umwΦ‖C2,α([ρε,ρ0/2]×S1) 6 ckε

2
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As for the second estimate, we recall that

T (Φ, v) := Gε,δ

(
Eε
(
γ
(
L̃ε(wΦ + v) + P (wΦ + v)− LMT

k,ε
wΦ +Qε (wΦ + v)

)))
.

Then

T (Φ, v2)−T (Φ, v1) = Gε,δ

(
Eε
(
γ
(
L̃ε(wΦ + v2) + P (wΦ + v2)− LMT

k,ε
wΦ +Qε (wΦ + v2)

)))
−

Gε,δ

(
Eε
(
γ
(
L̃ε(wΦ + v1) + P (wΦ + v1)− LMT

k,ε
wΦ +Qε (wΦ + v1)

)))
and

‖T (Φ, v2)− T (Φ, v1)‖C2,α
δ (Mk,ε)

6 c‖Eε
(
γ
(
L̃ε(wΦ + v2) + P (wΦ + v2)− L̃ε(wΦ + v1)

−P (wΦ + v1) +Qε (wΦ + v2)−Qε (wΦ + v1))) ‖C0,α
δ (Mk,ε)

6

6 ‖Eε
(
γ
(
L̃(v2 − v1)

))
‖C0,α

δ (Mk,ε)
+ ‖Eε (γ (P (wΦ + v2)− P (wΦ + v1))) ‖C0,α

δ (Mk,ε)
+

+‖Eε (γ (Qε (wΦ + v1)−Qε (wΦ + v2))) ‖C0,α
δ (Mk,ε)

.

We observe that from the considerations above it follows that

‖Eε
(
γ
(
L̃ε(v2 − v1)

))
‖C0,α

δ (Mk,ε)
6 cε2||v2 − v1||C2,α

δ (MT
k,ε)
,

‖Eε (γ (P (wΦ + v2)− P (wΦ − v1))) ‖C0,α
δ (Mk,ε)

6 cε2||v2 − v1||C2,α
δ (MT

k,ε)

and
‖Eε (γ (Qε (wΦ + v1)−Qε (wΦ + v2))) ‖C0,α

δ (Mk,ε)

6 cε||v2 − v1||C2,α
δ (MT

k,ε)
‖ wΦ

2ε cosh s
‖C0,α

δ (Mk,ε)
+ ‖L̄um(v2 − v1)‖C2,α([ρε,ρ0/2]×S1) 6

6
(
ckε

3
2
+ δ

2 + cε
)
||v2 − v1||C2,α

δ (MT
k,ε)
.

Then
‖T (Φ, v2)− T (Φ, v1)‖C2,α

δ (Mk,ε)
6 cε||v2 − v1||C2,α

δ (MT
k,ε)
.

This argument provides a minimal surface M̄T
k,ε(Φ) which is close to M̄T

k,ε and has three
boundaries. This surface is, close to its upper and lower boundary, a vertical graph over
the annulus Brε −Brε/2, whose parametrization is, respectively, given by

Ūt(r, θ) = σt,ε + 2ε ln(2r) +Hϕt(sε + ln 2r, θ) + Vt(r, θ),
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Ūb(r, θ) = −σb,ε − 2ε ln(2r)−Hϕb
(ln 2r + sε, θ) + Vb(r, θ),

where sε = −1
2

ln ε. Nearby the middle boundary the surface is a vertical graph whose
parametrization is

Ūm(r, θ) = H̃ρε,ϕm

(
2ε

r
, θ

)
+ Vm(r, θ).

The boundaries of the surface correspond to r = rε = ε1/2/2. All the functions Vi,
i = t, b,m, depend non linearly on ε, ϕ. The functions Vi(ε, ϕi), for i = t, b, satisfy
‖Vi(ε, ϕi)(rε·)‖C2,α(B̄1−B1/2) 6 cε and

‖Vi(ε, ϕ)(rε·)− Vi(ε, ϕ
′)(rε·)‖C2,α(B̄1−B1/2) 6 cε1−

δ
2‖ϕ− ϕ′‖C2,α .

The function Vm(ε, ϕm) satisfies ‖Vm(ε, ϕm)(rε·)‖C2,α(B̄1−B1/2) 6 cε and

‖Vm(ε, ϕ)(rε·)− Vm(ε, ϕ′)(rε·)‖C2,α(B̄1−B1/2) 6 cε‖ϕ− ϕ′‖C2,α .

3.10 The matching of Cauchy data

In this section we shall complete the proof of Theorem 27.

We need introduce additional notation. Given an even function f ∈ C2,α(S1) with the
following Fourier expansion

f(θ) =
∑
n∈N

anei(nθ) =
∑
n∈N

an cos(nθ),

then we denote with π′′(f) the function∑
n>2

an cos(nθ)

and with π′(f) the function
a0 + a1 cos(θ).

In section 3.6 we have obtained the minimal surfaces St, Sb which are graphs on D =
B1 \ Brε ⊂ H2 and are asymptotic, respectively, to the parts of catenoid denoted Ct and
Cb introduced in section 3.5. In section 3.4 we have obtained a surface Sm which is a
minimal graph on D and is asymptotic to Cm := H2 × {0}.
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In other words we are able to solve, for Φ = (ϕt, ϕb, ϕm) ∈ [π′′C2,α(S1)]3 and ‖ϕi‖C2,α 6 ε
a system of minimal surface equations, that we write for short as

LcuS = Qc(uS) on Ct, Cb
LpuS = Qp(uS) on Cm
π′′uS = (ϕt − π′′vt, ϕb − π′′vb, ϕm) on (∂Ct, ∂Cb, ∂Cm)

Here the index p and c mean that the corresponding minimal surface equation is relative,
respectively, to a plane or a catenoid. So it is possible to construct three minimal graphs
about the plane and two part of a catenoid in H2 × R. The functions vt, vb, vt,d, vb,d are
introduced in (3.16) and in following equations.

The parametrizations of the surfaces St, Sb that are denoted by X ′
i,Φ with i = t, b, satisfy

in a neighbourhood of their boundaries

X ′
i,Φ = 2ε ln

(
2r
ε

)
+ ϕi + π′(uS + vi)

∂rX
′
i,Φ = 2ε

r
+ vi,d + ∂ruS

and a surface Sm, whose parametrization X ′
m,Φ, in a neighbourhood of its boundary,

satisfies
X ′
m,Φ = ϕ′m + π′(uS)

∂rX
′
m,Φ = ∂ruS

Now we can define

Eε : [π′′C2,α(S1)]3 −→ C2,α(S1)3 × C1,α(S1)3

Φ −→ [(X ′
t,Φ, X

′
b,Φ, X

′
m,Φ), (∂rX

′
t,Φ, ∂rX

′
b,Φ, ∂rX

′
m,Φ)]|rε .

Finally, in section 3.9 we have obtained the surface M̄T
k,ε(Φ), whose boundary consists

in three curves on ∂Brε . In fact we solved, for Φ = (ϕt, ϕb, ϕm) ∈ [π′′C2,α(S1)]3 and
‖ϕi‖C2,α 6 ε the problem{

Hhyp(ΣuC
) = 0 on M̄k,ε

π′′uC = (ϕt − π′′ft, ϕb − π′′fb, ϕm − π′′fm) on ∂M̄k,ε.

The functions ft, fb, fm, ft,d, fb,d, fm,d are introduced in (3.42),(3.43) and (3.44).
The parametrization of the surface ΣuC

near the catenoidal type ends are denoted by Xi,Φ

with i = t, b. In a neighbourhood of the boundaries of ΣuC
, they satisfy

Xi,Φ = 2ε ln 2r
ε

+ ϕi + π′(uC + fi)

∂rXi,Φ = 2ε
r

+ fi,d + ∂ruC
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The parametrization of the middle planar end, Xm,Φ, in a neighbourhood of its boundary,
satisfies

Xm,Φ = ϕm + π′(uC + fm)

∂rXm,Φ = fm,d + ∂ruC .

We define

Fε : [π′′C2,α(S1)]3 −→ C2,α(S1)3 × C1,α(S1)3

Φ −→ [(Xt,Φ, Xb,Φ, Xm,Φ), (∂rXt,Φ, ∂rXb,Φ, ∂rXm,Φ)]|rε .

We set Cε := Eε − Fε.
We want to prove that the surfaces St, Sb, Sm and M̄T

k,ε can be glued along their boundaries
to obtain a C∞-surface. Firstly we will show that these surface correspond in a C1 way
along the boundaries curves. This is true if it exists Ψ = (ψ1, ψ2, ψ3) such that Cε(Ψ) = 0.
The existence of the appropriates boundary functions is proven in the following theorem.
Finally, to show that the surface is C∞, it is sufficient to apply the regularity theory.
That completes the proof of Theorem 27.

Theorem 45. There exists ε0 such that, for each 0 < ε < ε0, there exists Ψ = (ψ1, ψ2, ψ3) ∈
[π′′C2,α(S1)]3 which solves Cε(Ψ) = 0.

Proof. We consider the harmonic extensions of ψi, i = 1, 2, 3, on the ends of M̄k,ε, that
is

1. w̄t = χ+Hψ1(sε − s, ·), on the upper end

2. w̄b = χ−Hψ2(s+ sε, ·), on the lower end

3. w̄m = χm H̃Rε,ψ3(·, ·) on the middle end (the definition of the map f is given by
(3.23)),

and its harmonic extensions

1. wt = Hrε,ψ1 on St

2. wb = −Hrε,ψ2 on Sb

3. wm = Hrε,ψ3 on Sm

(see section 3.9 for the definitions of the cut-off functions). We recall that the operators
H, H and H̃ have been introduced respectively in proposition 46, 47 and 48. We consider
the following maps

E0 : [π′′C2,α(S1)]3 −→ C2,α(S1)3 × C1,α(S1)3

Ψ −→ [(wt, wb, wm), (∂rwt, ∂rwb, ∂rwm)]|rε
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and
F0 : [π′′C2,α(S1)]3 −→ C2,α(S1)3 × C1,α(S1)3

Ψ −→ [(w̄t, w̄b, w̄m), (∂rw̄t, ∂rw̄b, ∂rw̄m)]|rε .

Now using Fourier expansion of the function, we can see that C0 = E0−F0 has an inverse
which is bounded independently of ε. In particular, the equation C0(Ψ) = 0 has the
unique solution Ψ = (0, 0, 0). Now we consider (Cε − C0)(Ψ), whose expression is

(π′(uS − uC) + π′(vt − ft), π
′(uS − uC) + π′(vb − fb), π

′(uS − uC) + π′(−fm),

∂r(uS − wt)− ∂r(uC − w̄t) + vt,d − ft,d,

∂r(uS − wb)− ∂r(uC − w̄b) + vb,d − fb,d,

∂r(uS − wm)− ∂r(uC − w̄m)− fm,d) .

It is easy to prove that

||(Cε − C0)(Ψ)||C2,α(S1)3×C1,α(S1)3 6 ε.

In order to solve Cε(Ψ) = 0, we find a fixed point for the mapping

Dε(Ψ) := C−1
0 ((Cε − C0)(Ψ)) .

3.11 Appendix

The results contained in this section are about the existence of some harmonic extension
operators. The first one gives the harmonic extension of a function on H2 \Dr0 .

Proposition 46. If µ ∈ (0, 1) there exists an operator

Hr0 : C2,α(S1) −→ C2,α
1 (S1 × [r0, 1)),

such that for every function ϕ(θ) ∈ C2,α(S1), which is L2-orthogonal to e0, e1, the function
wϕ = Hr0,ϕ solves {

∆euclwϕ = 0 on S1 × [r0, 1)
wϕ = ϕ on S1 × {r0}.

Moreover,
||Hr0,ϕ||C2,α

1 (S1×[r0,1))
6 c ||ϕ||C2,α(S1), (3.47)

for some constant c > 0.
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Proof. We observe that

∆eucl(1− r2)µ =
(
−4µ(1− r2) + 4µ(µ− 1)r2

) (
1− r2

)µ−2
=

=
(
−4µ+ 4µ2r2

) (
1− r2

)µ−2
6 0

if µ ∈ (0, 1]. So (1−r2)µ it’s a superharmonic function. Then the function ||ϕ||C2,α(S1)(1−
r2) can be used as barrier function and we can apply the Perron method. We can conclude
that the solution, that we denote with wϕ, exists and satisfies

|wϕ| 6 c||ϕ||C2,α(S1)(1− r2).

Using the initial assumption we can write

(1− r2)−1|wϕ| 6 c|ϕ|.

The estimates for the derivatives of wϕ are obtained by Schauder estimates. We can
conclude that

||wϕ||C2,α
1

6 c||ϕ||C2,α(S1).

Now we give the statement of a result whose proof is contained in [7]. It gives the harmonic
extension of a function on a half catenoid.

Proposition 47. There exists an operator

H : C2,α(S1) −→ C2,α
−2 ([0,+∞)× S1),

such that for all ϕ ∈ C2,α(S1), even function and orthogonal to ei, i = 0, 1 in the L2-sense,
the function w = H(ϕ) solves{

(∂2
s + ∂2

θ )w = 0 in S1 × [0,+∞)

w = ϕ on S1 × {0}

Moreover
‖H(ϕ)‖C2,α

−2 ([0,+∞)×S1) 6 c ‖ϕ‖C2,α(S1),

for some constant c > 0.

The following result gives a harmonic extension of a function on R2 \Dρ̄.

Proposition 48. There exists an operator

H̃ρ̄ : C2,α(S1) −→ C2,α
−2 (S1 × [ρ̄,+∞)),
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such that for each even function ϕ(θ) ∈ C2,α(S1), which is L2-orthogonal to the constant
function and cos θ, then wϕ = H̃ρ̄,ϕ solves{

∆wϕ = 0 on S1 × [ρ̄,+∞)
wϕ = ϕ on S1 × {ρ̄}.

Moreover,
||H̃ρ̄,ϕ||C2,α

−2 (S1×[ρ̄,+∞)) 6 c ||ϕ||C2,α(S1), (3.48)

for some constant c > 0.

Proof. We consider the decomposition of the function ϕ with respect to the basis
{cos(iθ)}, that is

ϕ =
∞∑
i=2

ϕi cos(iθ).

Then the solution wϕ is given by

wϕ(ρ, θ) =
∞∑
i=2

(
ρ̄

ρ

)i
ϕi cos(iθ).

Since ρ̄
ρ

6 1, then
(
ρ̄
ρ

)i
6
(
ρ̄
ρ

)
, we can conclude that |w(r, θ)| 6 cρ−2|ϕ(θ)| and then

||wϕ||C2,α
−2

6 c||ϕ||C2,α .
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Chapter 4

Singly periodic minimal surfaces
with arbitrary nonzero genus and
infinitely many ends

4.1 Introduction

In 1988, H. Karcher [19, 20] defined a family of doubly periodic minimal surfaces, called
toroidal halfplane layers, with genus one and four horizontal Scherk-type ends1 in the quo-
tient. In 1989, Meeks and Rosenberg [25] developed a general theory for doubly periodic
minimal surfaces having finite topology in the quotient, and used an approach of minimax
type to obtain the existence of a family of doubly periodic minimal surfaces, also with
genus one and four horizontal Scherk-type ends in the quotient. These Karcher’s and
Meeks and Rosenberg’s surfaces have been generalized in [35], constructing a 3-parameter
family K = {Mσ,α,β}σ,α,β of surfaces, called KMR examples (sometimes, they are also
referred in the literature as toroidal halfplane layers). Such examples have been classified
by Pérez, Rodŕıguez and Traizet [33] as the only doubly periodic minimal surfaces with
genus one and finitely many parallel (Scherk-type) ends in the quotient. The possible
limits of KMR examples are: the catenoid, the helicoid, any singly or doubly periodic
Scherk minimal surface, any Riemann minimal example or another KMR example.

Each Mσ,α,β has an horizontal period T1 (the period at the ends) and a non horizontal

period T2 coming from homology. We denote by M̃σ,α,β the lifting of Mσ,α,β to S1×R2 by

forgetting the period T2. The surface M̃σ,α,β, that we go on calling KMR example, has
genus zero, infinitely many parallel Scherk-type ends, and two limit ends. We consider
in this work KMR examples near the catenoidal limit, so σ → 0 or equivalently T1 →∞

1A horizontal Scherk-type end is an end asymptotic to a horizontal half-plane, invariant by one of the
period vectors of the surface.
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and T2 →∞, and with α = 0 or β = 0.
In 1982, C. Costa [3, 4] discovered a genus one minimal surface with two catenoidal

ends and one planar middle end, which is embedded outside a ball in R3. D. Hoffmann and
W.H. Meeks [14] proved the global embeddedness for this Costa’s example, and generalized
it for bigger genus. For each k ≥ 1, we will denote by Mk such Costa-Hoffmann-Meeks’
surface, which is a properly embedded minimal surface of genus k and three ends: one
middle end asymptotic to the plane {x3 = 0}, one top catenoidal end and one bottom
catenoidal end. L. Hauswirth and F. Pacard [11] have obtained a deformation of Mk, for
1 ≤ k ≤ 37 (in these cases, Mk is nondegenerate [29],[30]), by bending the catenoidal
ends. We denote such deformed examples by Mk(ξ). It is known that their construction
extends for k ≥ 38 thanks to the result showed in chapter 1.

V. Ramos Batista [2] has constructed a singly periodic Costa minimal surface, with two
catenoidal ends, one Scherk-type middle end and genus one in the quotient. We produce
two new families of examples of periodic minimal surfaces of higher genus as follows. We
consider a compact part of Mk(ξ) contained in a vertical solid cylinder, D ×R, of radius
1/(2

√
ε) and centered at the origin. We glue it to a minimal graph on (R2 − D)/T1

asymptotic to {x3 = 0}/T1, to one half of M̃σ,α,β, near the catenoidal limit, that is with
σ small (one time with α = 0 and a second time with β = 0) and with a Scherk type
surface. We obtain two families of properly embedded minimal surfaces in S1 × R2 with
genus k > 1, infinitely many parallel Scherk-type and two limit ends.

4.2 A Costa-Hoffman-Meeks type surface with bent

catenoidal ends

In this section we recall the result shown in [11] about the existence of a family of minimal
surfaces close to the Costa-Hoffman-Meeks surfaces of genus k > 1, one planar end and
two slightly bent catenoidal ends by an angle ξ. We denote one member of the family
by Mk(ξ). Then Mk(0) is the family of the Costa-Hoffman-Meeks surface of genus k (see
Costa [3], [4] and D. Hoffman and W. H. Meeks [14], [15], [16]).

The family of the Costa-Hoffman-Meeks surfaces. Each member of the family of
surfaces Mk(0), after suitable rotation and translation, enjoys the following properties.

1. It has one planar end Em asymptotic to the x3 = 0 plane, one top end Et and one
bottom end Eb that are respectively asymptotic to the upper end and to the lower
end of a catenoid with x3-axis of revolution. The planar end Em is located between
the two catenoidal ends.

2. It is invariant under the action of the rotation of angle 2π
k+1

about the x3-axis, under
the action of the symmetry with respect to the x2 = 0 plane and under the action
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of the composition of a rotation of angle π
k+1

about the x3-axis and the symmetry
with respect to the x3 = 0 plane.

3. It intersects the x3 = 0 plane in k + 1 straight lines, which intersect themselves at
the origin with angles equal to π

k+1
. The intersection of Mk with the plane x3 =

const (6= 0) is a single Jordan curve. The intersection of Mk with the upper half
space x3 > 0 (resp. with the lower half space x3 < 0) is topologically an open
annulus.

Now we give a local description of the surfaces Mk(0) near its ends and we introduce
coordinates that we will use.

The planar end. The planar end Em of the surface Mk can be parametrized by

Xm(x) :=

(
x

|x|2
, um(x)

)
∈ R3

where x ∈ B̄ρ0(0) − {0} ⊂ R2 and the function um tends to 0 like um(x) = O(|x|k+1).
Here ρ0 > 0 is fixed small enough. The minimal surface equation has the following form

|x|4 div

(
∇u

(1 + |x|4 |∇u|2)1/2

)
= 0. (4.1)

It can be shown (see [11]) that the function um can be extended at the origin continuously
using Weierstrass representation. We can prove that um ∈ C2,α(B̄ρ0).

The catenoidal ends. We denote by Xc the parametrization of the standard catenoid
C whose axis of revolution is the x3-axis. Its expression is

Xc(s, θ) := (cosh s cos θ, cosh s sin θ, s) ∈ R3

where (s, θ) ∈ R× S1. The unit normal vector field about C is given by

nc(s, θ) :=
1

cosh s
(cos θ, sin θ,− sinh s).

Up to some dilation, we can assume that the two ends Et and Eb of Mk are asymptotic
to some translated copy of the catenoid parametrized by Xc in the vertical direction.
Therefore, Et and Eb can be parametrized, respectively, by

Xt := Xc + wt nc + σt e3

for (s, θ) ∈ (s0,∞)× S1,
Xb := Xc − wb nc − σb e3
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for (s, θ) ∈ (−∞,−s0, ) × S1, where σt, σb ∈ R, functions wt, wb tend exponentially fast
to 0 as s goes to ∞ reflecting the fact that the ends are asymptotic to a catenoidal end.

We recall that the surface parametrized by by X := Xc + w nc is minimal if and only
if the function w satisfies the minimal surface equation which, for normal graphs over a
catenoid has the following form

1

cosh2 s

(
∂2w

∂s2
+
∂2w

∂θ2
+

2w

cosh2 s
+Q2

( w

cosh s

)
+ cosh sQ3

( w

cosh s

))
= 0, (4.2)

whereQ2, Q3 are linear second order differential operators which are bounded in Ck(R×S1)
for all k. These functions satisfy Q2(0) = Q3(0) = 0, ∇Q2(0) = ∇Q3(0) = 0,∇2Q3(0) = 0
and then:

‖Qj(v2)−Qj(v1)‖C0,α([s,s+1]×S1) 6 c

(
sup
i=1,2

‖vi‖C2,α([s,s+1]×S1)

)j−1

‖v2 − v1‖C2,α([s,s+1]×S1)

(4.3)
for all s ∈ R and all v1, v2 such that ‖vi‖C2,α((s,s+1)×S1) 6 1. The constant c > 0 does not
depend on s.

The family of Costa-Hoffman-Meeks surfaces with bent catenoidal ends. Using
an elaborate version of the implicit function theorem and following [18] and [23] it is
possible to prove the following

Theorem 49 ([11]). There exists ξ0 > 0 and a smooth one parameter family of minimal
hypersurfaces (Mk(ξ))ξ, for ξ ∈ (−ξ0, ξ0), with two catenoidal ends and one planar end.
In particular Mk(0) = Mk, the upper (resp. lower) catenoidal end of Mk(ξ) is, up to
a translation along its axis, asymptotic to the upper (resp. lower) end of the standard
catenoid whose axis of revolution is directed by sin ξ e1 +cos ξ e3. Moreover Mk(ξ) has one
horizontal planar end and is invariant under the action of the symmetry with respect to
the x2 = 0 plane.

The upper (lower) end of Mk(ξ) is, up to a translation, asymptotic to the upper (lower)
end of the same (standard) catenoid. Then the upper end Et(ξ) and the lower end Eb(ξ)
of Mk(ξ), if Rξ denotes the rotation of angle ξ about the x2 axis, can be parametrized
respectively by

Xt,ξ = Rξ (Xc + wt,ξ nc) + σt,ξ e3 + ςt,ξ e1 (4.4)

Xb,ξ = Rξ (Xc − wb,ξ nc)− σb,ξ e3 − ςb,ξ e1 (4.5)

where the functions wt,ξ, wb,ξ, the numbers σt,ξ, ςt,ξ, σb,ξ, ςb,ξ ∈ R depend smoothly on ξ
and satisfy wt,0 = wt, wb,0 = wb, σb,0 = σb σt,0 = σt, ςt,0 = 0 and ςb,0 = 0.
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For all r < ρ0 and s > s0, we define

Mk(ξ, s, r) := Mk(ξ)−
[
Xt,ξ((s,∞)× S1) ∪Xb,ξ((−∞,−s)× S1) ∪Xm(Bρ(0))

]
. (4.6)

The parametrizations of the three ends of Mk(ξ) induce a decomposition of Mk(ξ) into
slightly overlapping components: a compact piece Mk(ξ, s0 + 1, ρ0/2) and three noncom-
pact pieces Xt,ξ((s0,∞)× S1), Xb,ξ((−∞,−s0)× S1) and Xm(B̄ρ0(0)).

We define the weighted space of functions on Mk(ξ).

Definition 50. Given ` ∈ N, α ∈ (0, 1) and δ ∈ R, the space C`,αδ (Mk(ξ)) is defined to be

the space of functions in C`,αloc (Mk) for which the following norm is finite

‖w‖C`,α
δ (Mk) := ‖w‖C`,α(Mk(ξ,s0+1,ρ0/2)) + ‖w ◦Xm‖C`,α(Bρ0 (0))

+ sup
s>s0

e−δs
(
‖w ◦Xt,ξ‖C`,α((s,s+1)×S1) + ‖w ◦Xb,ξ‖C`,α((−s−1,−s)×S1)

)
and which are invariant under the action of the symmetry with respect to the x2 = 0 plane.

We remark that there is no weight on the middle end. In fact we compactify this end
and we consider a weighted space of functions defined on a two ended surface. We will
perturb the surface Mk(ξ) by the normal graph of a function u ∈ C2,α

δ and the middle end
Em will be just translated in the vertical direction.

The Jacobi operator. The Jacobi operator about Mk(ξ) is

LMk(ξ) := ∆Mk(ξ) + |AMk(ξ)|2

where |AMk(ξ)| is the norm of the second fundamental form on Mk(ξ).

In the parametrization introduced above of the ends the volume forms dvolMk(ξ) can be
written as γt ds dθ and γb ds dθ near the catenoidal type ends and as γm dx1 dx2 near the
middle end. Now we can define globally on Mk(ξ) a smooth function

γ : Mk(ξ) −→ [0,∞)

that is identically equal to 1 on Mk(ξ, s0 − 1, 2ρ0) and equal to γt (resp. γb, γm) on the
end Et,ξ (resp. Eb,ξ, Em). Observe that, on Xt,ξ((s0,∞)×S1) and on Xb,ξ((−∞, s0)×S1)
we have

γ ◦Xt,ξ(s, θ) ∼ cosh2 s and γ ◦Xb,ξ(s, θ) ∼ cosh2 s.

Finally on Xm(Bρ0), we have
γ ◦Xm(x) ∼ |x|−4.
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Granted the above defined spaces, one can check that:

Lξ,δ : C2,α
δ (Mk(ξ)) −→ C0,α

δ (Mk(ξ))

w 7−→ γ LMk(ξ) (w)

is a bounded linear operator. The subscript δ is meant to keep track of the weighted space
over which the Jacobi operator is acting. Observe that, the function γ is here to coun-
terbalance the effect of the conformal factor 1√

|gMk(ξ)|
in the expression of the Laplacian

in the coordinates we use to parametrize the ends of the surface Mk(ξ). This is precisely
what is needed to have the operator defined from the space C2,α

δ (Mk(ξ)) into the target
space C0,α

δ (Mk(ξ)).

To have a better grasp of what is going on, let us linearize the nonlinear equation (4.2)
at w = 0 we get the expression of the Jacobi operator about the standard catenoid

LC :=
1

cosh2 s

(
∂2
s + ∂2

θ +
2

cosh2 s

)
.

We can observe that the operator cosh2 sLC maps the space (cosh s)δ C2,α((s0,∞) × S1)
into the space (cosh s)δ C0,α((s0,∞)× S1).

Similarly, if we linearize the nonlinear equation (4.1) at u = 0, we obtain the expression
of the Jacobi operator about the plane

LR2 := |x|4 ∆.

Again, the operator |x|−4 LR2 = ∆ clearly maps the space C2,α(B̄ρ0) into the space
C0,α(B̄ρ0). Now, the function γ plays, for the ends of the surface Mk(ξ), the role played
by the function cosh2 s for the ends of the standard catenoid and the role played by the
function |x|−4 for the plane. Since the Jacobi operator about Mk(ξ) is asymptotic to LR2

at Em and is asymptotic to LC at Et and Eb, we conclude that the operator Lξ,δ maps
C2,α
δ (Mk(ξ)) into C0,α

δ (Mk(ξ)).

We recall the notion of non degeneracy introduced in [11]:

Definition 51. The surface Mk(ξ) is said to be non degenerate if Lξ,δ is injective for all
δ < −1.

It useful to observe that a duality argument in the weighted Lebesgue spaces, implies that

(Lξ,δ is injective) ⇔ (Lξ,−δ is surjective)
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if δ /∈ Z. See [27] and [18] for more details.

The non degeneracy of Mk(ξ) follows from the study of the kernel of Lξ,δ.

The Jacobi fields. It is known that a smooth one parameter group of isometries con-
taining the identity generates a Jacobi field, that is a solution of the equation LMk(ξ)u = 0.
These solutions are generated by the following one parameter groups of isometries: the
vertical translations, the translations along the x1-axis, the dilations. We refer [11] for
details.

The group of vertical translations generated by the Killing vector field Ξ(p) = e3 gives
rise to the Jacobi field

Φ0,+(p) := n(p) · e3.

The vector field Ξ(p) = p that is associated to the one parameter group of dilation
generates a Jacobi fields

Φ0,−(p) := n(p) · p

The Killing vector field Ξ(p) = e1 that generates the group of translations along the
x1-axis is associated to a Jacobi field

Φ1,+(p) := n(p) · e1

Finally, we denote by
Φ1,−(p) := n(p) · (e2 × p)

the Jacobi field associated to the Killing vector field Ξ(p) = e2 × p that generates the
group of rotations about the x2-axis.

The Jacobi equation has other solutions which are not taken into account because in the
difference with the four Jacobi fields just introduced they are not invariant under the
action of the symmetry with respect to the x2 = 0 plane.

With these notations, we define the deficiency space

D := Span{χt Φj,±, χb Φ
j,± : j = 0, 1}

where χt is a cutoff function that is identically equal to 1 onXt((s0+1,∞)×S1), identically
equal to 0 on Mk−Xt((s0,∞)×S1) and that is invariant under the action of the symmetry
with respect to the x2 = 0 plane. Also, we agree that

χb(·) := χt(− ·).
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Clearly
L̃ξ,δ : C2,α

δ (Mk(ξ))⊕D −→ C0,α
δ (Mk)

w 7−→ γ LMk(ξ) (w)

is a bounded linear operator. The linear decomposition Lemma proved in [23] for constant
mean curvature surfaces (see also [18] for minimal hypersurfaces) can be adapted to our
situation and thanks to a result of S. Nayatani contained in [29],[30] and extended in
chapter 1, which states that any bounded Jacobi field respecting the mirror symmetry
with respect to the x2 = 0 plane is linear combination of Φ0,± and Φ1,+, we get the
following result

Proposition 52. Assume that all bounded Jacobi fields on Mk that are invariant with
respect to the x2 = 0 plane are linear combination of Φ0,± and Φ1,+ and choose δ ∈ (1, 2).
Then (reducing ξ0 if this is necessary) the operator L̃ξ,δ is surjective and has a kernel of
dimension 4. Moreover, there exists Gξ,δ a right inverse for L̃ξ,δ that depends smoothly
on ξ and in particular whose norm is bounded uniformly as |ξ| < ξ0.

4.3 An infinite dimensional family of minimal sur-

faces which are close to Mk(ξ)

In this section we consider a truncature of Mk(ξ). First we recall a result of [11] that
describes the region of the surface which can be parametrized by a graph on a x3 = 0
plane.

Lemma 53 ([11]). There exists ε0 > 0 such that, for all ε ∈ (0, ε0) and all |ξ| 6 ε an
annular part of the ends Et(ξ), Eb(ξ) and Em of Mk(ξ) can be written as vertical graphs
over the horizontal plane for the functions

Ut(r, θ) = σt,ξ + ln(2r) + ξ r cos θ +O(ε),
Ub(r, θ) = −σb,ξ − ln(2r)− ξ r cos θ +O(ε),
Um(r, θ) = O(r−(k+1)).

Here (r, θ) are the polar coordinates in the x3 = 0 plane. The functions O(ε) are defined in
the annulus B4 ε−1/2 −Bε−1/2/4 and are bounded in C∞b topology by a constant (independent
on ε) multiplied by ε, where the partial derivatives are computed with respect to the vector
fields r ∂r and ∂θ.

Then Mk(ε/2) has two ends Et(ε/2) and Eb(ε/2) which are graphs over the x3 = 0
plane for functions Ut and Ub defined on the annulus B4 ε−1/2−Bε−1/2/4. We set sε = −1

2
ln ε

and we define MT
k (ε/2) to be equal to Mk(ε/2) from which we have removed the image of

(sε,+∞) × S1 by Xt,ε/2, the image of (−∞,−sε) × S1 by Xb,ε/2 and the image of Bρε(0)
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by Xm with ρε := 2ε1/2. In this section we will prove the existence of a family of surfaces
close to MT

k (ε/2). We follow the work [11].

First, we modify the parametrization of the end Et(ε/2), Eb(ε/2) and Em, for appropriates
values of s, so that, when r ∈ [ε−1/2/4, 4 ε−1/2] the curves corresponding to the image of

θ → (r cos θ, r sin θ, Ut(r, θ)), θ → (r cos θ, r sin θ, Ub(r, θ))

correspond to the curve s = ± log(2r).

The curve θ → (r cos θ, r sin θ, Um(r, θ)) corresponds to ρ = 1
r
.

The second step is the modification of unit normal vector field onMk(ε/2) into a transverse
unit vector field ñε/2 in such a way that it coincides with the normal vector field nε/2 on
Mk(ε/2), is equal to e3 on the graph over B2ε−1/2 − B3ε−1/2/8 of the functions Ut and Ub
and interpolate smoothly between the different definitions of ñε/2 in different subsets of
MT

k (ε/2).
The graph of a function u, using the vector field ñε/2, will be a minimal surface if and
only if u is a solution of a second order nonlinear elliptic equation of the form

LMT
k (ε/2) u = L̃ε/2 u+Qε (u)

where LMT
k (ε/2) is the Jacobi operator about MT

k (ε/2), Qε is a nonlinear second order

differential operator and L̃ε/2 is a linear operator which takes into account the change of
the parametrization and of the change of the normal vector field. It is possible to prove
that this last operator has coefficients uniformly bounded by a constant times ε2.

Now, we consider three functions ϕt, ϕb, ϕm ∈ C2,α(S1) which are even, with respect to θ,
ϕt, ϕb are L2 orthogonal to 1 and cos θ while ϕm is L2 orthogonal to 1. Assume that they
satisfy

‖ϕt‖C2,α + ‖ϕb‖C2,α + ‖ϕm‖C2,α 6 κ ε.

We set Φ := (ϕt, ϕb, ϕm) and we define wΦ to be the function equal to

1. χ+Hϕt(sε − s, ·) on the image of Xt,ε/2 where χ+ is a cut-off function equal to 0 for
s 6 s0 + 1 and identically equal to 1 for s ∈ [s0 + 2, sε]

2. χ−Hϕb
(s − sε, ·) on the image Xb,ε/2 where χ− is a cut-off function equal to 0 for

s > −s0 − 1 and identically equal to 1 for s ∈ [−sε,−s0 − 2]

3. χm H̃ρε,ϕm(·, ·) on the image of Xm, where χm is a cut-off function equal to 0 for
r > ρ0 and identically equal to 1 for ρ ∈ [ρε, ρ0/2]
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4. zero on the remaining part of the surface MT
k (ε/2).

We recall that the operators H̃ and H have been introduced respectively in Propositions
79 and 80.

We would like to prove that, under appropriates hypothesis, the graph about MT
k (ε/2) of

the function u = wΦ + v is a minimal surface. This is equivalent to solve the equation:

LMk(ε/2)(wΦ + v) = L̃ε/2(wΦ + v) +Qε(wΦ + v)

on MT
k (ε/2), so that the graph of u = wΦ + v will be a minimal surface. The resolution of

the previous equation is obtained thanks to the one of the following fixed point problem:

v = T (Φ, v) (4.7)

with
T (Φ, v) = Gε/2,δ ◦ Eε

(
γ
(
L̃ε/2(wΦ + v)− LMT

k (ε/2)wΦ +Qε(wΦ + v)
))

where δ ∈ (1, 2), the operator Gε/2,δ is defined in proposition 52 and Eε is a linear extension
operator such that

Eε : C0,α
δ (MT

k (ε/2)) −→ C0,α
δ (Mk(ε/2)),

where C0,α
δ (MT

k (ε/2)) denotes the space of functions of C0,α
δ (Mk(ε/2)) restricted toMT

k (ε/2).
It is defined by Eεv = v in MT

k (ε/2), Eεv = 0 in the image of [sε+1,+∞)×S1 by Xt,ε/2, in
the image of (−∞,−sε− 1)× S1 by Xb,ε/2 and in the image of Bρε/2× S1 by Xm. Finally
Eεv is an interpolation of these values in the remaining part of Mk(ε/2) such that, for
example,

(Eεv) ◦Xt,ε/2(s, θ) = ((1 + sε − s)v) ◦Xt,ε/2(sε, θ),

(Eεv) ◦Xb,ε/2(s, θ) = ((1 + sε + s)v) ◦Xb,ε/2(sε, θ)

for (s, θ) ∈ [sε, sε + 1]× S1 and

(Eεv) ◦Xm(ρ, θ) = ((
2

ρε
ρ− 1)v) ◦Xm(ρε, θ)

for (ρ, θ) ∈ [ρε/2, ρε]× S1.

Remark 54. As consequence of the properties of Eε, if supp v ∩Bρ0 −Bρε 6= ∅ then

‖(Eεv) ◦Xm‖C0,α(Bρ0 ) 6 cε−α‖v ◦Xm‖C0,α(Bρ0 ).

This phenomenon of explosion of the norm does not occur near the catenoidal type ends:

‖(Eεv) ◦Xt,ε/2‖C0,α([sε+1,+∞)×S1) 6 c‖v ◦Xt,ε/2‖C0,α([sε+1,+∞)×S1).

A similar equation holds for the bottom end.

In the following we will assume α > 0 and near to zero.
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The existence of a solution v ∈ C2,α
δ (MT

k (ε/2)) for the equation (4.7) is a consequence of
the following result which proves that T is a contracting mapping.

Lemma 55. There exist constants cκ > 0 and εκ > 0, such that

‖T (Φ, 0)‖C2,α
δ

6 cκ ε
2 (4.8)

and, for all ε ∈ (0, εκ)

‖T (Φ, v2)− T (Φ, v1)‖C2,α
δ (Mk(ε/2)) 6

1

2
‖v2 − v1‖C2,α

δ (MT
k (ε/2))

for all v1, v2 ∈ C2,α
δ (MT

k (ε/2)) and satisfying ‖v‖C2,α
δ

6 2 cκ ε
2.

Proof. We recall that the Jacobi operator associated to Mk(ε/2), is asymptotic to the
operator of the catenoid near the catenoidal ends, and it is asymptotic to the laplacian
near of the planar end. The function wΦ is identically zero far from the ends where the
explicit expression of LMk(ε/2) is not known: this is the reason of our particular choice
in the definition of wΦ. Then from the definition of wΦ and thanks to proposition 52 we
obtain the estimate

‖Eε
(
γLMT

k (ε/2)wΦ

)
‖C0,α

δ (Mk(ε/2)) 6
∣∣∣∣γtLC(wΦ ◦Xt,ε/2)

∣∣∣∣
C0,α

δ ([s0+1,sε]×S1)
+

+
∣∣∣∣γbLC(wΦ ◦Xb,ε/2)

∣∣∣∣
C0,α

δ ([−sε,−s0−1]×S1)
6 c

∣∣∣∣∣∣∣∣ 2

cosh2 s
wΦ ◦Xt,ε/2

∣∣∣∣∣∣∣∣
C0,α

δ ([s0+1,sε]×S1)

6

cε‖wΦ ◦Xt,ε/2‖C2,α
δ ([s0+1,sε]×S1) 6 cκ ε

2+ δ
2 .

Using the properties of L̃ε/2, we obtain

‖Eε
(
γL̃ε/2wΦ

)
‖C0,α

δ (Mk(ε/2)) 6 cε2‖wΦ◦Xt,ε/2‖C0,α
δ ([s0+1,sε]×S1)+cε

2‖wΦ◦Xm‖C0,α([ρε,ρ0/2]×S1) 6

6 cε2‖wΦ ◦Xt,ε/2‖C2,α
δ ([s0+1,sε]×S1) + cε2‖wΦ ◦Xm‖C2,α([ρε,ρ0/2]×S1) 6 cκ ε

2.

As for the last term, we recall that the operator Qε has two different expressions if we
consider the catenoidal type end and the planar end. It holds that

‖Eε (γQε (wΦ)) ‖C0,α
δ (Mk(ε/2)) 6 ckε

2.

In fact
‖Eε (γQε (wΦ)) ‖C0,α

δ (Mk(ε/2)) 6 cε‖wΦ ◦Xt,ε/2‖2
C2,α

δ ([s0+1,sε]×S1)
+

cε‖wΦ ◦Xb,ε/2‖2
C2,α

δ ([−sε,−s0−1]×S1)
+ cε1−α‖wΦ ◦Xm‖2

C2,α([ρε,ρ0/2]×S1) 6 ckε
2.
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As for the second estimate, we recall that

T (Φ, v) := Gε/2,δ

(
Eε
(
γ
(
L̃ε/2(wΦ + v)− LMT

k (ε/2)wΦ +Qε (wΦ + v)
)))

.

Then

T (Φ, v2)− T (Φ, v1) = Gε/2,δ

(
Eε
(
γ
(
L̃ε/2(wΦ + v2)− LMT

k (ε/2)wΦ +Qε (wΦ + v2)
)))

−

Gε/2,δ

(
Eε
(
γ
(
L̃ε/2(wΦ + v1)− LMT

k (ε/2)wΦ +Qε (wΦ + v1)
)))

and

‖T (Φ, v2)−T (Φ, v1)‖C2,α
δ (Mk(ε/2)) 6 c‖Eε

(
γ
(
L̃ε/2(wΦ + v2)− LMT

k (ε/2)wΦ +Qε (wΦ + v2)−

−L̃ε/2(wΦ + v1) + LMT
k (ε/2)wΦ −Qε (wΦ + v1)

))
‖C0,α

δ (Mk(ε/2)) =

‖Eε
(
γ
(
L̃ε/2(wΦ + v2)− L̃ε/2(wΦ + v1) +Qε (wΦ + v2)−Qε (wΦ + v1)

))
‖C0,α

δ (Mk(ε/2)) =

= ‖Eε
(
γ
(
L̃ε/2(v2 − v1) +Qε (wΦ + v2)−Qε (wΦ + v1)

))
‖C0,α

δ (Mk(ε/2)) 6

6 ‖Eε
(
γ
(
L̃(v2 − v1)

))
‖C0,α

δ (Mk(ε/2)) + ‖Eε (γ (Qε (wΦ + v1)−Qε (wΦ + v2))) ‖C0,α
δ (Mk(ε/2)).

We observe that from the considerations above it follows that

‖Eε
(
γ
(
L̃ε/2(v2 − v1)

))
‖C0,α

δ (Mk(ε/2)) 6 cε2||v2 − v1||C2,α
δ (MT

k (ε/2))

and
‖Eε (γ (Qε (wΦ + v1)−Qε (wΦ + v2))) ‖C0,α

δ (Mk(ε/2))

6 c||v2 − v1||C2,α
δ (MT

k (ε/2))‖wΦ‖C0,α
δ (Mk(ε/2)) 6

6
(
ckε

1+ δ
2

)
||v2 − v1||C2,α

δ (MT
k (ε/2)).

Then
‖T (Φ, v2)− T (Φ, v1)‖C2,α

δ (Mk(ε/2)) 6 cε||v2 − v1||C2,α
δ (MT

k (ε/2)).

This argument provides a minimal surface MT
k (ε/2,Φ) which is close to MT

k (ε/2) and has
three boundaries. This surface is, close to its upper and lower boundary, a vertical graph
over the annulus Bε−1/2/2 −Bε−1/2/4 whose parametrization is, respectively, given by

Ūt(r, θ) = σt,ε/2 + ln(2r) +
ε

2
r cos θ +Hϕt(sε − ln 2r, θ) + Vt(r, θ),
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Ūb(r, θ) = −σb,ε/2 − ln(2r) +
ε

2
r cos θ +Hϕb

(ln 2r − sε, θ) + Vb(r, θ),

where sε = −1
2

ln ε. The boundaries of the surface correspond to rε = 1
2
ε−1/2. Nearby

the middle boundary the surface is a vertical graph over the annulus B2ρε −Bρε/2, where
ρε = 2ε1/2. Its parametrization is

Ūm(r, θ) = H̃ρε,ϕm(r, θ) + Vm(r, θ).

All the functions Vi for i = t, b,m depend non linearly on ε, ϕ. The functions Vi(ε, ϕi), for
i = t, b, satisfy ‖Vi(ε, ϕi)(rε·)‖C2,α(B̄1−B1/2) 6 cε and

‖Vi(ε, ϕ)(rε·)− Vi(ε, ϕ
′)(rε·)‖C2,α(B̄1−B1/2) 6 cε1−δ/2‖ϕ− ϕ′‖C2,α

The function Vm(ε, ϕi) satisfies ‖Vm(ε, ϕm)(ρε·)‖C2,α(B̄2−B1) 6 cε and

‖Vm(ε, ϕ)(ρε·)− Vm(ε, ϕ′)(ρε·)‖C2,α(B̄2−B1) 6 cε‖ϕ− ϕ′‖C2,α

4.4 KMR examples Mσ,α,β

In 1988, H. Karcher [19, 20] defined a family of doubly periodic minimal surfaces, called
toroidal halfplane layers, with genus one and four horizontal Scherk-type ends2 in the
quotient. In 1989, Meeks and Rosenberg [25] developed a general theory for doubly
periodic minimal surfaces having finite topology in the quotient, and used an approach of
minimax type to obtain the existence of a family of doubly periodic minimal surfaces, also
with genus one and four horizontal Scherk-type ends in the quotient. These Karcher’s and
Meeks and Rosenberg’s surfaces have been generalized in [35], constructing a 3-parameter
family K = {Mσ,α,β}σ,α,β of surfaces, called KMR examples (sometimes, they are also
referred in the literature as toroidal halfplane layers). Such examples have been classified
by Pérez, Rodŕıguez and Traizet [33] as the only doubly periodic minimal surfaces with
genus one and finitely many parallel (Scherk-type) ends in the quotient. The possible
limits of KMR examples are: the catenoid, the helicoid, any singly or doubly periodic
Scherk minimal surface, any Riemann minimal example or another KMR example. Our
aim in this section is to study two subfamilies of KMR examples which are invariants
under a reflection symmetry about a vertical plane, near the catenoidal limit.

Firstly, we briefly recall the construction of the KMR examples. For each σ ∈ (0, π
2
),

α ∈ [0, π
2
] and β ∈ [0, π

2
] with (α, β) 6= (0, σ), consider the rectangular torus Σσ ={

(z, w) ∈ C2 | w2 = (z2 + λ2)(z2 + λ−2)
}

, where λ = λ(σ) = cot σ
2
> 1. The KMR

2A horizontal Scherk-type end is an end asymptotic to a horizontal half-plane, invariant by one of the
period vectors of the surface.
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Figure 4.1: The position of the branch values

example Mσ,α,β is determined by its Gauss map g and the differential of its height function
h, which are defined on Σσ and given by:

g(z, w) =
az + b

i(a− bz)
, dh = µ

dz

w
,

where:

• a = a(α, β) = cos α+β
2

+ i cos α−β
2

;

• b = b(α, β) = sin α−β
2

+ i sin α+β
2

;

• µ = µ(σ) = π cscσ

K(sin2 σ)
, where K(m) =

∫ π
2

0
1√

1−m sin2 u
du , 0 < m < 1, is the complete

elliptic integral of the first kind. Such µ has been chosen so that the vertical part
of the flux of Mσ,α,β along any horizontal level section equals 2π.

Remark 56.

(i) b→ 0 if and only if α→ 0 and β → 0, in which case a→ 1 + i.

(ii)
∣∣ b
a

∣∣ = tan ϕ
2
, where ϕ is the angle between the North Pole (0, 0, 1) ∈ S2 and the pole

of g seen in S2 via the inverse of the stereographic projection.

The KMR exampleMσ,α,β can be parametrized on Σσ by the immersionX = (X1, X2, X3) =
<
∫

Φ, where Φ is the Weierstrass form:

Φ =

(
1

2

(
1

g
− g

)
dh,

i

2

(
1

g
+ g

)
dh, dh

)
.

The ends of Mσ,α,β corresponds to the punctures {A,A′, A′′, A′′′} = g−1({0,∞}), and the
branch values of g are those with w = 0, i.e.

D = (−iλ, 0), D′ = (iλ, 0), D′′ = ( i
λ
, 0), D′′′ = (− i

λ
, 0). (4.9)

Seen in S2, these points form two pairs of antipodal points: D′′ = −D and D′′′ = −D′.
(Each KMR example can be given in terms of the branch values of its Gauss map.)

In [35], it is proven that the above Weierstrass data define a properly embedded
minimal surface (Mσ,α,β) invariant by two independent translations: the translation by
the period T1 at its ends, and the period T2 along a homology class. Moreover, the group
of isometries Iso(Mσ,α,β) of Mσ,α,β always contains a subgroup isomorphic to (Z/2Z)2,
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Figure 4.2: Left: Mσ,0,0, with σ = π
4
. Right: Mσ,α,0 for σ = α = π

4
.

Figure 4.3: Mσ,0,β, where σ = π
4

and β = π
8
.

with generators D (corresponding to the deck transformation (z, w) 7→ (z,−w)), which
represents a central symmetry about any of the four branch points of g, and F , which
consists of a translation by 1

2
(T1+T2). In particular, the ends of Mσ,α,β are equally spaced.

We are going to focus on the two most symmetric subfamilies of KMR examples:
{Mσ,α,0}σ,α and {Mσ,0,β}σ,β.

1. When α = β = 0, Mσ,0,0 contains four straight lines parallel to the x1-axis, and
Iso(Mσ,0,0) is isomorphic to (Z/2Z)4 with generators S1, S2, S3, RD: S1 is a reflection
symmetry in a vertical plane orthogonal to the x1-axis; S2 is a reflection symmetry
across a plane orthogonal to the x2-axis; S3 is a reflection symmetries in a horizontal
plane (these three planes can be chosen meeting at a point, which is not contained in
the surface); and RD is the π-rotation around one of the four straight lines contained
in the surface, see Figure 4.2 left. In this case, T1 = (0, πµ, 0).

2. When 0 < α < π
2
, Iso(Mσ,α,0) is isomorphic to (Z/2Z)3, with generators D, S2 and

R2, where S2 represents a reflection symmetry across a plane orthogonal to the x2-
axis, and R2 is a π-rotation around a line parallel to the x2-axis that cuts Mσ,α,0 or-
thogonally, see Figure 4.2 right. Now T1 = (0, πµtα, 0), with tα = sinσ√

sin2 σ cos2 α+sin2 α
.

3. Suppose that 0 < β < σ. Then Mσ,0,β contains four straight lines parallel to the
x1-axis, and Iso(Mσ,0,β) is isomorphic to (Z/2Z)3, with generators S1, R1 and RD:
S1 represents a reflection symmetry across a plane orthogonal to the x1-axis; R1

corresponds to a π-rotation around a line parallel to the x1-axis that cuts the surface
orthogonally; and RD is the π-rotation around any one of the straight lines contained
in the surface, see Figure 4.3. Moreover, T1 = (0, πµtβ, 0), where tβ = sinσ√

sin2 σ−sin2 β
.

From now on, we will denote by T = T1 the period of the surface at its ends.
Finally, it will be useful to see Σσ as a branched 2-covering of C through the map

(z, w) 7→ z. Thus Σσ can be seen as two copies C1,C2 of C glued along two common cuts
γ1, γ2, which we tale along the imaginary axis: γ1 from D to D′ and γ2 from D′′ to D′′′.
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4.4.1 Mσ,α,β as a graph over {x3 = 0}/T
The KMR examples Mσ,α,β converge, as (σ, α, β) → (0, 0, 0), to a vertical catenoid, since
Σσ converges to two pinched spheres, g(z) → z and dh→ ±dz

z
as σ, α, β → 0. In fact, we

can obtain two catenoids in the limit, depending on the choice of branch for w (for each
copy of C in Σσ, we obtain one catenoid in the limit). Our aim along this paper consists of
gluing KMR examples Mσ,α,0 or Mσ,0,β near this catenoidal limit, to a convenient compact
piece of a deformed Costa-Hoffman-Meeks surface Mk(ε/2). In this subsection we express
part of Mσ,α,β as a vertical graph over the {x3 = 0}-plane when σ, α, β are small.

Consider Mσ,α,β near the catenoidal limit, i.e. σ, α, β close to zero. Without lost of
generality, we can assume dh ∼ dz

z
in C1. We are studying the surface in an annulus

about one of its ends, say a zero of its Gauss map.

Lemma 57. Let σ, α, β be small. Up to translations, Mσ,α,β can be parametrized in the
annulus {(z, w) ∈ Σσ | z ∈ C1, | ba | < z < ν} (for ν > | b

a
| small) as: X1 + iX2 = −1

2

(
z + 1

z

)
+ i b

a
ln |z|+ (1+i)b

4z2
+O(b2 z−3 + λ−2z−2)

X3 = ln |z|+O(λ−2z−2),

Proof. We have assumed dh ∼ dz
z

in the annulus we are working in. More precisely, we
have

dh = µ dz√
(z2+λ2)(z2+λ−2)

= µ
λ

dz

z
√

(λ−2+z−2)(z2+λ−2)
= µ

λ
dz
z

1√
1+λ−2z2+λ−2z−2+λ−4 .

Since µ(σ)
λ(σ)

= π

(1+cos(σ))K(sin2 σ)
= 1 + O(σ4) = 1 +O(λ−4), and 1√

1+t
= 1 + O(t) for t > 0

small, we get

dh =
dz

z
(1 +O(λ−4))(1 +O(λ−2z2 + λ−2z−2 + λ−4)).

Since |z| < 1, then both λ−2|z|2 < λ−2|z|−2 and λ−4 < λ−2|z|−2. Therefore,

dh =
dz

z
(1 +O(λ−2z−2)).

Fix any point z0 ∈ C1. Thus X1(z) + iX2(z) = 1
2

(∫ z
z0

dh
g
−
∫ z
z0
g dh

)
. Straightforward

computations give us∫ z
z0

dh
g

= i
a

∫ z
z0

a−bω
ω(ω+b/a)

(1 +O(σ2ω−2))dω

= i
a

(
|a|2
b

ln z
z+b/a

− b ln(z + b/a)
)

+ C1 +O(σ2z−2 + σ2bz−3),
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where C1 = i
a

(
|a|2
b

ln z0+b/a
z0

+ b ln(z0 + b/a)
)
; and∫ z

z0
g dh = −i

∫ z
z0

aω+b
ω(a−bω)

(1 +O(σ2ω−2))dω

= −i
a

(
|a|2+|b|2

−b ln a−bz
a−bz0

+ b ln z
z0

)
+O(σ2z−1 + σ2bz−2).

For |t| < |z| we have ln z
z+t

= −t
z

+ t2

z2
+O(t2z−3) and ln(z + t) = ln z + t

z
+O(t3z−2).

Hence taking |b/a| < |z| < 1, we obtain:

•
∫ z
z0

dh
g

= − i b
a

ln z − i(|a|2+|b|2)
a2z

+ iba
2a2z2

+ C1 +O(b2 z−3 + λ−2z−2),

•
∫ z
z0
g dh = − i b

a
ln z − i(|a|2+|b|2)

a2 z + C2 +O(λ−2z−1),

where C1, C2 ∈ C verify C1 − C2 = z0(1+|z0|2)
|z0|2 +O(b). Therefore,

X1 + iX2 = 1
2

(∫ z
z0

dh
g
−
∫ z
z0
g dh

)
= i b

a
ln |z|+ i(|a|2+|b|2)

2 a2

(
z + 1

z

)
− iba

2a2z2
+ z0(1+|z0|2)

2|z0|2 +O(b2 z−3 + λ−2z−2).

Taking into account that
i(|a|2+|b|2)

a2 = −1 +O(b) and ia
2a2 = −1+i

4
+O(b), we have

X1 + iX2 =
z0(1 + |z0|2)

2|z0|2
+
i b

a
ln |z|+ −1

2

(
z +

1

z

)
+

(1 + i)b

4z2 +O(b2 z−3 + λ−2z−2).

Similarly,
∫ z
z0
dh = ln z − ln z0 +O(λ−2z−2), hence

X3 = <
∫ z

z0

dh = ln |z| − ln |z0|+O(λ−2z−2),

which finishes Lemma 57.

Lemma 58. Let (r, θ) denote the polar coordinates in the {x3 = 0} plane and define
ε = b+ λ−1. Then a piece of Mσ,α,β can be written as a vertical graph of

Ũ(r, θ) = − ln(2r) + r
(
η1 cos θ + η2 sin θ

)
+O(ε),

for (r, θ) ∈ ( 1
4
√
ε
, 4√

ε
)× [0, 2π), where η1 = <(b) + =(b) and η2 = <(b)−=(b).

Remark 59. Recall that b = sin α−β
2

+ i sin α+β
2

. In particular:
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• When β = 0, we have η1 = 2 sin α
2

and η2 = 0, so

Ũ(r, θ) = − ln(2r) + 2 sin
α

2
r cos θ +O(ε), O(ε) = O(α+ σ).

• When α = 0, η1 = 0 and η2 = 2 sin β
2
, so

Ũ(r, θ) = − ln(2r) + 2 sin
β

2
r sin θ +O(ε), O(ε) = O(β + σ).

Proof. From Lemma 57, we know that (X1 + iX2)(z) = −1
2

(
z + 1

z

)
+ A(z), where

A(z) =
i b

a
ln |z|+ (1 + i)b

4z2 +O(b2 z−3 + λ−2z−2).

Denote z = |z|eiψ. Then z + 1
z

=
(
|z|+ 1

|z|

)
eiψ, and

r cos θ = X1 = −1

2

(
|z|+ 1

|z|

)
cosψ + A1,

r sin θ = X2 = −1

2

(
|z|+ 1

|z|

)
sinψ + A2,

where A1 = <(A) and A2 = =(A). Therefore,

r2 =
1

4

(
|z|+ 1

|z|

)2

−
(
|z|+ 1

|z|

)
(A1 cosψ + A2 sinψ) + A2

1 + A2
2. (4.10)

From (4.10) we deduce:

r2 = 1
4

(
|z|+ 1

|z|

)2 (
1− 4|z|

|z|2+1
(A1 cosψ + A2 sinψ) + 4|z|2

(|z|2+1)2
(A2

1 + A2
2)
)
.

When |z| = O(
√
ε), the functions Ai are bounded, and we get

r =
1

2

(
|z|+ 1

|z|

)
(1 +O(

√
ε)), (4.11)

and so r = O(1/
√
ε). Moreover, we get r

1
2(|z|+

1
|z|)

= 1 +O(
√
ε), from where

eiθ(1 +O(
√
ε)) =

X1 + iX2

1
2

(
|z|+ 1

|z|

) = −eiψ +
2|z|A

1 + |z|2
= −eiψ +O(

√
ε)).
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Hence
eiψ = −eiθ(1 +O(

√
ε)).

From (4.10) and (4.11) we obtain

(1 + |z|2)2

4|z|2
= r2 +

(
|z|+ 1

|z|

)
(A1 cosψ + A2 sinψ)− A2

1 − A2
2

= r2

(
1 +

1

r
(1 +O(

√
ε)) (A1 cosψ + A2 sinψ)− A2

1 + A2
2

r2

)
= r2

(
1 +

1

r
(A1 cosψ + A2 sinψ) +O(ε)

)
.

Therefore,

1

|z|2
= (2r)2

(
1 +

1

r
(A1 cosψ + A2 sinψ) +O(ε)

)
(1 +O(ε)).

Since ln(1 + t) = t+O(t2), we deduce

− ln |z| = ln(2r) +
1

2r
(A1 cosψ + A2 sinψ) +O(ε).

Finally, it is not very difficult to prove that

A1 cosψ + A2 sinψ =
1

4|z|2
(η1 cosψ − η2 sinψ)

= r2 (−η1 cos θ + η2 sin θ) (1 +O(
√
ε)),

from where Lemma 58 follows.

If we consider small translations of Mσ,α,β dilated by a factor 1 + γ, for some small γ,
we obtain

X3 = −(1 + γ) ln
2r

1 + γ
+ r (−η1 cos θ + η2 sin θ) +

1

r
(κ1 cos θ + κ2 sin θ) + κ3 +O(ε),

for small κ1, κ2, κ3 ∈ R+, where η1 = b1 + b2 and η2 = b1 − b2.
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4.4.2 Parametrization of the KMR example on the cylinder

In this subsection we want to parametrize the KMR example Mσ,α,β on a cylinder. To
this aim, we introduce the sphero-conal coordinates (x, y) on the unit sphere S2 (see [17]):
For any (x, y) ∈ S1 × [0, π) ≡ [0, 2π)× [0, π), define

F (x, y) = (cos x sin y, sin xm(y), l(x) cos y) ∈ S2,

where
m(y) =

√
1− cos2 σ cos2 y and l(x) =

√
1− sin2 σ sin2 x.

Recall that the conformal compactification Σσ of Mσ,α,β only depends on σ. The
parameter σ ∈ (0, π

2
) will remains fixed along this subsection, and we will omit the

dependence of the functions we are introducing on σ.
Note that, when σ = 0, the conformal compactification of the limit surface M0,α,β is

not a torus but a sphere, and the above sphero-conal coordinates reduce to the spherical
ones.

Il faut bien ecrire ça: The coordinate surfaces {x = constant} and {y = constant}
are two elliptic cones with vertex at the origin. The cross section of each of these cones
with a vertical plane which is orthogonal to the axis of the cone is an ellipse.

Recall that Σσ can be seen as a branched 2-covering of C, by gluing C1,C2 along
two common cuts γ1 and γ2 along the imaginary axis joining the branch points D,D′ and
D′′, D′′′ respectively (see (4.9)). If we compose F (x, y) with the stereographical projection
and enlarge the domain of definition of the function, we obtain the differentiable map
z(x, y) : S1 × S1 ≡ [0, 2π)× [0, 2π) → C given by

z(x, y) =
cosx sin y + i sin xm(y)

1− l(x) cos y
,

which is a branch 2-covering of C with branch values in the four points whose sphero-
conal coordinates are (x, y) ∈

{
±π

2

}
× {0, π}, which also correspond to D,D′, D′′, D′′′.

Moreover, z(x, y) maps S1× (0, π) on C− (γ1 ∪ γ2). Hence we can parametrize the KMR
example by z, by means of its Weierstrass data.

We denote by M̃σ,α,β the lifting of Mσ,α,β to R×S1×R by forgetting its non horizontal

period (i.e. its period in homology, T2). We can then parametrize M̃σ,α,β on S1 × R by
extending z to [0, 2π)×R. But such a parametrization is not conformal, since the sphero-
conal coordinates (x, y) 7→ F (x, y) of the sphere are not conformal. As the stereographic
projection is a conformal map, it suffices to find new conformal coordinates (u, v) of the
sphere defined on the cylinder. In particular, we look for a change of variables (x, y) 7→
(u, v) for which |F̃u| = |F̃v| and 〈F̃u, F̃v〉 = 0, where F̃ (u, v) = F (x(u, v), y(u, v)).
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We observe that

|Fx| =
√
T (x, y)

m(x)
and |Fy| =

√
T (x, y)

l(y)
,

with T (x, y) = sin2 σ cos2 x + cos2 σ sin2 y. Then it is natural to consider the change of
variables (x, y) ∈ [0, 2π)× [0, π) 7→ (u, v) ∈ [0, Uσ]×??? defined by

u(x) =

∫ x

0

1

l(t)
dt and v(y) =

∫ y

0

1

m(s)
ds, (4.12)

where
Uσ = u(2π) =

∫ 2π

0
dt√

1−sin2 σ sin2 t
. (4.13)

Note that Uσ is a function on σ that goes to 2π as σ approaches to zero, and that the
above change of variables is well defined because σ ∈ (0, π

2
). From all this, we can deduce

that M̃σ,α,β is conformally parametrized on (u, v) ∈ Iσ × R, with Iσ = [0, Uσ].

RÉDIGER:

Remark 60. In lemma 58 assuming |z| = O(
√
ε) we have found the equation as a graph

about an appropriate neighbourhood of the part of the surface M̃σ,α,β along which we will
glue it with the Costa-Hoffman-Meeks surface. It is possible to prove that if |z| = O(

√
ε)

and σ = O(
√
ε) then y = yε = π − O(

√
ε). Moreover using (4.12) we can obtain the

corresponding value of v. It is given by vε = −1
2
ln ε+O(1).

4.5 The Jacobi operator about M̃σ,α,β

The Jacobi operator for Mσ,α,β is given by J = ∆ds2 +|A|2, where |A|2 is the squared norm
of the second fundamental form on Mσ,α,β and ∆ds2 is the Laplace-Beltrami operator with
respect to the metric ds2 induced on the surface by the immersion X defined in section
4.4. That is

ds2 =
1

4

(
|g|+ |g|−1

)2 |dh|2.
In subsection 4.4.2 we have presented the parametrization of Mσ,α,β and of its lifting on
a cylinder. We recall we adopted the coordinates (x, y). In this new frame the Jacobi
operator, J , is obtained considering as metric on the rectangular torus Σσ, the pull-back
of standard metric ds2

0 of the sphere S2 by the Gauss map. The following relation holds

J = −K (∆ds20
+ 2)
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(being K = −1
2
|A|2 the Gauss curvature) since ∆ds2 = −K ∆ds20

and dN∗(ds2
0) = −K ds2.

From [17] and taking into account the parametrization of M̃σ,α,β given in subsection 4.4.2,
we can deduce that, in the (x, y)-variables on S2 \ {γ1 ∪ γ2}

∆ds20
:=

l(x)m(y)

T (x, y)

[
∂x

(
l(x)

m(y)
∂x

)
+ ∂y

(
m(y)

l(x)
∂y

)]
.

After the conformal change of coordinates (x, y) → (u, v) defined by (4.12), we can write
J = −K

T (x(u),y(v))
Lσ, where

Lσ := ∂2
uu + ∂2

vv + 2 sin2 σ cos2(x(u)) + 2 cos2 σ sin2(y(v)) (4.14)

is known as Lamé operator.

Remark 61. In proposition 66, we will take limits as σ → 0. For such a limit, the
Riemann surface Σσ degenerates into a Riemann surface with nodes consisting of two
spheres jointed by two common points, and the corresponding Jacobi operator equals L0 =
∂2
xx + sin y ∂y (sin y ∂y) + 2 sin2 y in the (x, y)-variables. Note that in this case the change

of variables (x, y) 7→ (u, v) is not defined.

4.5.1 The mapping properties of the Jacobi operator

Our aim along this subsection is to study the mapping properties of the operator J . It is
clear that it is sufficient to study the simpler operator Lσ defined by (4.14). So we want
to study the possibility to solve in a unique way the problem{

Lσw = f, in Iσ × [v0,+∞[
w|v=v0 = ϕ

with v0 ∈ R, considering convenient normed functional spaces for w, f and ϕ, so that the
norm of w is bounded by the one of f .

Since Lσ has separated variables, let us firstly consider the operator

Lσ = ∂2
uu + 2 sin2 σ cos2(x(u)).

The quantity Uσ defined in (4.13) is the period of the function cos(x(u)). It is possible
to prove that Uσ → 2π as σ → 0. We let Lσ act on the Uσ-periodic and even functions.
Moreover it is uniformly elliptic and self-adjoint. In particular, Lσ has discrete spectrum
(λσ,i)i>0, that we assume arranged so that λσ,i < λσ,i+1 for every i. Each eigenvalue λσ,i is
simple because we only consider even functions. We denote by eσ,i the even eigenfunction
associated to λσ,i, normalized so that∫ Uσ

0

(eσ,i(u))
2 du = 1.
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Lemma 62. For every i > 0, the eigenvalue λσ,i of the operator Lσ and its associated
eigenfunctions eσ,i satisfy

−2 sin2 σ 6 λσ,i − i2 6 0, |eσ,i − e0,i|C2 6 ci sin2 σ, (4.15)

where e0,i(u) := cos(ix(u)) for every u ∈ Iσ, and the constant ci > 0 depends only on i (it
does not depend on σ).

Proof. The bound for λσ,i − i2 comes from the variational characterization of the
eigenvalues,

λσ,i = sup
codimE=i

inf
e∈E, ||e||L2=1

∫ Uσ

0

(
(∂ue)

2 − 2 sin2 σ cos2(x(u)) e2
)
du,

where E is a subset of the space of Uσ-periodic even functions in L2(Iσ), since it always
holds 0 6 2 sin2 σ cos2(x(u)) 6 2 sin2 σ.
The bound for the eigenfunctions follows from standard perturbation theory [21].

The Hilbert basis {eσ,i}i∈N of the space of Uσ-periodic and even functions in L2(Iσ) induces
the following Fourier decomposition of L2 functions g = g(u, v) which are Uσ-periodic and
even in the u-variable,

g(u, v) =
∑
i>0

gi(v) eσ,i(u).

From this, we deduce that the operator Lσ, can be decomposed as Lσ =
∑

i>0 Lσ,i, being

Lσ,i = ∂2
vv + 2 cos2 σ sin2(y(v))− λσ,i , for every i > 0.

Since 0 6 2 cos2 σ sin2(y(v)) 6 2 cos2 σ = 2− 2 sin2 σ, the lemma 62 give us

Pσ,i := 2 cos2 σ sin2(y(v))− λσ,i 6 2− i2. (4.16)

This fact allows us to prove the following lemma, which assures that Lσ is injective when
restricted to the set of functions that are L2-orthogonal to eσ,0 and eσ,1 in the u-variable.

Lemma 63. Given v0 < v1, let w be a solution of Lσw = 0 on Iσ × [v0, v1] such that

(i) w(· , v0) = w(· , v1) = 0.

(ii)
∫ Tσ

0
w(u, v)eσ,i(u) du = 0 , for every v ∈ [v0, v1] and i = 0, 1.

Then w = 0.

Proof. By (ii), w =
∑

i>2wi(v) eσ,i(u). Since the potential Pσ,i of the operator Lσ,i is
negative for every i > 2 (see (4.16)) and the operator Lσ,i is elliptic, the maximum
principle holds. We can then conclude the lemma 63 from (i).
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Now we can state the following

Lemma 64. For all i > 2 and ∀σ there exists a unique positive solution of

Lσ,iwσ,i = 0 with wσ,i(0) = 1

defined on Iσ = [0, Uσ] such that

1

cσ,i
e±γσ,iv 6 wσ,i(v) 6 cσ,i e

±γσ,iv (4.17)

for some constants γσ,i > 0 and cσ,i > 1.

Proof. For i > 2 and for 0 < σ < π/2, the potential Pσ,i of Lσ,i is negative, hence this
operator satisfies the maximum principle. We can choose two constants γ < 0 close
enough to 0 and γ′ < 0 with |γ′| large enough so that

γ2 + Pσ,i < 0 and γ′ 2 + Pσ,i > 0.

This choice allows us to use the Perron method to prove the existence of the solution. In
fact the functions v → eγ v and v → eγ

′ v respectively satisfy

Lσ,ie
γ v = (γ2 + Pσ,i)e

γ v < 0

and
Lσ,ie

γ′ v = (γ′2 + Pσ,i)e
γ′ v > 0

that is they are respectively a subsolution and a supersolution and so they can be used
like barrier functions.

The existence of the constants γσ,i follows from the fact that the potential of Lσ,i consists
of the function sin2(y(v)) which is periodic in the variable v. We denote the period by Rσ.
It is possible to show that Rσ → +∞ if σ → 0. Indeed, we can define the linear operator
Mσ,i by

Mσ,i(s1, s2) = (s(Rσ), ∂vs(Rσ))

where s is the unique solution of
Lσ,i s = 0

which is defined on [0, Rσ] and which satisfies s(0) = s1 and ∂vs(0) = s2.

We claim that Mσ,i has two positive eigenvalues which satisfy mσ,i < 1 < nσ,i and
mσ,i nσ,i = 1. The solution s which has been described above is exponentially decay-
ing and (s(0), ∂vs(0)) corresponds to an eigenvector of Mσ,i with eigenvalue mσ,i < 1.
Therefore, we have

Mσ,i(s(0), ∂vs(0)) = mσ,i (s(0), ∂vs(0)) = (s(Rσ), ∂vs(Rσ))
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This implies that

(s(2Rσ), ∂vs(2Rσ)) = Mσ,i(s(Rσ), ∂vs(Rσ)) = m2
σ,i (s(0), ∂vs(0))

and so for all k ∈ N we have

(s(k Rσ), ∂vs(k Rσ)) = mk
σ,i(s(0), ∂vs(0)).

Hence we have the relation
e−γσ,iRσ = mσ,i

which defines γσ,i.

Now we prove the claim. Assume that g1 and g2 are two solutions of Lσ,is = 0 with
g1(0) = ∂vg1 = 0 and g2(0) = ∂vg1 = 0. The Wronskian W (g1, g2) associated to g1 and g2

does not depend on the variable v because the Wronskian of a differential equation of the
form

∂vvf + a(v)∂vf + b(v)f = 0

must satisfy the differential equation ∂vW + a(v)W = 0. In this case a(v) = 0 and so we
have ∂vW = 0. Then if we compute W at v = 0 and v = Rσ, we can write

g1(0)g′2(0)− g′1(0)g2(0) = g1(Rσ)g
′
2(Rσ)− g′1(Rσ)g2(Rσ).

Now we observe that from the previous assumption it follows that

g1(0)g′2(0) = det(Nσ,i)g1(0)g′2(0),

where Nσ,i is the matrix associated to the operator Mσ,i. But the determinant is equal
to the product of its eigenvalues so we have proven that mσ,inσ,i = 1. Finally the entries
of Nσ,i are real and so it is for its trace. This implies that the eigenvalues are real. We
must prove that the eigenvalues cannot be equal to 1. It is sufficient to observe that it is
not possible, otherwise it should exist a nontrivial bounded solution of the homogeneous
problem Lσ,i s = 0. Namely at a point where this solution has a positive maximum (that is
its second derivative is negative) we have 0 = Lσ,i s 6 Pσ,i s < 0 and in correspondence of
a negative minimum (that is its second derivative is positive) 0 = Lσ,i s > Pσ,i s > 0).

The parameters γσ,i are called the indicial roots of the operator Lσ,i.

When i = 0 and i = 1, the argument used above does not hold since the potential of
Lσ,i is not negative. In this case, the explicit solutions of the equation Lσ,i s = 0 are
obtained thanks to the existence of the Jacobi fields. The idea is that our surface has
many properties of symmetry and this induces 4 independent Jacobi fields that we are
going to describe. We recall that in the following we will consider the two subfamilies of
Mσ,α,β for which α = 0 and β = 0. We described them in section 4.4. These surfaces are
invariant by the symmetry about the plane {x1 = 0} (α = 0) and the plane {x2 = 0}
(β = 0). So the set of the Jacobi fields to consider are different in the two cases.
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• Two Jacobi fields can be obtained by considering the one parameter families of
minimal surfaces which is induced by the translations in the x3-direction and by

– the translations in the x2-direction in the case where α = 0,

– the translations in the x1-direction in the case where β = 0.

These Jacobi fields are clearly periodic and hence bounded.

• A third Jacobi field can be obtained by considering the one parameter family of
minimal surfaces which is induced by dilatation from the origin. The so-obtained
Jacobi field is not bounded and in fact it grows linearly.

• The last Jacobi field can be obtained by considering the one parameter family of
minimal surfaces which is induced by changing the parameter σ. Again, this Jacobi
field is not periodic and grows linearly.

The Jacobi operator Lσ becomes a Fredholm operator when restricted to the following
functional space.

Definition 65. Given σ ∈ (0, π/2), ` ∈ N, α ∈ (0, 1), µ ∈ R and an interval I, we define
C`,αµ (Iσ × I) to be the space of functions w ≡ w(u, v) in C`,αloc (Iσ × I) which are even in the
variable u and for which the following norm is finite:

‖w‖C`,α
µ

:= sup
v∈I

e−µv‖w‖C`,α(Iσ×[v,v+1]).

Proposition 66. Given µ ∈ (−2,−1), there exists a σ0 ∈ (0, π/2) such that, for every
σ ∈ (0, σ0) and v0 ∈ R, there exists an operator

Gσ,v0 : C0,α
µ (Iσ × [v0,+∞)) −→ C2,α

µ (Iσ × [v0,+∞))
f 7−→ w := Gσ,v0(f)

satisfying the following statements:

(i) Lσ w = f on Iσ × [v0,+∞);

(ii) w ∈ Span{eσ,0, eσ,1} on Iσ × {v0};

(iii) ||w||C2,α
µ

6 c ||f ||C0,α
µ

, for some constant c > 0 which does not depend on σ, v0.
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Proof. Every f ∈ C0,α
µ (Iσ × [v0,+∞)) can be decomposed as

f = f0 eσ,0 + f1 eσ,1 + f̄ ,

where f̄(·, v) is L2-orthogonal to eσ,0 and eσ,1 for each v.

Step 1. Firstly, let’s prove the proposition 66 for the functions f ∈ C0,α
µ (Iσ × [v0,+∞))

that are L2-orthogonal to {eσ,0, eσ,1}. As a consequence of the lemma 63, Lσ is injective
when it acts on this set of functions. Hence, the Fredholm alternative assures that there
exists, for each v1 > v0 + 1, an unique w ∈ C2,α

µ , with w(·, v) L2-orthogonal to eσ,0, eσ,1
satisfying: {

Lσ w = f on Iσ × [v0, v1],
w(·, v0) = w(·, v1) = 0.

(4.18)

Assertion 67. There exists a constant c and σ0 ∈ (0, π/2) such that for every σ ∈ (0, σ0),
v0 ∈ R, v1 > v0+1, f ∈ C0,α

µ (Iσ×[v0, v1]) and w ∈ C2,α
µ (Iσ×[v0, v1]) satisfying the equation

(4.18) and
‖w‖C0,α

µ
6 c ‖f‖C0,α

µ
. (4.19)

Suppose by contradiction that the assertion 67 is false. Then, for every n ∈ N, there
exists σn ∈ (0, 1/n), v1,n > v0,n + 1 and fn, wn satisfying (4.18) (for σn, v0,n, v1,n instead
of σ, v0, v1) such that

‖fn‖C0,α
µ

= 1 and ‖wn‖C0,α
µ
→ +∞, when n→∞.

Since Iσn × [v0,n, v1,n] is a compact set, An := sup
Iσn×[v0,n,v1,n]

e−µv |wn| is achieved at a point

(un, vn) ∈ Iσn × [v0,n, v1,n]. We define

w̃n(u, v) :=
e−µvn

‖wn‖C0,α
µ

wn(u, v + vn),

for all (u, v) ∈ Iσn × In, with In = [v0,n − vn, v1,n − vn]. Clearly, An 6 ‖wn‖C0,α
µ

, and

|w̃n(u, v)| 6 eµ v
e−µ(v+vn)|wn(u, v + vn)|

An
6 eµ v.

On the other hand, e−µ v|∇w̃n| 6 ‖w̃n‖C2,α
µ

=
‖wn‖C2,α

µ

‖wn‖C0,α
µ

. Thanks to Schauder estimate, we

obtain ||wn||C2,α
µ

6 c′
(
||fn||C0,α

µ
+ ||e−µ vwn||C0

)
= c′ (1 + An).

Hence3,

|∇w̃n| 6 c′ eµ v
1 + ‖wn‖C0,α

µ

‖wn‖C0,α
µ

6 c eµ v.

3From now on, c will denote any arbitrary positive constant.
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The intervals In converge to a nonempty (and possibly unbounded) interval I∞. Since the
sequences (w̃n)n and (∇w̃n)n are uniformly bounded, Ascoli-Arzelà theorem assures that
a subsequence of (w̃n)n converges for n → ∞ (and σn → 0) on compact sets of Iσn × I∞
to a function w∞, which is L2-orthogonal to {e0,0, e0,1} for each v ∈ I∞, and vanishes on
I0 × ∂I∞, when ∂I∞ 6= ∅. Note that

sup
v∈In

e−µ v‖w̃n‖C0,α(Iσn×[v,v+1]) =
An

‖wn‖C0,α
µ

, (4.20)

does not converge to zero. In fact An →∞, ‖wn‖C0,α
µ

6 ‖wn‖C2,α
µ

6 c′(1 + An) then

An
‖wn‖C0,α

µ

>
An

c′(1 + An)
→ 1

c′
> 0.

In particular,
sup

Iσn×In
e−µv |w̃n| = 1. (4.21)

Since if n→∞ we have σn → 0, from (4.12) we can conclude

u→ x and v → 1

2
ln | tan

y

2
|.

From the last expression we get

y(v) = 2 arctan(e2v) and e2v = | tan
y

2
|.

Using well kwown trigonometric formulae also we find

cos y(v) =
1− e4v

1 + e4v
and sin y(v) =

2e2v

1 + e4v
. (4.22)

It is possible to find the expression of the function w∞ working with the x, y coordinates
and after that to come back to the u, v coordinates. In fact we can observe that, up to
subsequence, the function w∞ satisfies L0w∞ = 0 with

L0 = ∂2
xx + sin y ∂y (sin y ∂y) + 2 sin2 y.

Now we consider the eigenfunctions decomposition of w∞,

w∞(x, y) =
∑
j>2

aj(y) cos(j x).

Each coefficient aj must satisfy the associate Legendre differential equation(
sin2 y ∂2

yy + cos y sin y ∂y − j2 + 2 sin2 y
)
aj = 0.
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Since j > 2 the solutions are the associated Legendre functions of second kind (the
functions of second kind being zero) aj(y) = Qj

1(cos y), where

Qj
1(t) = (−1)j

√
(1− t2)j

djQ0
1(t)

dtj
, with Q0

1(t) =
t

2
ln

(
1 + t

1− t

)
− 1.

Now we come back to the variables (u, v). We observe that the function

w∞(u, v) =
∑
j>2

Qj
1(cos y(v)) cos(j u)

does not satisfy the inequality (4.21) with n→ +∞ and µ ∈ (−2,−1), a contradiction.

This proves the assertion 67, that is, for every v1 > v0 + 1, there exists a function w̄
satisfying (4.19). Let’s take the limit as v1 →∞. Clearly,

e−µ v|w̄| 6 ‖w̄‖C0,α
µ

6 c ‖f‖C0,α
µ
.

And the Schauder estimates assures

e−µ v|∇w̄| 6 ‖w̄‖C2,α
µ

6 c
(
‖f‖C0,α

µ
+ ‖w̄‖C0

µ

)
6 c‖f‖C0,α

µ
.

Hence Ascoli-Arzelà theorem says to us that a subsequence of {wv1}v1>v0+1 converges to
a function w ∈ C2,α

µ defined on Iσ × [v0,∞), which clearly satisfies the statement (iii) of
proposition 66.

Step 2 Let’s now consider f ∈ C0,α
µ (Iσ × [v0,+∞)) in Span{eσ,0, eσ,1}, i.e.

f(u, v) = f0(v) eσ,0(u) + f1(v) eσ,1(u).

We extend the functions f0(v), f1(v) for v 6 v0 to be equal, respectively, to f0(v0), f1(v0).
Given v1 > v0 + 1, consider {

Lσ,jwj = fj, v ∈ (−∞, v1]
wj(v1) = ∂vwj(v1) = 0

(4.23)

Peano theorem assures the existence and the uniqueness of the solution wj. Our aim
consists in proving the following

Assertion 68. ‖wj‖C0,α
µ

6 c ‖fj‖C0,α
µ

for some constant c which does not depend on v1.

Suppose by contradiction that, for every n ∈ N, there exists σn ∈ (0, 1/n), v1,n > v0,n + 1
and fj,n, wj,n satisfying (4.23) such that

‖fj,n‖C0,α
µ

= 1 and ‖wj,n‖C0,α
µ
→ +∞, when n→∞.
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The solution wj,n of the previous equation is a linear combination of the two solutions
of the homogeneous problem Lσn,j w = 0. They are the Jacobi fields associated to the
isometries and it is known that they are at most linearly growing functions. Hence the
supremum

An := sup
(−∞,v1,n]

e−µv|wj,n|

is achieved in a point which we call vn ∈ (−∞, v1,n]. We define on In := (−∞, v1,n − vn]
the function w̃j,n by

w̃j,n(v) :=
1

‖wj,n‖C0,α
µ

e−µvn wj,n(vn + v).

As above, one shows that the sequence (v1,n − vn)n remains bounded away from 0, that
is v1,n > vn for each n. Without loss of generality, we can assume that the sequence
(v1,n − vn)n converges to v̄1 ∈ (0,+∞]. We set I∞ = (−∞, v̄1].

As in Step 1, we can also assume that the sequence of functions (w̃j,n)n converges on
compact subsets of I∞ to a nontrivial function w̃j. We observe that w̃j(v̄1) = 0 if v̄1 < +∞
and that

sup
v∈I∞

e−µv |w̃j| = 1. (4.24)

Secondly w̃j, in the coordinates x, y is a solution of(
sin2 y ∂2

yy + cos y sin y ∂y − j2 + 2 sin2 y
)
aj = 0. (4.25)

This is again the associated Legendre differential equation. The solutions of the equation
(4.25) are the associated Legendre functions of first P j

1 (cos y) and second kind Qj
1(cos y)

with j = 0, 1.

We have reached a contradiction because we can observe that these solutions, after the
change of coordinates to come back to the u, v coordinates, do not satisfy the equation
(4.24) with µ ∈ (−2,−1).

So we have proved that

sup
(−∞,v1]

e−µv |wj| 6 c sup
(−∞,v1]

e−µv |fj|.

Now we pass to the limit as v1 tends to +∞ in a sequence of solutions which are defined
on I∞. This proves the existence of a solution of

Lσ,j wj = fj

which is defined in [v0,+∞). In addition, we know that

sup
[v0,+∞)

e−µv |wj| 6 c sup
[v0,+∞)

e−µv |fj|.
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Multiplying for the eigenfunctions, taking the supremum on Iσ × [v0,+∞) and using a
last time elliptic estimates, we get the wanted estimate. So the proof of the result is
complete.

4.6 A family of minimal surfaces close to M̃σ,0,β and

M̃σ,0,β

The aim of this section is to find a family of minimal surfaces near to a translated and
dilated copy of M̃σ,0,β and M̃σ,0,β with given Dirichlet data on the boundary. We start

recalling that in subsection 4.4.1 we got that a translated and dilated copy of M̃σ,α,β can
be expressed as the graph over the x3 = 0 plane of the function

(1 + γ) ln
2r

1 + γ
+ r [η1 cos θ + η2 sin θ] +

1

r
(κ1 cos θ + κ2 sin θ) + κ3 + gt. (4.26)

where gt = O(ε), κ1, κ2, κ3 ∈ R+ and small, η1 = b1 + b2, η2 = b1 − b2, b1 = sin α−β
2
,

b2 = sin α+β
2
, and r belongs to a neighbourhood of rε = 1

2
√
ε
.

We denote by Z the immersion of the surface M̃σ,α,β. The following proposition, whose
proof is contained in section 4.11, states that the linearized of the mean curvature operator
is the Lamé operator introduced in section 4.4.2.

Proposition 69. The surface parameterized by Zf := Z + f N is minimal if and only if
the function f is a solution of

Lσf = Qσ(f, fu, fv, fuu, fuv, fvv).

where L is the Lamé operator and Qσ is a nonlinear operator which satisfies

‖Qσ(f2)−Qσ(f1)‖C0,α(Iσ×[v,v+1]) 6 c sup
i=1,2

‖fi‖C2,α(Iσ×[v,v+1]) ‖f2 − f1‖C2,α(Iσ×[v,v+1])

for all f1, f2 such that ‖fi‖C2,α(Iσ×[v,v+1]) 6 1. Here the constant c > 0 does not depend on
v ∈ R, nor on σ ∈ (0, 1).

As a consequence of the dilation of factor 1+γ of the surface the minimal surface equation
becomes

Lσ w =
1

1 + γ
Qσ ((1 + γ)·) , (4.27)

where hereafter we use a simplified notation for the operator Qσ.
We now truncate the surfaces M̃σ,0,β and M̃σ,α,0 at the graph of the curve r = 1

2
√
ε

of the

function (4.26) with, respectively, α = 0 and β = 0, and we consider only the upper half
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of these surfaces which we call M1 and M2. We are interested in minimal normal graphs
over these surfaces which are asymptotic to them. The normal graph of the function w
over M1,M2 is minimal, if and only if w is a solution of (4.27).
We make the following change of coordinates

(r, θ) =

(
1

2
ev, θ

)
.

It is important to remark that though the surfaces M1,M2 can be parameterized by (58),
their boundary does not correspond to the curve v = vε = −1/2 ln ε. We therefore modify
the above parametrization so that over the annulus B4rε − Brε the image of the function
(4.26) corresponds to the horizontal curve v = vε. Finally, we interpolate smoothly the
two parametrizations over the annulus B6rε −B2rε . We would like that the normal vector
field relative to M1,M2 is vertical near the boundary of this surface. This can be achieved
by modifying the normal vector field into a transverse vector field Ñ which agrees with
the normal vector field N for all t > vε+ln 4 and with the vector e3 for all v ∈ [vε, vε+ln 2].

Now, we consider a graph over this surface for some function u, using the modified vector
field Ñ . This graph will be minimal if and only if the function u is a solution of a nonlinear
elliptic equation related to (4.27). To get the new equation, we take into account the effects
of the change of parameterization and the change in the vector field N into Ñ . The new
minimal surface equation is

Lσ w = L̃εw + Q̃σ (·) . (4.28)

Here Q̃σ enjoys the same properties of Qσ, since it is obtained by a slight perturbation
from it. The operator L̃ε is a linear second order operator whose coefficients are supported
in [vε, vε + ln 4] × S1 and are bounded by a constant multiplied for ε1/2, in C∞ topology,
where partial derivatives are computed with respect to the vector fields ∂u and ∂v.

As a fact, if we take into account the effect of the change of the normal vector field,
we would obtain, applying the result of Appendix B of [11], a similar formula where the
coefficients of the corresponding operator L̃ε are bounded by a constant multiplied for ε
since

Ñε ·Nε = 1 +O(ε)

for t ∈ [tε, tε+ln 2]. Instead, if we take into account the effect of the change in the param-
eterization, we would obtain a similar formula where the coefficients of the corresponding
operator L̃ε are bounded by a constant multiplied for ε1/2. The estimate of the coefficients
of L̃ε follows from these considerations.

Now, assume that we are given a function ϕ ∈ C2,α(Iσ) which is even with respect to u,
L2-orthogonal to eσ,0, eσ,1 and such that ‖ϕ‖C2,α 6 kε. We define

wϕ(·, ·) := H̄vε,ϕ(·, ·),
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where vε = −1/2 ln ε+O(1) and H̄ is introduced in proposition 81.
In order to solve the equation (4.28), we choose µ ∈ (−2,−1) and look for u of the form
w = wϕ + g where g ∈ C2,α

µ (Iσ × [vε,∞)) and w = ϕ on Iσ × {vε}. Using Proposition 66,
we can rephrase this problem as a fixed point problem

g = S(ϕ, g) (4.29)

where the nonlinear mapping S which depends on ε and ϕ is defined by

S(ϕ, g) := Gε,vε

(
L̃ε(wϕ + g)− Lσ wϕ + Q̃ε (wϕ + g)

)
.

where the operator Gε,vε is defined in Proposition 66. To prove the existence of a fixed
point for (4.29) we need the following

Lemma 70. There exist some constants ck > 0 and εk > 0, such that

‖S(ϕ, 0)‖C2,α
µ (Iσ×[vε,∞)) 6 ckε

1+µ/2 (4.30)

and, for all ε ∈ (0, εk)

‖S(ϕ, g2)− S(ϕ, g1)‖C2,α
µ (Iσ×[vε,∞)) 6 ckε

1
2 ‖g2 − g1‖C2,α

µ (Iσ×[vε,∞))

for all g1, g2 ∈ C2,α
µ (Iσ × [vε,∞)) such that ‖gi‖C2,α

µ (Iσ×[vε,∞)) 6 ckε
1+µ/2.

Proof: We know from Proposition 66 that ‖Gε,vε(f)‖C2,α
µ

6 c‖f‖C0,α
µ
, then

‖S(ϕ, 0)‖C2,α
µ (Iσ×[vε,∞)) 6 c‖L̃ε(wϕ)− Lσ wϕ + Q̃σ (wϕ) ‖C0,α

µ (Iσ×[vε,∞)) 6

6 c
(
‖L̃ε(wϕ)‖C0,α

µ (Iσ×[vε,∞)) + ‖Lσ wϕ‖C0,α
µ (Iσ×[vε,∞)) + ‖Q̃σ (wϕ) ‖C0,α

µ (Iσ×[vε,∞))

)
.

So we need to find the estimates for the three above norms.
We recall that |ϕ|2,α 6 kε. For all µ ∈ (−2,−1), thanks to Proposition 81 we know that

|w|2,α;[v,v+1] 6 eµ(v−vε)|ϕ|2,α (4.31)

Using the relation e−µvε = εµ/2 we know that

‖wϕ‖C2,α
µ

= sup
v∈[vε,∞]

e−µv|w|2,α;[v,v+1] 6 sup
v∈[vε,∞]

e−µveµ(v−vε)|ϕ|2,α 6

6 εµ/2|ϕ|2,α 6 ckε
1+µ/2.

122



From this inequality and from the estimates of the coefficients of L̃ε, it follows that

‖L̃ε(wϕ)‖C0,α
µ

6 cε1/2‖wϕ‖C0,α
µ

6 ckε
(3+µ)/2.

As for Lσ we consider the following relation

Lσ wϕ = 2T wϕ,

where T 6 1. It comes from the definition of wϕ and Proposition 81 which gives us the
following relation:

∂2
uuwϕ + ∂2

vvwϕ = 0.

Therefore, we conclude that

‖Lσ wϕ‖C0,α
µ (Iσ×[vε,∞)) 6 2‖wϕ‖C0,α

µ (Iσ×[vε,∞)) 6 ckε
1+µ/2.

The last term is estimated by

‖Q̃σ (wϕ) ‖C0,α
µ (Iσ×[vε,∞)) 6 ckε

2+µ/4.

In fact

‖Q̃σ (wϕ) ‖C0,α
µ (Iσ×[vε,∞)) 6 c sup

v∈[vε,∞)

e−µv|w|20,α;Iσ×[v,v+1] 6 c‖w‖2
2,α,µ/2 6 c|ϕ|22,α sup

[vε,∞)

e−µv/2eµ(v−vε)

6 c|ϕ|22,α sup
[vε,∞)

e+µv/2e−µvε 6 cε+µ/4|ϕ|22,α 6 ckε
2+µ/4.

Putting together these estimates we get the first result. As for the second estimate, we
recall that

S(ϕ, g) := Gε,vε

(
L̃ε(wϕ + g)− Lσ wϕ + Q̃σ (wϕ + g)

)
.

Then
S(ϕ, g2)− S(ϕ, g1) = Gε,vε

(
L̃ε(wϕ + g2)− Lσ wϕ + Q̃σ (wϕ + g2)

)
−

Gε,vε

(
L̃ε(wϕ + g1)− Lσ wϕ + Q̃σ (wϕ + g1)

)
and

‖S(ϕ, g2)− S(ϕ, g1)‖C2,α
µ (Iσ×[vε,∞)) 6 c‖L̃ε(wϕ + g2)− Lσ wϕ + Q̃σ (wϕ + g2)−

−L̃ε(wϕ + g1) + Lσ wϕ − Q̃σ (wϕ + g1) ‖C0,α
µ (Iσ×[vε,∞)) =

‖L̃ε(wϕ + g2)− L̃ε(wϕ + g1) + Q̃σ (wϕ + g2)− Q̃σ (wϕ + g1) ‖C0,α
µ (Iσ×[vε,∞)) =

= ‖L̃ε(g2 − g1) + Q̃σ (wϕ + g2)− Q̃σ (wϕ + g1) ‖C0,α
µ (Iσ×[vε,∞)) 6
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6 ‖L̃ε(g2 − g1)‖C0,α
µ (Iσ×[vε,∞)) + ‖Q̃σ (wϕ + g1)− Q̃σ (wϕ + g2) ‖C0,α

µ (Iσ×[vε,∞)).

We observe that from the considerations above it follows that

‖L̃ε(g2 − g1)‖C0,α
µ (Iσ×[vε,∞)) 6 ckε

1/2||g2 − g1||C2,α
µ (Iσ×[vε,∞))

and that there is j + j′ > 1 such that:

‖Q̃σ (wϕ + g1)− Q̃σ (wϕ + g2) ‖C0,α
µ (Iσ×[vε,∞)) 6

6 c||g2 − g1||C0,α
µ (Iσ×[vε,∞))

(
|wϕ + g2|j|wϕ + g1|j

′
)

6

6 ck
(
ε2+µ/2

)j+j′ ||g2 − g1||C2,α
µ (Iσ×[vε,∞)) 6 ckε

4+2µ||g2 − g1||C2,α
µ (Iσ×[vε,∞)).

Then
‖S(ϕ, g2)− S(ϕ, g1)‖C2,α

µ (Iσ×[vε,∞)) 6 ckε
4+2µ||g2 − g1||C2,α

µ (Iσ×[vε,∞)).

Theorem 71. Let be B := {g ∈ C2,α
µ (Iσ × [vε,∞)) | ||g||C2,α

µ 6 ckε
1+µ/2}. Then the non-

linear mapping S defined above has a unique fixed point g in B.

Proof. The previous lemma shows that, if ε is chosen small enough, the nonlinear map-
ping S is a contraction mapping4 from the ball B of radius ckε

1+µ/2 in C2,α
µ (Iσ × [vε,∞))

into itself. This value comes from the estimate of the norm of S(ϕ, 0). Consequently
thanks to the Schauder theorem, S has a unique fixed point v in this ball.

This argument provides a minimal surface Mi(φ) which is close to Mi and has one
boundary. This surface is, close to its boundary, a vertical graph over the annulus
Bε−1/2/2 −Bε−1/2/4 whose parametrization is given, for α = 0 by

Ut,1(r, θ) = (1+γ) ln
2r

1 + γ
+rη2 sin θ+

1

r
(κ1 cos θ+κ2 sin θ)+κ3+H̄vε,ϕ(vε−ln 2r, θ)+V (r, θ).

and, for β = 0, by

Ut,2(r, θ) = (1+γ) ln
2r

1 + γ
+rη1 cos θ+

1

r
(κ1 cos θ+κ2 sin θ)+κ3+H̄vε,ϕ(vε−ln 2r, θ)+V (r, θ).

where vε = −1
2

ln ε. The boundary of the surface corresponds to rε = 1
2
ε−1/2. The function

V depends non linearly on ε, φ. It satisfies ‖V (ε, φi)(rε·)‖C2,α(B̄1−B1/2) 6 cε and

‖Vi(ε, φ)(rε·)− Vi(ε, φ
′)(rε·)‖C2,α(B̄1−B1/2) 6 cε1−µ/2‖φ− φ′‖C2,α(Iσ).

4after the correct choise of the constant k that appears in the estimate of the norm of ϕ.
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4.7 Periodic flat cylinder

In this section we are interested in finding an infinite family of minimal surface close to a
horizontal strip from which we have removed a circle. We shall use the following model.
We denote by Σ = {x+ iy ∈ C; y ∈ [−π

η
, π
η
]}, with η > 0 and enough small, the horizontal

flat cylinder whose embedding in R3/T is X(z) = (z, 0), where T = 2π
η
e2 is the period.

Topologically Σ is equivalent to R × S1. We denote Bs the ball of radius s centered in
the origin. The equation to consider is

div
∇u√

1 + |∇u|2
= 0 (4.32)

for u defined on Σ−Bs and with boundary data on ∂Bs.

We define the subdomains Ωx1 = {z ∈ Σ; |x| 6 x1} and denote the two cylindrical ends
with E1 = {z ∈ Σ; x > x1}, E2 = {z ∈ Σ; x 6 −x1}.

Definition 72. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we define the weighted Hölder space
Ck,α
µ (Σ) to be the space of functions of Ck,α

loc (Σ) for which the following norm is finite

||u||Ck,α
µ

:= [u]k,α;Ωx1
+ sup

x>x1

e−µx([u]k,α,([x,x+1]×S1) + [u]k,α,([−x−1,−x]×S1))

where [u]k,α,Ω denotes the usual Ck,α Hölder norm on the set Ω.

We denote by Ck,α
µ (Σ−Bs) the subspace of the functions of Ck,α

µ (Σ) restricted to Σ−Bs

and by [Ck,α
µ (Σ−Bs)]0 the subspace of the functions vanishing on the boundary.

There exists an extension operator Es : C0,α
µ (Σ−Bs) → C0,α

µ (Σ) which satisfies ||Es(u)|| 6
C||u||. The operator is defined by Es(u) = u on Σ − Bs and Es(u) = (2|z|/s − 1)u(z) on
Bs −Bs/2 and Es(u) = 0 on Bs/2.

Now we consider the bounded operator ∆µ :

∆ : C2,α
µ (Σ) −→ C0,α

µ (Σ)

where ∆ = ∂2
y + ∂2

x. It follows from the general theory of elliptic partial differential oper-
ators that ∆µ is a Fredholm operator for all µ /∈ Z. It is well known that, if µ ∈ R − Z,
then ∆µ is injective if and only if ∆−µ is surjective and the dimension of the kernel of
∆−µ is equal to the cokernel of ∆µ. Furthermore, it is possible to show that the operator
∆µ is injective for −1 < µ < 0 and so it is surjective for 0 < µ < 1.
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When the weight parameter is negative, we can still make the operator surjective by
considering a finite dimensional extension of the Hölder space defined above. To be more
precise we need additional notation. Let us set x1 = 2s such that Bs ⊂ {−x1 < x < x1}.
We introduce the cut-off functions ξ1 and ξ2 satisfying the following conditions:

• ξ1 = 0 for x < x1 and ξ1 = 1 for x > 2x1,

• ξ2 = 0 for x > −x1 and to ξ2 = 1 for x < −2x1.

Now we are ready to define

D0 := Span{ξ1, ξ2, ξ1x, ξ2x}.

This space is identified with R4 and is endowed with the Euclidean norm. For −1 < µ < 0
we have Ker ∆−µ ⊂ C2,α

µ (Σ)⊕D0. In fact if we expand a solution of ∆u = 0 on {x > x1}
by

u =
∑
n∈Z

un(x)e
i 2π

T
ny,

where T is the period with respect to the variable y, then u = u0 + ū, with ū ∈ C2,α
µ with

−1 < µ < 0, and u0 affine function, i.e. a linear combination of the constant function and
x near the cylindrical ends E1 and E2. The index theory assures that the kernel is two
dimensional. We define K0 = Span{ξ1, ξ2}. The linear decomposition Lemma proved in
[23] for constant mean curvature surfaces (see also [18] for minimal hypersurfaces) can be
adapted to our situation. So D0 = K0 ⊕ N0, where N0 denotes a complementary space.
Then

ker ∆−µ ⊂ C2,α
µ (Σ)⊕N0

and the application
∆ : C2,α

µ (Σ)⊕K0 −→ C0,α
µ (Σ)

is an isomorphism.

Proposition 73. If 0 < µ < ε2 and T = 2π
η

then there exists an operator

Fµ : C0,α
µ (Σ) → C2,α

µ (Σ)⊕K0

such that for all f ∈ C0,α
µ (Σ), the function v := Fµ(f) = w + a1ξ1 + a2ξ2 solves ∆v =

f in Σ. Moreover,

||Fµ(f)||C2,α
µ ⊕K0

= |a1|+ |a2|+ ||w||C2,α
µ

6 c ‖f‖C0,α
µ
,

for some constant c > 0.
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Proof. We solve the equation ∆v = f at the ends E1 and E2 of Σ. For x > x1 we consider
the Fourier series of f and v (a similar argument holds for E2).

v =
∑
n∈Z

vne
i 2π

T
ny and f =

∑
n∈Z

fne
i 2π

T
ny

For n 6= 0, applying the barrier functions method we find that the solution vn satisfies

|vn(x)| 6
||f ||C0,α

µ(
2π
T

)2
n2 − µ2

eµx,

and for n = 0, vn(x) is given by

v0(x) =

∫ ∞

x

∫ ∞

t

f0(s)dsdt.

We can conclude that e−µx|v| 6 c||f ||C0,α
µ

and applying Schauder estimates we obtain

||ξ1v||C2,α
µ

6 c||f ||C0,α
µ
.

Obviously we can apply the same argument for E2. We denote by v1, v2 the solutions
corresponding to E1, E2, we define g = ξ1v1+ξ2v2 and we set f̄ = f−∆g. We parametrize
Σ conformally on C∗ and we solve ∆w = f̄ on C ∪ {∞}. Then the function v = w + g
satisfies ∆v = f.

It is possible to show the following result.

Proposition 74. Let φ ∈ C2,α(∂Bs) a function L2-orthogonal to z → 1, then there exists
an operator H such that wφ = Hφ ∈ C2,α

−2 (Σ−Bs)⊕Span{ξ1, ξ2} which solves the following
problem {

∆wφ = 0 on Σ−Bs

wφ = φ on ∂Bs.

and satisfies ‖Hφ‖C2,α
−2 (Σ−Bs)⊕K0

6 c‖φ‖C2,α .

In the following we consider s = s̄ = 1
2
√
ε
. We recall that we have set x1 = 2s.

Let φ(θ) be a C2,α function defined on ∂Bs̄, even and L2 orthogonal to the costant function
and to θ → cos θ and such that

||φ||C2,α(S1) 6 κε (4.33)

and wφ = Hφ the harmonic extension in C2,α
µ (Σ − Bs̄) ⊕ Span{ξ1, ξ2} obtained applying

Proposition 74. Our aim is to find a minimal surface close to Σ − Bs̄ and which is the
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graph of a function whose form is wφ + v. The equation (4.32) can be written in the
following form

∆v = Q(v + wφ) on Σ−Bs̄,

where

Q(v + wφ) =
∇(v + wφ)∇|∇(v + wφ)|2

2(1 + |∇(v + wφ)|2)
.

When v ∈ C2,α
µ (Σ−Bs̄)⊕K0 then ∇v ∈ C1,α

µ (Σ−Bs̄)⊕K0 and Q(v) ∈ C0,α
µ (Σ−Bs̄)⊕K0.

We rephrase the problem as a fixed point problem, that is

v = T (φ, v) (4.34)

where
T (φ, v) = Fµ ◦ Es̄(Q(v + wφ)).

To prove the existence of a solution of (4.34) we need the following result which states
that T is a contracting mapping.

Lemma 75. There exist constants cκ > 0 and εκ > 0, such that

‖T (φ, 0)‖C2,α
µ ⊕K0

6 cκ ε
3
2 (4.35)

and, for all ε ∈ (0, εκ)

‖T (φ, v2)− T (φ, v1)‖C2,α
µ ⊕K0

6
1

2
‖v2 − v1‖C2,α

µ ⊕K0

and
‖T (φ2, v2)− T (φ1, v1)‖C2,α

µ ⊕K0
6 cκ ε ‖φ2 − φ1‖C2,α(S1)

for all v, v1, v2 ∈ C2,α
µ (Σ)⊕K0 whose norm is bounded by 2 cκ ε

3
2 and for all boundary data

φ, φ1, φ2 that are orthogonal to the constant function and to θ → cos θ and satisfy (4.33).

Proof. We use the result of Proposition 74 to obtain the estimate

‖Es̄(Q(wφ))‖C0,α
µ

6 ‖wφ ◦ E1‖2
C0,α

µ/2
(Σ)

+ c‖wφ‖2
K0

6 cε
3
2 .

As for the second estimate, we recall that

T (ϕ, v) := Fµ ◦ Es̄ (Q (wϕ + v)) .

Then
T (ϕ, v2)− T (ϕ, v1) = Fµ ◦ Es̄ (Q (wϕ + v2))− Fµ ◦ Es̄ (Q (wϕ + v1))

and

‖T (ϕ, v2)− T (ϕ, v1)‖C2,α
µ (Σ)⊕K0

6 ‖Es̄ (Q (wϕ + v1)−Q (wϕ + v2)) ‖C0,α
µ (Σ)⊕K0

6
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6 c‖wϕ‖C0,α
µ (Σ)⊕K0

‖v2 − v1‖C2,α
µ (Σ)⊕K0

6 ckε
1
2‖v2 − v1‖C2,α

µ (Σ)⊕K0
.

The previous lemma shows that, provided ε is chosen small enough, the nonlinear mapping
T (φ, ·) is a contraction mapping from the ball of radius 2 cκ ε

3
2 in C2,α

µ (Σ−Bs̄) into itself.
Consequently the equation (4.34) admits a solution v in this ball. The graph over Σ−Bs̄

for the function wφ+v is a minimal surface close to Σ−Bs̄, it has two horizontal ends and
one boundary. This surface is by construction a vertical graph over the annulus B̄2s̄−Bs̄

for some function ŪB that can be expanded as

ŪB(r, θ) = Hφ(r, θ) + ṼB(r, θ)

where ṼB(ε, ϕ) depends nonlinearly on ε and φ. The boundary of the surface corresponds
to r = rε = 1

2
√
ε
. Furthermore the following estimates hold

‖ṼB(ε, ϕ)(rε ·)‖C2,α(B̄2−B1) 6 c ε

and
‖ṼB(ε, φ)(rε ·)− ṼB(ε, φ′)(rε ·)‖C2,α(B̄2−B1) 6 c ε

1
2 ‖φ− φ′‖C2,α(S1) (4.36)

where the constant c > 0 does not depend on ε.

4.8 The existence of minimal graph close to a Scherk

type surface.

In this section we are interested in proving the existence of a family of minimal surfaces
close to a Scherk type surface K defined on Σ − Brε where rε = 1/2

√
ε. We solve the

following equivalent problem. Let Σ̄ = {x + iy ∈ C; y ∈ [−π, π]} the horizontal flat
cylinder whose embedding in R3/T is X(z) = (z, 0), where T = 2πe2 is the period.
Topologically Σ̄ is equivalent to R×S1. We denote by Bs the ball of radius s centered in
the origin. We denote by X the solution of

∆u = 0 in Σ̄−Bs, (4.37)

where δ0 is the Dirac distribution, such that, up to an additive constant, in a neighbour-
hood of the point z = 0 is asymptotic to ε ln r and in {x > xk}, with k enough big, is
asymptotic to a function which is linear in the variable x. We want to show the existence
of a minimal surface which is the graph of the function given by X + w about Σ̄ − Bs.
The equation to consider is

div
∇u√

1 + |∇u|2
= 0 (4.38)
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for u defined on Σ̄−Bs and with boundary data on ∂Bs.
Let φ(θ) be a C2,α function defined on ∂Bs̄, even and L2 orthogonal to the costant function
and to θ → cos θ and such that

||φ||C2,α(S1) 6 κε2 (4.39)

and wφ = Hφ the harmonic extension in C2,α
µ (Σ̄ − Bs̄) ⊕ Span{ξ1, ξ2} obtained applying

Proposition 74. Our aim is to find a minimal surface close to Σ̄ − Bs̄ and which is the
graph of a function whose form is X +wφ + v. The equation (4.38) can be written in the
following form

∆v = Q(X + v + wφ) on Σ̄−Bs̄,

where

Q(X + wφ + v) =
∇(X + wφ + v)∇|∇(X + wφ + v)|2

2(1 + |∇(X + wφ + v)|2)
.

When t ∈ C2,α
µ (Σ̄−Bs̄)⊕K0 then ∇t ∈ C1,α

µ (Σ̄−Bs̄)⊕K0 and Q(t) ∈ C0,α
µ (Σ̄−Bs̄)⊕K0.

We rephrase the problem as a fixed point problem, that is

v = T (φ, v) (4.40)

where
T (φ, v) = Fµ ◦ Es̄(Q(X + wφ + v)).

To prove the existence of a solution of (4.40) we need the following result which states
that T is a contracting mapping.

Lemma 76. There exist constants cκ > 0 and εκ > 0, such that

‖T (φ, 0)‖C2,α
µ ⊕K0

6 cκ ε
3
2 (4.41)

and, for all ε ∈ (0, εκ)

‖T (φ, v2)− T (φ, v1)‖C2,α
µ ⊕K0

6
1

2
‖v2 − v1‖C2,α

µ ⊕K0

and
‖T (φ2, v2)− T (φ1, v1)‖C2,α

µ ⊕K0
6 cκ ε ‖φ2 − φ1‖C2,α(S1)

for all v, v1, v2 ∈ C2,α
µ (Σ)⊕K0 whose norm is bounded by 2 cκ ε

3
2 and for all boundary data

φ, φ1, φ2 that are orthogonal to the constant function and to θ → cos θ and satisfy (4.39).

Proof. We use the result of Proposition 74 to obtain the estimate

‖Es̄(Q(X + wφ))‖C0,α
µ

6 ‖(X + wφ) ◦ E1‖2
C0,α

µ/2
(Σ)

+ c‖(X + wφ)‖2
K0

6 cε
3
2 .

As for the second estimate, we recall that

T (ϕ, v) := Fµ ◦ Es̄ (Q (X + wφ + v)) .

130



Then

T (φ, v2)− T (φ, v1) = Fµ ◦ Es̄ (Q (X + wφ + v2))− Fµ ◦ Es̄ (Q (X + wφ + v1))

and

‖T (φ, v2)− T (ϕ, v1)‖C2,α
µ (Σ)⊕K0

6 ‖Es̄ (Q (X + wφ + v1)−Q (X + wφ + v2)) ‖C0,α
µ (Σ)⊕K0

6

6 c‖X + wφ‖C0,α
µ (Σ)⊕K0

‖v2 − v1‖C2,α
µ (Σ)⊕K0

6 ckε
1
2‖v2 − v1‖C2,α

µ (Σ)⊕K0
.

The previous lemma shows that, provided ε is chosen small enough, the nonlinear mapping
T (φ, ·) is a contraction mapping from the ball of radius 2 cκ ε

3
2 in C2,α

µ (Σ̄−Bs̄) into itself.
Consequently the equation (4.40) admits a solution v in this ball. The graph over Σ̄−Bs̄

for the function X + wφ + v is a minimal surface close to the graph of the function X
about Σ̄−Bs̄, it has a Scherk type end and one boundary. This surface is by construction
a vertical graph over the annulus B̄2s̄−Bs̄ for some function ŪK that can be expanded as

ŪK(r, θ) = ε ln r +Hφ(r, θ) + ṼK(r, θ)

where ṼK(ε, φ) depends nonlinearly on ε and φ. The boundary of the surface corresponds
to r =

√
ε/2. Furthermore the following estimates hold

‖ṼK(ε, φ)(rε ·)‖C2,α(B̄2−B1) 6 c ε

and
‖ṼK(ε, φ)(rε ·)− ṼK(ε, φ′)(rε ·)‖C2,α(B̄2−B1) 6 c ε

1
2 ‖φ− φ′‖C2,α(S1) (4.42)

where the constant c > 0 does not depend on ε.

By the equations written above it is easy to get the solution of our initial problem: that
is finding a Scherk type minimal graph SK about Σ − Brε with Dirichlet condition on
∂Brε . This surface is by construction a vertical graph over the annulus B̄2rε−Brε for some
function UK that can be expanded as

UK(r, θ) = ln r +Hϕ(r, θ) + VK(r, θ)

where VK(ε, ϕ) depends nonlinearly on ε and ϕ. It is important to remark that the norm
of the Dirichlet data satisfies ‖ϕ‖C2,α(S1) 6 κε. The boundary of the surface corresponds
to r = rε = 1

2
√
ε
. Furthermore the following estimates hold

‖VK(ε, ϕ)(rε ·)‖C2,α(B̄2−B1) 6 c ε

and
‖VK(ε, ϕ)(rε ·)− VK(ε, ϕ′)(rε ·)‖C2,α(B̄2−B1) 6 c ε

1
2 ‖ϕ− ϕ′‖C2,α(S1) (4.43)

where the constant c > 0 does not depend on ε.
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4.9 The matching of Cauchy data

In the following we will need a new notation. Given an even function f ∈ C2,α(S1) with
the following Fourier expansion

f(θ) =
∑
n∈N

an cos(nθ),

then we denote with π′′(f) the function∑
n>2

an cos(nθ)

and with π′(f) the function
a0 + a1 cos(θ).

Along this section rε = 1
2
√
ε

and ϕ is a function in π′′C2,α(S1) such that ‖ϕ‖C2,α 6 cε.

In Section 4.7 we have shown the existence of a surface which is a graph on Σ−Brε and is
asymptotic to it. In other words we are able to solve the minimal surface equation, that
we will write for short as follows{

Lpu
0 = QΣ(u0) on Σ−Brε

π′′u0 = ϕ on ∂Brε

where Lp denotes the linearized mean curvature operator about the plane.

So chosen a function ϕ, we can obtain a surface S0, whose parametrization X0,ϕ, in a
neighbourhood of its boundary (a curve defined on ∂Brε), satisfies

X0,ϕ = ϕ+ π′(u0)

∂rX0,ϕ = ∂ru
0

In Section 4.6 we showed how to obtain a surface which is a graph on M̃+
σ,α,0 (or M̃+

σ,0,β)
and is asymptotic to it. We have solved a problem of the form{

Lσu+ = Qσ(u
+) on M̃+

σ,α,0 (M̃+
σ,0,β)

π′′u+ = ϕ− π′′gt on ∂M̃+
σ,α,0 (∂M̃+

σ,0,β)

where Lσ denotes the Lamé operator and gt = O(ε).
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So we can obtain two surfaces S+
α,0 and S+

0,β, whose parametrizations X+
α,ϕ, X

+
β,ϕ satisfy in

a neighbourhood of its boundary

X+
α,ϕ = −(1 + κ) ln(2r) + 2 sin α

2
r cos θ + ϕ+ π′(u+ + gt),

∂rX
+
α,ϕ = −(1 + κ)1

r
+ 2 sin α

2
cos θ + gt,d + ∂ru

+,

X+
β,ϕ = −(1 + κ) ln(2r) + 2 sin β

2
r sin θ + ϕ+ π′(u+ + gt),

∂rX
+
β,ϕ = −(1 + κ)1

r
+ 2 sin β

2
sin θ + gt,d + ∂ru

+,

where gt,d = O(ε). In the following to simplify the notation we will write for short S+ and
X+,ϕ.

Analogously, in Section 4.8 we showed the existence of a surface close to a Scherk type
surface, whose boundary is a curve on ∂Brε . In other words we are able to solve a problem
of the form {

LMu− = Q(u−) on Σ−Brε

π′′u− = ϕ− π′′gb on ∂Brε

where LM denotes the linearized mean curvature operator and gb = O(ε).

So we can obtain a surface S− that has a parametrization X−,ϕ, which in a neighbourhood
of its boundary satisfies

X−,ϕ = − ln(2r) + ϕ+ π′(u− + gb),

∂rX−,ϕ = −1
r

+ gb,d + ∂ru
−

where gb,d = O(ε).

Finally, in Section 4.3 we have obtained the surface Mk(ε/2,Φ), whose boundaries are
curves about ∂Brε . In particular we are able to solve, for Φ = (ϕt, ϕb, ϕm) ∈ (π′′C2,α(S1))3

and ‖ϕi‖C2,α 6 ε the problem{
LMk(ε/2)uC = Q(uC) on MT

k (ε/2)
π′′uC = (ϕt − π′′ft, ϕb − π′′fb, ϕm − π′′fm) on ∂MT

k (ε/2).

The functions ft, fb, fm denote the higher order terms appearing in lemma 53. This result
gives the parametrizations of part of the ends of Mk(ε/2) seen as graphs of appropri-
ate functions over the x3 = 0 plane. ft,d, fb,d, fm,d denote their derivatives. As for the
catenoidal type ends these functions, that are defined on a neighbourhood of ∂Brε , have
the following expressions

Ut(r, θ) = σt + ln(2r) +
ε

2
r cos θ + ft(r, θ), (4.44)
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∂rUt(r, θ) =
1

r
+
ε

2
cos θ + ft,d(r, θ),

Ub(r, θ) = −σb − ln(2r) +
ε

2
r cos θ + fb(r, θ), (4.45)

∂rUb(r, θ) = −1

r
+
ε

2
cos θ + fb,d(r, θ),

where fi = O(ε), fi,d = O(ε3/2), i = t, b. As for the parametrization of the planar end, it
satisfies

Um(r, θ) = fm(r, θ) = O(r−k), (4.46)

∂rUm(r, θ) = fm,d(r, θ) = O(r−k+1),

in a neighbourhood of ∂Brε .

Then we can obtain in particular a minimal graph over the planar end whose parametriza-
tion, Xm,Φ in a neighbourhood of its boundary, satisfies

Xm,Φ = ϕm + π′(uC + fm)

∂rXm,Φ = fm,d + ∂ruC .

Then we can obtain in particular a minimal graph over the top end whose parametrization,
Xt,Φ in a neighbourhood of its boundary, satisfies

Xt,Φ = − ln(2r) + ε
2
r cos θ + ϕt + π′(uC + ft)

∂rXt,Φ = −1
r

+ ε
2
cos θ + ft,d + ∂ruC .

Now we can define

Eε : (π′′C2,α(S1))3 −→ (C2,α(S1))3 × (C1,α(S1))3

Φ = (φt, φb, φm) −→ [(X+,φt , X−,φb
, X0,φm), (∂rX+,φt , ∂rX−,φb

, ∂rX0,φm)]|∂Brε
.

and

Fε : π′′C2,α(S1) −→ C2,α(S1)× C1,α(S1)
Φ = (φt, φb, φm) −→ [(Xt,φt , Xb,φb

, Xm,φm), (∂rXt,φt , ∂rXb,φb
, ∂rXm,φm)]|∂Brε

.

We set Cε := Eε − Fε.

We want to prove that the surfaces S+, S−, S0 and MT
k (ε/2,Φ) can be glued along their

boundaries to obtain a C∞-surface. Firstly we will show that these surface correspond
in a C1 way along the boundaries curves. This is true if it exists Ψ = (ψ1, ψ2, ψ3) such
that Cε(Ψ) = 0. The existence of the appropriates boundary functions is proven in the
following theorem. Finally, to show that the surface is C∞, it is sufficient to apply the
regularity theory.
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Theorem 77. For some ε0 and every 0 < ε < ε0, there exists Ψ = (ψ1, ψ2, ψ3) ∈
[π′′C2,α(S1)]3 which solves Cε(Ψ) = 0.

Proof. We consider the harmonic extensions of ψi, i = 1, 2, 3, on the ends of Mk(ξ, ε),
that is

1. w̄t = χ+Hψ1(sε − s, ·), on the upper end;

2. w̄b = χ−Hψ2(s− sε, ·), on the lower end;

3. w̄m = χp H̃ρε,ψ3(1/r, ·) on the middle end

and its harmonic extensions

1. wt = H̄vε,ψ1 on S+;

2. wb = −H̄−vε,ψ2 on S−;

3. wm = Hψ3 on S0

(see Section 4.3 for the definitions of the cut-off functions). We recall that the operators
H̃, H, H̄ and H have been introduced respectively in Propositions 79, 80, 81 and 74. We
consider the following maps

E0 : [π′′C2,α(S1)]3 −→ C2,α(S1)3 × C1,α(S1)3

Ψ −→ [(wt, wb, wm), (∂rwt, ∂rwb, ∂rwm)]|rε

and
F0 : [π′′C2,α(S1)]3 −→ C2,α(S1)3 × C1,α(S1)3

Ψ −→ [(w̄t, w̄b, w̄m), (∂rw̄t, ∂rw̄b, ∂rw̄m)]|rε .

Now using Fourier expansion of the function, we can see that C0 = E0−F0 has an inverse
which is bounded independently of ε. In particular, the equation C0(Ψ) = 0 has the
unique solution Ψ = (0, 0, 0). Now we consider (Cε − C0)(Ψ), whose expression is(

r cos θ(2b1 − ε/2) + π′(u+ − uC) + π′(gt − ft),

r cos θ(−ξ) + π′(u− − uC) + π′(gb − fb),

π′(u0 − uC) + π′(−fm)
)
,(

∂r(u
+ − wt)− ∂r(uC − w̄t) + gt,d − ft,d

cos θ(−ε/2) + ∂r(u
− − wb)− ∂r(uC − w̄b) + gb,d − fb,d

∂r(u
0 − wm)− ∂r(uC − w̄m)− fm,d

)
.

It is easy to prove that

||(Cε − C0)(Ψ)||C2,α(S1)3×C1,α(S1)3 6 cε.

In order to solve Cε(Ψ) = 0, we find a fixed point for the mapping

Dε(Ψ) := C−1
0 ((Cε − C0)(Ψ)) .
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4.10 Appendix A

Definition 78. Given ` ∈ N, α ∈ (0, 1) and ν ∈ R, the space C`,αν (Bρ0(0)) is defined to

be the space of functions in C`,αloc (Bρ0(0)) for which the following norm is finite

‖ρ−ν w‖C`,α(Bρ0 (0)).

Now we can state the following result.

Proposition 79. There exists an operator

H̃ : C2,α(S1) −→ C2,α
0 (S1 × [ρ̄,+∞)),

such that for each even function ϕ(θ) ∈ C2,α(S1), which is L2-orthogonal to the constant
function, then wϕ = H̃ρ̄,ϕ solves{

4wϕ = 0 on S1 × [ρ̄,+∞)
wϕ = ϕ on S1 × {ρ̄}.

Moreover,
||H̃ρ̄,ϕ||C2,α

−1 (S1×[ρ̄,+∞)) 6 c ||ϕ||C2,α(S1), (4.47)

for some constant c > 0.

Proof. We consider the decomposition of the function ϕ with respect to the basis
{cos(iθ)}, that is

ϕ =
∞∑
i=1

ϕi cos(iθ).

Then the solution wϕ is given by

wϕ(ρ, θ) =
∞∑
i=1

(
ρ̄

ρ

)i
ϕi cos(iθ).

Since ρ̄
ρ

6 1, then
(
ρ̄
ρ

)i
6
(
ρ̄
ρ

)
, we can conclude that |w(r, θ)| 6 cρ−1|ϕ(θ)| and then

||wϕ||C2,α
−1

6 c||ϕ||C2,α .

Calcolo 1

sup
[s0,tε]×S1

e−δs|wΦ|0,α;[s,s+1] 6 sup
[s0,tε]×S1

e−δse−δ(tε−s)|φt|2,α 6

sup
[s0,tε]×S1

e−δtε |φt|2,α 6 ckε
1+δ/2.
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Calcolo 2

sup
s∈[s0,tε]×S1

e−δs|w|20,α;[s,s+1] 6 ‖w‖2
2,α,µ/2 6 c|ϕ|22,α sup

[s0,tε]×S1

e−δs/2e−δ(tε−s)

6 c|ϕ|22,α sup
[s0,tε]×S1

e−δ(tε−s/2) 6 ce−δtεeδs0/2|ϕ|22,α 6 cε−δ/2eδs0/2|ϕ|22,α 6 ckε
2−δ/2.

Now we give the statement of an useful result whose proof is contained in [7].

Proposition 80. There exists an operator

H : C2,α(S1) −→ C2,α
−2 ([0,+∞)× S1),

such that for all ϕ ∈ C2,α(S1), even function and orthogonal to 1 and cos θ, in the L2-sense,
the function w = Hϕ solves{

(∂2
s + ∂2

θ )w = 0 in [0,+∞)× S1

w = ϕ on {0} × S1

Moreover
‖Hϕ‖C2,α

−2
6 c ‖ϕ‖C2,α ,

for some constant c > 0.

Proposition 81. There exists an operator

H̄v0 : C2,α(S1) −→ C2,α
µ (S1 × [v0,+∞)),

µ ∈ (−2,−1), such that for every function ϕ(v) ∈ C2,α(S1), which is L2-orthogonal to
e0,i(u) with i = 0, 1 and even, the function wϕ = H̄v0(ϕ) solves{

∂2
uuwϕ + ∂2

vvwϕ = 0 on S1 × [v0,+∞)
wϕ = ϕ on S1 × {v0}.

Moreover,
||H̄v0(ϕ)||C2,α

µ (S1×[v0,+∞]) 6 c ||ϕ||C2,α(S1), (4.48)

for some constant c > 0.

Proof. We consider the decomposition of the function ϕ with respect to the basis {e0,i(u)},
that is

ϕ =
∞∑
i=2

ϕie0,i(u).

137



Then the solution wϕ is given by

wϕ(u, v) =
∞∑
i=2

e−i(v−v0)ϕie0,i(u).

We recall that µ ∈ (−2,−1) so we have −i 6 µ from which it follows |wϕ|2,α;[v,v+1] 6
eµ(v−v0)|ϕ|2,α and

‖wϕ‖C2,α
µ

= sup
v∈[v0,∞]

e−µv|w|2,α;[v,v+1] 6 sup
v∈[v0,∞]

e−µveµ(v−v0)|ϕ|2,α 6 e−µv0|ϕ|2,α.

4.11 Appendix B

In section 4.5 we introduced the Jacobi operator about the surface M̃σ,α,β. Its expression is
J = −K

T (x(u),y(v))
Lσ. Here we want to verify that the factor −K

T (x(u),y(v))
is bounded. It is well

known that the Gauss curvature has the following expression in terms of the Weierstrass
data g, dh:

K = −16

(
|g|+ 1

|g|

)−4

|dg
g
|2|dh|−2

We recall that dh = µdz√
(z2+λ2)(z2+λ−2)

. Since |z2 +λ2||z2 +λ−2| and T (x, y) = q2 cos2 x(u)+

p2 sin2 y(v) have the same zeroes, that is the pointsD,D′, D′′, D′′′, then −K/T is bounded.

We can give an estimate of the derivatives of K and
√
−K. We can write

√
−K =√

T
√

−K
T
. So it is sufficient to study the derivatives of T.

We recall that

l(x) =
√

1− sin2 σ sin2 x m(y) =
√

1− cos2 σ cos2 y.

From the expression of T, using (4.12) it is easy to get:

∂

∂u

√
T = −sin2 σ sin 2x(u)

2
√
T

l(x(u)),

∂

∂v

√
T =

cos2 σ sin 2y(v)

2
√
T

m(y(v)).

Then ∣∣∣∣ ∂∂u√T
∣∣∣∣ =

sin2 σ| sin 2x(u)|l(u)
2
√

sin2 σ cos2 x(u) + cos2 σ sin2 y(v)
6

sin2 σ| sin 2x(u)|
2 sinσ| cosx(u)|

6 sinσ,
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∣∣∣∣ ∂∂v√T
∣∣∣∣ =

cos2 σ| sin 2y(v)|m(v)

2
√

sin2 σ cos2 x(u) + cos2 σ sin2 y(v)
6

cos2 σ| sin 2y(v)|
2 cosσ| sin y(v)|

6 cosσ.

We can conclude that the derivatives of
√
T (and trivially also the derivatives of T ) are

bounded.

4.12 Appendix C

Proof of proposition 69. In section 4.4.2 we parametrized the surface M̃σ,α,β on the
cylinder S1 × R. We introduced the map z(x, y) : S1 × [0, π[→ C̄ where x, y denote the
sphero-conal coordinates. Let p, q be the real and the imaginary part of z ∈ C̄. If Z
denotes the immersion of the surface in R3, N its normal vector, then it holds that

|Zp|2 = |Zq|2 = Λ, |Np|2 = |Nq|2 = −KΛ,

〈Np, N〉 = 〈Nq, N〉 = 0, 〈Zp, Zq〉 = 0, 〈Np, Nq〉 = 0,

〈Nq, Zq〉 = −〈Np, Zp〉, 〈Nq, Zp〉 = 〈Np, Zq〉,

so
〈Np, Zp〉 = |Np||Zp| cos γ1 =

√
−KΛ cos γ1,

〈Np, Zq〉 = |Np||Zq| cos γ2 =
√
−KΛ cos γ2.

Here γ1 is the angle between the vectors Np and Zp, γ2 is the angle between the vectors
Np and Zq.

The proof of proposition 69 is articulated in some lemmas. We recall that Zf = Z + fN.
We denote by Ef , Ff , Gf the coefficiens of the second fundamental form for Zf . The
following lemma gives the expression of the area energy functional.

Lemma 82.

A(f) :=

∫ √
EfGf − F 2

f dp dq,

with
EfGf − F 2

f = Λ2 + Λ(f 2
p + f 2

q ) + 2KΛ2f 2 + 2f(f 2
q − f 2

p )
√
−KΛ cos γ1

−4ffpfq
√
−KΛ cos γ2 −KΛf 2(f 2

p + f 2
q ) + f 4K2Λ2.
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Proof. The coefficients of the second fundamental form are:

Ef = |∂pZf |2 = |Zp|2 + f 2
p + f 2|Np|2 + 2f〈Np, Zp〉,

Gf = |∂qZf |2 = |Zq|2 + f 2
q + f 2|Nq|2 + 2f〈Nq, Zq〉,

Ff = |∂pZf · ∂qZf | = fpfq + f(〈Zp, Nq〉+ 〈Zq, Np〉).
Then

EfGf = |Zp|2|Zq|2 + f 2
p |Zq|2 + f 2

q |Zp|2 + f 2(|Nq|2|Zp|2 + |Np|2|Zq|2)+
f 2(f 2

p |Nq|2+f 2
q |Np|2)+f 4|Np|2|Nq|2+4f 2(〈NpZp〉)(〈NqZq〉)+2f(f 2

p 〈Nq, Zq〉+f 2
q 〈Np, Zp〉)+

f 2
p f

2
q + 2f(〈Nq, Zq〉|Zp|2 + 〈Np, Zp〉|Zq|2) + 2f 3(〈Nq, Zq〉|Zp|2 + 〈Np, Zp〉|Zq|2)

Since 〈Nq, Zq〉 + 〈Np, Zp〉 = 0 and |Zp|2 = |Zq|2 we can conclude that the last two terms
of the previous expression are zero. Since 〈Nq, Zp〉 = 〈Np, Zq〉 we have

Ff = fpfq + 2f〈Np, Zq〉.

Then
F 2
f = f 2

p f
2
q + 4f 2(〈Np, Zq〉)2 + 4ffpfq〈Np, Zq〉.

So the expression of EfGf − F 2
f is:

|Zp|2|Zq|2 + f 2
p |Zq|2 + f 2

q |Zp|2 + f 2(|Nq|2|Zp|2 + |Np|2|Zq|2)+

f 2(f 2
p |Nq|2+f 2

q |Np|2)+f 4|Np|2|Nq|2+4f 2(〈Np, Zp)(〈Nq, Zq〉)+2f(f 2
p 〈Nq, Zq〉+f 2

q 〈Np, Zp〉)
−4f 2(〈Np, Zq〉)2 − 4ffpfq〈Np, Zq〉.

Ordering the terms we get:

|Zp|2|Zq|2 + f 2
p |Zq|2 + f 2

q |Zp|2 + f 2(|Nq|2|Zp|2 + |Np|2|Zq|2)− 4f 2(〈Np, Zq〉)2

+4f 2(〈Np, Zp〉)(〈Nq, Zq〉) + 2f(f 2
p 〈Nq, Zq〉+ f 2

q 〈Np, Zp〉)− 4ffpfq〈Np, Zq〉+
+f 2(f 2

p |Nq|2 + f 2
q |Np|2) + f 4|Np|2|Nq|2.

The expression of EfGf − F 2
f becomes:

Λ2 + Λ(f 2
p + f 2

q )− 2KΛ2f 2 + 4f 2KΛ2
(
cos2 γ1 + cos2 γ2

)
+

+2f(f 2
q − f 2

p )
√
−KΛ cos γ1 − 4ffpfq

√
−KΛ cos γ2 −KΛf 2(f 2

p + f 2
q ) + f 4K2Λ2.

Using the relations 〈Nq, Zp〉 = 〈Np, Zq〉 and 〈Nq, Zq〉 = −〈Np, Zp〉, it is possible to
understand that the relative positions of these vectors are such that γ2 = π

2
± γ1. So

cos2 γ2 = cos2(π
2
± γ1) = sin2 γ1 and cos2 γ1 + cos2 γ2 = 1. Then we can write:

Λ2 + Λ(f 2
p + f 2

q ) + 2KΛ2f 2 + 2f(f 2
q − f 2

p )
√
−KΛ cos γ1

−4ffpfq
√
−KΛ cos γ2 −KΛf 2(f 2

p + f 2
q ) + f 4K2Λ2.

The next lemma completes the proof of the proposition 69.
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Lemma 83. The surface whose immersion is given by Z + fN, is minimal if and only if
f satisfies

Lσf +Qσ(f, fu, fv, fuu, fuv, fvv) = 0.

Proof. The surface parameterized by Zf = Z + fN is minimal if and only the first
variation of A(f) is 0. That is

2DA|f (g) =

∫
1√

(EfGf − F 2
f )
|f=0

Df (EfGf − F 2
f ) (g) dp dq.

Thanks to the previous lemma it holds that

1√
(EfGf − F 2

f )
|f=0

Df (EfGf − F 2
f )(g) =

1

Λ

(
2Λ(fpgp + fqgq) + 4KΛ2fg+

+2
√
−KΛ cos γ1

[
2ffqgq + gf2

q − 2ffpgp − gf2
p

]
+

−4
√
−KΛ cos γ2 [ffqgp + fgqfp + gfpfq] +

−2KΛ
[
fgf 2

p + fpgpf
2 + fgf 2

q + fqgqf
2
]
+ 4K2Λ2f 3g

)
.

Reordering the summands, we have:

1√
(EfGf − F 2

f )
|f=0

Df (EfGf − F 2
f )(g) = 2 (fpgp + fqgq + 2KΛfg+

+
√
−K cos γ1

[
2f(fqgq − fpgp) + g(f 2

q − f 2
p )
]
+

−2
√
−K cos γ2 [f(fqgp + gqfp) + gfpfq] +

−K
[
fg(f 2

p + f 2
q ) + f 2(fpgp + fqgq)

]
+ 2K2Λf 3g

)
.

In the next computation we can skip the factor 2 in front of the last expression.

fpgp + fqgq + 2KΛfg +Q1(f, fp, fq)g −Q2(f, fp, fq)gp −Q3(f, fp, fq)gq = 0,

where

Q1(f, fp, fq) = −(f 2
p − f 2

q )
√
−K cos γ1 − 2fpfq

√
−K cos γ2 −Kf(f 2

p + f 2
q ) + 2K2Λf 3,

Q2(f, fp, fq) = 2ffp
√
−K cos γ1 + 2ffq

√
−K cos γ2 +Kf 2fp,

Q3(f, fp, fq) = −2ffq
√
−K cos γ1 + 2ffp

√
−K cos γ2 +Kf 2fq.
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An integration by parts and a change of sign give us the equation:

(fpp + fqq − 2KΛf −Q1(f, fp, fq)+

+P2(f, fp, fq, fpp, fpq, fqq) + P3(f, fp, fq, fpp, fpq, fqq)) g = 0,

where
P2(f, fp, fq, fpp, fpq, fqq) = ∂pQ2(f, fp, fq)

and
P3(f, fp, fq, fpp, fpq, fqq) = ∂qQ3(f, fp, fq).

That is

P2(f, fp, fq, fpp, fpq, fqq) = 2(f 2
p + ffpp)

√
−K cos γ1 + 2(fpfq + ffpq)

√
−K cos γ2+

+K(2ff 2
p + f 2fpp) + 2f(fp(

√
−K cos γ1)p + fq(

√
−K cos γ2)p) + f 2fpKp

and

P3(f, fp, fq, fpp, fpq, fqq) = −2(f 2
q + ffqq)

√
−K cos γ1 + 2(fpfq + ffpq)

√
−K cos γ2+

+K(2ff 2
q + f 2fqq) + 2f(−fq(

√
−K cos γ1)q + fp(

√
−K cos γ2)q) + f 2fqKq.

Now we change the variables passing from the variables (p, q) to the (u, v) variables. Then
we want to understand how the minimal surfaces equation changes. We recall that p and q
are the real and imaginary part of the variable z, the same that appears in the Weierstrass
representation of the surface. It is known that the metric ḡ induced on a surface whose
immersion Z is given by the Weierstrass representation on a domain of the complex z-
plane, can be expressed in terms of the metric ds̄2 = dp2 +dq2, by ḡ = Λ(dp2 +dq2), where
Λ = |Zp|2 = |Zq|2. It is well known that in this case then there exists a simple relation
between the Laplace-Beltrami operators written with respect to the metrics ds̄2 and ḡ.
As a fact they differ for a conformal factor:

∆ds̄2 =
1

Λ
∆ḡ.

In section 69 we observed that the conformal factor related to the change of coordinates
(x, y) → (u, v) is −K/T. So the conformal factor due to the change of coordinates (p, q) →
(u, v) is obtained by multiplication of the conformal factors described above. Summarizing
it holds that

fpp + fqq =
−KΛ

T
(fuu + fvv).

So we can write

−KΛ

T
(fuu + fvv) + 2 (−KΛ) f +R1 +R2 +R3 = 0,
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where

R1(f, fu, fv) = −−KΛ

T

[
−(f 2

u − f 2
v )
√
−K cos γ1 − 2fufv

√
−K cos γ2 −Kf(f 2

u + f 2
v )
]
−2K2Λf 3

=
−KΛ

T

[
(f 2
u − f 2

v )
√
−K cos γ1 + 2fufv

√
−K cos γ2 +Kf(f 2

u + f 2
v )− 2KTf3

]
=

−KΛ

T
P̄1(f, fu, fv),

R2(f, fu, fv, fuu, fuv, fvv) =
−KΛ

T
P2(f, fu, fv, fuu, fuv, fvv)

and

R3(f, fu, fv, fuu, fuv, fvv) =
−KΛ

T
P3(f, fu, fv, fuu, fuv, fvv).

We can write

−KΛ

T

[
fuu + fvv + 2T (u, v)f + P̄1(f) + P2(f) + P3(f)

]
= 0.

We can recognize the Lamé operator,

Lσf = fuu + fvv + 2(sin2 σ cos2 x(u) + cos2 σ sin2 y(v))f,

then, if we set Qσ = P̄1(f) + P2(f) + P3(f), the equation can be written

Lσf +Qσ(f) = 0.

The estimate about Qσ is an easy cnsequence of the fact that all its coefficients are
bounded. That completes the proof.
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