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Abstract. — We prove various inequalities measuring how far from an isom-
etry a local map from a manifold of high curvature to a manifold of low
curvature must be. We consider the cases of volume-preserving, conformal
and quasi-conformal maps. The proofs relate to a conjectural isoperimetric
inequality for manifolds whose curvature is bounded above, and to a higher-
dimensional generalization of the Schwarz-Ahlfors lemma.

1. Introduction

One of the basic facts of Riemannian geometry is that curvatures are isome-
try invariants: this explains for example why one cannot design a perfect map
of a region on the earth. In this article, we shall be interested in quantifying
this fact: how far from being an isometry a map from a region of a manifold
to another manifold must be, when the source and target manifolds satisfy
incompatible curvature bounds?

When the source manifold is the round 2-sphere and the target manifold is
the Euclidean plane, this question is a cartography problem: a round sphere
is a relatively good approximation of the shape of the Earth. It has been
considered by Milnor [Mil69] who described the best map when the source
region is a spherical cap. Surprisingly, it seems like no other cases of the
general question above have been considered.

1.1. Distortion and anisometry. — To fill this gap, one has first to ask
how we should measure the isometric default of a map ϕ : D ⊂M → N from
a domain in a manifold M to a manifold N , assumed to be a diffeomorphism
on its image. Milnor uses the distortion, defined as follows. Let σ1 = σ1(ϕ)
and σ2 = σ2(ϕ) be the Lipschitz constants of ϕ, i.e.

σ1d(x, y) 6 d(ϕ(x), ϕ(y)) 6 σ2d(x, y) ∀x, y ∈ D
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and σ1, σ2 are respectively the greatest and least numbers satisfying such an
inequality. Then the distortion of ϕ is the number dist(ϕ) = log(σ2/σ1).

However, when the target manifold is not Euclidean, the distortion is ill-
suited: it is zero for maps that are not isometries, but mere homotheties.
More disturbing is the case when M is positively curved and N is negatively
curved: to minimize distortion, one is inclined to take ϕ with a very small
image, so that the curvature of N barely matters. To make this case more
interesting, we propose the following definition of anisometry :

aniso(ϕ) = | log σ1|+ | log σ2|.

This quantity generalizes distortion in the sense that when N = Rn,

inf
ϕ

aniso(ϕ) = inf
ϕ

dist(ϕ);

indeed one can in this case rescale the target to ensure σ1 6 1 6 σ2.

1.2. Azimuthal maps. — To describe our results we will need to introduce
a specific family of maps between model spaces. All considered manifolds will
be of the same fixed dimension n; we set Xκ for the simply connected manifold
of constant curvature κ (thus a sphere, the Euclidean space or a hyperbolic
space).

Given a point x ∈ Xκ, we have polar coordinates (t, u) (t a positive real, u
a unit tangent vector at x) given by the exponential map:

y = expx(tu)

where t is less than the conjugate radius and y may be any point but the
antipodal point to x (when κ > 0).

Definition. — An azimuthal map is a map ϕ : B ⊂ Xρ → Xκ where B is a
geodesic ball, which reads in polar coordinates centered at x and ϕ(x) as

ϕ(t, u) = (R(t), L(u))

where L is a linear isometry from TxXρ to Tϕ(x)Xκ and R is a differentiable
function. In other words, we have

ϕ(expx(tu)) = expϕ(x)(R(t)L(u)).

The function R is then called the distance function of ϕ.

As we consider only model spaces, L is irrelevant and the function R defines
a unique azimuthal map up to isometries. The azimuthal map associated to
each of the following distance functions bears a special name:

– R(t) = t: equidistant azimuthal map,
– R(t) = σt with σ ∈ (0, 1): σ-contracting azimuthal map
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Moreover, given ρ and κ there exists exactly one family of conformal azimuthal
maps and a unique volume-preserving map B ⊂ Xρ → Xκ (see below for
details).

1.3. Description of the results. — We shall not state our results in the
greatest generality in this introduction, please see below for details.

Our main results have the following form: we assume M satisfies some
kind of lower curvature bound associated with a parameter ρ, that N satisfies
some kind of upper curvature bound (or more general geometric assumption)
associated with a parameter κ < ρ, and that ϕ is a map (possibly satisfying
extra assumptions) from a geodesic ball of center x and radius α in M to N .

Our methods provide half-local results, and we shall always assume that α
is bounded above by some number. This bound shall be explicit most of the
time and depends only on synthetic geometrical properties of M and N . In
some cases (e.g. when the target is a Hadamard manifold) this bound will be
completely harmless.

We then conclude that there is an azimuthal map ϕ̄ : Bρ(α) → Xκ (where
Bρ(α) is any geodesic closed ball of radius α in Xρ) such that

aniso(ϕ) > aniso(ϕ̄)

with equality if and only if ϕ is conjugated to ϕ̄ by isometries.
For simplicity, we shall write RicM > ρ to mean that the Ricci tensor and

the metric tensor of M satisfy the usual bound

Ricx(u, u) > ρ · (n− 1)gx(u, u) ∀x, u.

Similarly, KN 6 κ means that the sectional curvature of N is not greater than
κ at any tangent 2-plane.

We shall always assume implicitly thatM (or more generally BM (x, α)) and
N are complete; recall that they have the same dimension n.

Theorem 1.1 (General maps). — Assume RicM > ρ, KN 6 κ where ρ >
κ, and α 6 A1(M,N) where A1(M,N) is an explicit positive constant.

Then any map ϕ : B(x, α) ⊂M → N satisfies

aniso(ϕ) > aniso(ϕ̄)

where ϕ̄ is:
– the equidistant azimuthal map Bρ(α)→ Xκ when κ > 0,
– the σ-contracting azimuthal map Bρ(α) → Xκ when κ < 0, where σ is

such that the boundaries of Bρ(α) and Bκ(σα) have equal volume.
Moreover in case of equality ϕ and ϕ̄ are conjugated by isometries (in partic-
ular, the source and image of ϕ have constant curvature ρ and κ).
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One can write aniso(ϕ̄) explicitly, see below. This theorem is proved using a
rather direct generalization of Milnor’s argument which considers the constant
curvature, 2-dimensional case.

Remark. — 1. It is interesting to see that the sign of κ has such an influ-
ence on the optimal map: when κ > 0 the best map is isometric along
rays issued from the center, and increases distances in the orthogonal
directions, while when κ < 0 the best map induces an isometry on the
boundaries but contracts the radial rays. Of course, when κ = 0 all σ-
contracting azimuthal maps are equivalent up to a homothety, and as
long as σ1 6 1 6 σ2 their anisometries are equal.

2. The hypothesis on N can be relaxed thanks to the generalized Günther
inequality proved with Greg Kuperberg [KK12]. In particular, KN 6 κ
can be replaced by mixed curvatures bounds like

KN 6 ρ and RicN 6 (n− 1)κ− nρ

see Section 2.3 and Theorem 3.2 for the most general hypothesis and the
above reference for various classical assumptions that imply this general
hypothesis.

3. The precise expression of A1 is given page 13. In many cases one can
adapt the result and its proof to larger α but we favored clarity over
exhaustivity. For example, what happens for α close to π√

ρ is that the
boundary of Bρ(α) becomes very small, and one can improve the equidis-
tant azimuthal map by making it dilating along the rays.

We shall then consider maps satisfying special conditions. Two prominent
examples are volume-preserving maps and conformal maps. In cartography,
both make sense: area is obviously a relevant geographic information, and for
many historical uses (e.g. navigation) measurement of angles on the map have
been needed. Moreover, asking a map to be conformal means that zooming
into the map will decrease arbitrarily the distortion of a smaller and smaller
region. We therefore ask whether in general, asking ϕ to be volume-preserving
or conformal increases the anisotropy lower bound by much.

In the theorems below, we shall make the assumption that N satisfies the
best isoperimetric inequality holding on Xκ, meaning that for all smooth Ω ⊂
N ,

Vol(∂Ω) > Iκ(Vol(Ω))

where Iκ is the isoperimetric profile of Xκ defined by

Iκ(V ) = inf
Ω⊂Xκ

{Vol(∂Ω) | Vol(Ω) = V }.

This assumption can be replaced by KN 6 κ in some cases.
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One says that n is a Hadamard manifold if KN 6 0 and N is simply con-
nected; it is conjectured that all Hadamard manifolds satisfy the isoperimet-
ric inequality of Xκ whenever KN 6 κ, but this conjecture has only been
proved in a handful of cases: when n = 2 [Wei26, Aub76], n = 3 [Kle92],
(n = 4, κ = 0) [Cro84] and (n = 4, κ < 0) for small enough domains [KK13].
Moreover, the similar conjecture when κ > 0 holds in dimension n = 4 for
uniquely geodesic domains [KK13]. When n = 4 the curvature assumption
can generally be relaxed as for Theorem 1.1, see Section 2.3 below and [KK13].

This means that in most dimensions, our results below hold under a curva-
ture assumption only conditionally to a strong conjecture; but note that even
in the case when N = Xκ these results are new.

Theorem 1.2 (Volume-preserving maps). — Assume RicM > ρ, N sat-
isfies the best isoperimetric inequality holding on Xκ for some κ < ρ, and
α 6 inj(x) for a given x ∈M .

Then any volume-preserving map ϕ : B(x, α) ⊂M → N satisfies

aniso(ϕ) > aniso(ϕ̄)

where ϕ̄ is the unique volume-preserving azimuthal map Bρ(α)→ Xκ.
Assume further that the only domains in N satisfying the equality case in

the isoperimetric inequality are balls isometric to geodesic balls in Xκ. Then
whenever aniso(ϕ) = aniso(ϕ̄), the domain of ϕ has constant curvature ρ and
its range is isometric to a constant curvature ball Bκ(R(α)). However, there
are uncountably many different maps achieving equality.

Remark. — Here we have put little restriction on α (we only restrict it below
the injectivity radius at x for simplicity), but in fact stronger restriction can
appear when one wants to apply the result. Indeed, if one is only able to show
that small enough domains of N satisfy the desired isoperimetric inequality,
then one can still use Theorem 1.2 for small enough α: then a map B(x, α)→
N either has a small image, or a large σ2.

Theorem 1.3 (Conformal maps). — Assume RicM > ρ, N satisfies the
best isoperimetric inequality holding on Xκ for some κ < ρ, and α 6 A3(M,N)
where A3(M,N) is an explicit positive constant.

Then any conformal map ϕ : B(x, α) ⊂M → N satisfies

aniso(ϕ) > aniso(ϕ̄)

where ϕ̄ is:
– the conformal azimuthal map Bρ(α)→ Xκ with R′(0) = 1 when κ > 0,
– the conformal azimuthal map Bρ(α) → Xκ that induces an isometry on

the boundaries when κ < 0.
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Assume further that the only domains in N satisfying the equality case in
the isoperimetric inequality are balls isometric to geodesic balls in Xκ. Then
whenever aniso(ϕ) = aniso(ϕ̄), the maps ϕ and ϕ̄ are conjugated by isometries
(in particular, the domain and range of ϕ have constant curvature ρ and κ),
except that when κ = 0 one can compose ϕ̄ with any homothety such that we
still have σ1 6 1 6 σ2, and still get an optimal map.

Remark. — We shall see that A3 can in fact be chosen independently of N
(but depending on κ). Moreover, when κ 6 0 we can take A3 = inj(x).

Conformal maps are rare in higher dimension, so we also tackle quasi-
conformal maps, whose angular distortion is controlled. Recall that a smooth
map ϕ is said to be Q-quasiconformal if at each point x in its domain, we
have dist(Dϕx) 6 Q, i.e. its infinitesimal distortion is uniformly bounded;
conformal maps are precisely the 1-quasiconformal maps.

Theorem 1.4. — Assume RicM > ρ, N satisfies the best isoperimetric in-
equality holding on Xκ for some κ < ρ, let Q be a number greater than 1 and
assume α 6 A4(M,N,Q) where A4(M,N,Q) is some positive constant.

Then any Q-quasiconformal map ϕ : B(x, α) ⊂M → N satisfies

aniso(ϕ) > aniso(ϕ̄)

where ϕ̄ is an explicit Q-conformal azimuthal map, which is C1 but not C2.
Assume further that the only domains in N satisfying the equality case in

the isoperimetric inequality are balls isometric to geodesic balls in Xκ. Then
whenever aniso(ϕ) = aniso(ϕ̄), the maps ϕ and ϕ̄ are conjugated by isometries
(in particular, the domain and range of ϕ have constant curvature ρ and κ),
except that when κ = 0 one can compose ϕ̄ with any homothety such that we
still have σ1 6 1 6 σ2, and still get an optimal map.

Remark. — Here the constant A4 is less explicit than in the other result, but
it is still perfectly constructive. Moreover we shall see that when κ 6 0, we
can take A4 = inj(x).

It is also interesting to compare what we obtain from the above inequalities
when α is small.

Corollary 1.5. — If RicM > ρ and KN 6 κ, any map ϕ : B(x, α) ⊂M → N
satisfies

aniso(ϕ) >
1

6
(ρ− κ)α2 + o(α2).

If ϕ is conformal, then

aniso(ϕ) >
1

4
(ρ− κ)α2 + o(α2).
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If ϕ is volume-preserving, then

aniso(ϕ) >
n

2(n+ 2)
(ρ− κ)α2 + o(α2).

Remark. — 1. In this Corollary, one can easily replace the curvature as-
sumptions by scalar curvature bounds, since only small balls are consid-
ered. Note that the isoperimetric inequality needed in Theorems 1.2 and
1.3 has been proved to be true for small enough domains under the cur-
vature assumption KN < κ (or even KN 6 κ in some cases) by Johnson
and Morgan [MJ00] and under ScalN < κ by Druet [Dru02]. To ob-
tain a Taylor series, these strict assumptions are sufficient (but then the
remainder term cannot be made explicit).

2. In all our results, one considers maps from the higher-curvature manifold
to the lower-curvature one. These results imply similar estimates for
maps ϕ : B(y, α) ⊂ N → M , because either such a map contracts some
distances by much (hence has large anisometry), or its image contains a
ball of radius bounded below, allowing us to apply the results above to
ϕ−1. However, the estimates one gets that way are certainly not sharp,
and we do not know whether ϕ̄−1 is optimal in any of the situation treated
above; it seems that even the case of a map from a ball in the plane to
a round 2-sphere is open. One might want to perturb the equidistant
azimuthal map to enlarge the boundary of its image, so as to limit the
distortion along the boundary. It is not clear whether this can be achieved
without increasing distortion too much anywhere else.

Organization of the paper. — Next section gives notations and some back-
ground. We prove our main results in the following three sections (gen-
eral maps, then volume-preserving maps, then conformal and quasi-conformal
maps). The technique we use in the conformal and quasiconformal cases turns
out to have been used by Gromov to generalize the Schwarz-Pick-Ahlfors
lemma. In the final Section 6, we shall state and prove a result of this fla-
vor that seems not to be in the literature (but certainly is in its topological
closure).

Acknowledgments. — It is a pleasure to thank Charles Frances, Étienne Ghys
and Pierre Pansu for interesting discussions related to the content of the present
article.

2. Toolbox

2.1. Notations. — Let Xκ be the model space of curvature κ and dimension
n, i.e. a round sphere when κ > 0, the Euclidean space when κ = 0, and a
hyperbolic space when κ < 0.



8 BENOîT R. KLOECKNER

We denote by BM (x, t) (respectively SM (x, t)) the geodesic closed ball (re-
spectively sphere) of radius t and center x in M . When there is no ambiguity,
we let B(t) = BM (x, t) and S(t) = SM (x, t). To simplify notation, we set
Bκ(t) (respectively Sκ(t)) for any geodesic closed ball (respectively sphere) of
radius t in Xκ.

The volumes of manifolds, submanifolds and domains shall be denoted either
by Vol(·) or | · |. We let ωn−1 = |S0(1)| be the (n − 1)-dimensional volume of
the unit sphere in X0 = Rn.

When there is no ambiguity, σi shall denote σi(ϕ).
When x is a point in a manifold and u a tangent vector at x, we let γu(t) =

expx(tu) be the time t of the geodesic issued from x with velocity u.
We shall denote by T 1M the unit tangent bundle of a Riemannian manifold

M , by inj(x) the injectivity radius at x ∈ M and by inj(M) the injectivity
radius of M .

2.2. Geometry of model spaces. — The model spaces Xκ are well under-
stood, let us recall a few facts about them.

2.2.1. Trigonometric functions. — It will be convenient to use the functions
sinκ defined by

sinκ(a) =


sin(
√
κa)√
κ

if κ > 0

a if κ = 0
sinh(

√
−κa)√
−κ if κ < 0

We then set

cosκ(a) := sin′κ(a) =


cos(
√
κa) if κ > 0

1 if κ = 0

cosh(
√
−κa) if κ < 0

and

tanκ(a) :=
sinκ(a)

cosκ(a)
=


tan(
√
κa)√
κ

if κ > 0

a if κ = 0
tanh(

√
−κa)√
−κ if κ < 0

We shall also use occasionally

arctanκ(x) := tan−1
κ (x) =


arctan(

√
κx)√

κ
if κ > 0

x if κ = 0
arctanh(

√
−κx)√

−κ if κ < 0

and we have the derivatives tan′κ = 1 + κ tan2
κ and arctan′κ(x) = 1

1+κx2
.
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A trigonometric formula that will prove useful is

sinκ(2 arctanκ x) =
2x

1 + κx2
.

We shall need the following Taylor series:

sinκ(t) = t− κ

6
t3 +

κ2

24
t5 +O(t5)

cosκ(t) = 1− κ

2
t2 +

κ2

24
t4 +O(t6)

tanκ(t) = t+
κ

3
t3 +

2κ2

15
t5 +O(t5)

arctanκ(x) = x− κ

3
x3 +

κ2

5
x5 + 0(x7).

2.2.2. Volumes. — Let x be a point on Xκ, t be a positive real and u be a
unit tangent vector at x; then setting y = expx(tu) we can express the volume
measure dy on Xk by the formula

dy = sinn−1
κ (t) dt du

where dt is Lebesgue measure on [0,+∞) and du is the volume measure on
the unit tangent sphere T 1

xXκ naturally identified with the unit round sphere
Sn−1.

In this volume formula, one can decompose the density into factors 1 (in
the direction of the ray from the pole) and sinκ(t) (in the n − 1 orthogonal
directions). This shows that up to isometry there exists exactly one azimuthal,
conformal map ϕ from the ball Bρ(x, α) to Xκ such that Dϕx is a homothety
of ratio σ (i.e. R′(0) = σ), whose distance function is driven by the following
differential equation:

R′(t) =
sinκ(R(t))

sinρ(t)
.

Moreover the (n−1)-dimensional volume of a geodesic sphere Sκ(t) of radius
t is

Aκ(t) := |Sκ(t)| = ωn−1 sinn−1
κ (t)

where ωn−1 is the volume of Sn−1; when κ > 0 we only consider t below the
conjugate radius π/

√
κ. We also name the volume of geodesic balls of Xκ:

Vκ(t) := |Bκ(t)| = ωn−1

∫ t

0
sinn−1

κ (s) ds.

Given ρ and κ, there is exactly one volume-preserving azimuthal map, de-
fined by the distance function

R(t) = V −1
κ (Vρ(t)).
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That R is as above is clearly necessary for an azimuthal map to be volume-
preserving, but the local volume formula shows that it is also sufficient.

It is known that in Xκ the least perimeter volume of given domains are balls,
so that the isoperimetric profile of Xκ is given by

Iκ(Vκ(t)) = Aκ(t).

Note that the lesser is κ, the greater is Iκ and the more stringent is the corre-
sponding isoperimetric inequality.

Using the above Taylor series, we get:

Aκ(t) = ωn−1t
n−1

(
1− (n− 1)κ

6
t2 +O(t4)

)
Vκ(t) =

ωn−1

n
tn
(

1− n(n− 1)κ

6(n+ 2)
t2 +O(t4)

)
Iκ(v) = n

n−1
n ω

1
n
n−1v

n−1
n − (n− 1)κ

2(n+ 2)
· n

n+1
n

ω
1
n
n−1

v
n+1
n +O(v

n+3
n ).

2.3. Candle functions and comparison. — To study anisometry of maps
under curvature bounds of the domain and range, we will need some tools of
comparison geometry, relating the geometry of M and N to the geometry of
Xρ and Xκ. We will notably rely on Bishop and Günther’s inequality, which
in their common phrasing compare volume of balls. It will be useful to discuss
their more general form, which is about comparing Jacobians of exponential
maps.

Given a point x ∈ M , a vector u ∈ T 1
xM and a real number t, let y =

expx(tu) and define the candle function jx(tu) as a normalized Jacobian of the
exponential map by

dy = jx(tu) dt du

where dy denotes the Riemannian volume and du is the spherical measure on
T 1
xM .
In the case of Xκ, this function does not depend on x nor on u and is equal

to sinn−1
κ (t).

Definition 2.1. — The manifold M is said to satisfy the candle condition
Candle(κ, `) if for all x, u and all t 6 ` it holds

jx(tu) > sinn−1
κ (t).

The manifoldM is said to satisfy the logarithmic candle derivative condition
LCD(κ, `) if for all x, u and all t 6 ` it holds

(1)
j′(t)

j(t)
>
s′(t)

s(t)
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where j(t) := jx(tu) and s(t) := sinn−1
κ (t).

The name “candle condition” is motivated by the fact that jx describes the
fade of the light of a candle (or of the gravitational fields generated by a
punctual mass) in M .

By integration, Candle(κ, `) implies that spheres and ball of radius at most
` have volume at least as large as the volume of the spheres and balls of equal
radius in Xκ.

The candle condition is an integrated version of the logarithmic candle
derivative condition, which itself follows for ` = inj(N) from the sectional cur-
vature condition K 6 κ: this is known as Günther’s theorem, see [GHL90].
With Greg Kuperberg, we proved in [KK12] that it also follows from a weaker
curvature bound, involving the “root-Ricci curvature”. In particular, we proved
that manifolds satisfying a relaxed bound on K and a suitably strengthened
bound on Ric still satisfy a LCD condition, and therefore a Candle one.

The strong form of Bishop’s Theorem is that the reversed inequality in (1)
holds under the curvature lower bound Ric > κ (for ` the conjugate time of
Xκ). The corresponding comparison on the volumes of spheres and balls follow
and are also referred to as Bishop’s inequality.

We shall establish Theorem 1.1 using the comparison of spheres; the assump-
tion KN 6 κ can therefore be relaxed to Candle(κ, `) where ` can be taken to
be e.g. ∞ when N is a Hadamard manifold or chosen suitably otherwise, see
the proof below.

2.4. Volume of ellipsoids and hyperplanes. — A couple of our argu-
ments will rely on a simple and classical lemma, which we state and prove for
the sake of completeness.

Let q be a scalar product in Euclidean space of dimension n, endowed with
the standard inner product 〈·, ·〉. We shall denote by σ1(q) and σ2(q) the
largest, respectively smallest numbers such that

σ1(q)〈u, u〉 6 q(u, u) 6 σ2(q)〈u, u〉 ∀u ∈ Rn

and say that q is at most Q-distorted if σ2/σ1 6 Q. We shall also denote by
|q| the determinant of q, that is the ratio of the volume of its unit ball to the
volume of Euclidean unit ball (both volumes computed with respect to the
Lebesgue measure associated to 〈·, ·〉).

Lemma 2.2. — Let q0 be the restriction of q to any hyperplane. Then we
have

|q| > |q0|σ1(q)

and
|q| > 1

Q
|q0|

n
n−1 .
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There is equality in this second inequality if and only if q has eigenvalues λ
and Qλ, with respective multiplicity 1 and n − 1, and the hyperplane defining
q0 is the Qλ eigenspace of q.

Proof. — Let λ1 > . . . > λn be the eigenvalues of q and µ1 > . . . µn−1 be the
eigenvalues of q0. In particular, λn = σ1(q). Then Rayleigh quotients show
that µi 6 λi for all i < n. It follows

|q| = λ1λ2 . . . λn

> |q0|λn = |q0|σ1(q)

But by the distortion bound, we have

Qσ1 > λ1 > . . . > λn > σ1

so that (Qσ1)n−1 > |q0| and

σ1 >
|q0|

1
n−1

Q

and the desired inequality follows. The equality case is straightforward.

3. General maps

Assume that RicM > ρ and that N satisfies Candle(κ, `0) for some `0 (on
which we shall put some restriction later on).

Let ϕ : BM (x, α)→ N be a diffeomorphism on its image, where α < inj(x),
the injectivity radius of M at x.

In what follows, we shall assume bounds involving 1/
√
κ: our convention is

that this number is +∞ whenever κ 6 0.

Lemma 3.1. — If σ2(ϕ)α 6 `0 6 π
2
√
κ
, we have

σ2(ϕ) >
sinκ(σ1(ϕ)α)

sinρ(α)
.

The proof is a mere generalization of Milnor’s argument in [Mil69].

Proof. — Denote by S(α) the geodesic sphere of center x and radius α. Bishop’s
inequality ensures that |S(α)| > ωn−1 sinn−1

ρ (α). On the other hand, ϕ(S(α))
encloses the ball of N of radius σ1α centered at y = ϕ(x). Given a unit vec-
tor u ∈ TyN , let `(u) be the first time at which γu hits ϕ(S(α)), and β(u)
be the angle between γ̇u(`(u)) and the outward normal to ϕ(S(α)). We have
`(u) > σ1α and obviously cos(β(u)) 6 1. Moreover when κ > 0, we have

`(u) 6 σ2α 6
π

2
√
κ

so that the comparison candle function sinn−1
κ is increasing on [0, `(u)].
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Then, letting j be the candle function of N at y and du be the usual measure
on the unit Riemannian sphere, we get

|ϕ(S(α))| >
∫
T 1
yN

ju(`(u))

cosβ(u)
du

>
∫
T 1
yN

sinn−1
κ (`(u)) du

> ωn−1 sinn−1
κ (σ1α).

There is at least one point on S(α) at which the Jacobian of the restriction
of ϕ to S(α) is at least

|ϕ(S(α))|
|S(α)|

>
sinn−1

κ (σ1(ϕ)α)

sinn−1
ρ (α)

and the lemma follows.

Let us now define the α-bound A1.

Definition. — Let A1 = A1(M,N) be the greatest number such that for all
α 6 A1 we have α 6 inj(M), if κ > 0:

(2) α
sinρ(α)

sinκ(α)
6 min

(
inj(N),

π

2
√
κ

)
and if κ 6 0

(3)
α2

sin−1
κ ◦ sinρ(α)

6 inj(N).

Remark. — 1. A1 depends onM andN only through their curvature/candle
bounds ρ and κ and their injectivity radii,

2. if we do not insist on a uniform bound over possible centers, we can
replace inj(M) by inj(x),

3. if N is a Hadamard manifold, then A1 = inj(M) (or inj(x)),
4. if inj(M) and inj(N) are large enough, when κ > 0 we have A1 > π

2
√
ρ

and A1 → π√
ρ when κ→ 0,

5. in some cases (e.g. when one can apply Klingenberg’s Theorems, see
[CE75] Theorems 5.9 and 5.10), the curvature bound on N is sufficient
to get an estimate on inj(N), and therefore to get a bound A′1 that does
not depend on the injectivity radius of the range.

Theorem 3.2. — Assume RicM > ρ, N satisfies Candle(κ, inj(N)) for some
κ < ρ (e.g. KN 6 κ) and α 6 A1(M,N) defined above. Let ϕ : BM (x, α)→ N
be any smooth map.
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If κ > 0 then

aniso(ϕ) > log
sinκ(α)

sinρ(α)

and there is equality if and only if ϕ is conjugated via isometries to the equidis-
tant azimuthal map from Bρ(α) to Bκ(α) (in particular, BM (x, α) and its
image must have constant curvatures ρ and κ).

If κ < 0 then, letting σ0 = σ0(κ, ρ, α) be the number in (0, 1) such that
sinκ(σ0α) = sinρ(α), we have

aniso(ϕ) > log
1

σ0

and there is equality if and only if ϕ is the σ0-contracting azimuthal map from
Bρ(α) to Bκ(σ0α) (in particular, BM (x, α) and its image must have constant
curvatures ρ and κ).

Notice that σ0 is the dilation coefficient that makes the volumes of the
spheres Sκ(σ0α) and Sρ(α) coincide; it makes the σ0-contracting azimuthal
map a non-dilating map, i.e. σ2(ϕ̄) = 1 when κ < 0.

Proof. — We can assume σ2α is small enough to apply Lemma 3.1, otherwise
the way we designed A1 ensures that σ2 is so large that aniso(ϕ) is a least the
claimed lower bound.

Let us start with the κ > 0 case. From Lemma 3.1 we have

(4) aniso(ϕ) > | log σ1|+ log sinκ(σ1α)− log sinρ(α).

The derivative of the right-hand side with respect to σ1 is

− 1

σ1
+

α

tanκ(σ1α)
< 0

when σ1 < 1 and
1

σ1
+

α

tanκ(σ1α)
> 0

when σ1 > 1. This shows that the right-hand side of (4) achieves its minimum
when σ1 = 1, so that

aniso(ϕ) > log sinκ(α)− log sinρ(α).

In case of equality, one must have σ1 = 1 and σ2 = sinκ(α)/ sinρ(α), there-
fore there is equality in Lemma 3.1. This forces BM (x, α) and its image to
have constant curvatures ρ and κ and S(α) must be mapped to the geodesic
sphere of radius α and center ϕ(x) in N . Since σ1 = 1, ϕ must then map S(a)
to Sκ(a) for all a. Each ray from ϕ(x) to Sκ(α) must be mapped by ϕ−1 to
a curve of length at most α that connects x to S(α), therefore unit rays are
mapped to unit rays. The whole map ϕ then depends only on its derivative at
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x, which must preserve the norms. It follows that ϕ is azimuthal equidistant,
up to isometries.

In the κ < 0 case, (4) also holds but is not optimal anymore. Indeed, the
derivative of its right-hand side is positive both when σ1 > 1 and when σ1 < 1
since tanκ(x) 6 x. But when σ1 < σ0, the lower bound on σ2 given by Lemma
3.1 is less than 1. It follows

aniso(ϕ) > log
1

σ0

Which is achieved by ϕ̄. The case of equality is treated as above.

Corollary 3.3. — In the above setting,

aniso(ϕ) >
ρ− κ

6
α2 +O(α4)

where the implied constant in the remainder term only depends on the curvature
bounds.

4. Area-preserving maps

Let us now prove Theorem 1.2 in the following form.

Theorem 4.1. — Assume RicM > ρ, N satisfies the best isoperimetric in-
equality holding on Xκ, and α 6 inj(x). Then any volume-preserving map
ϕ : B(x, α) ⊂M → N satisfies

aniso(ϕ) >
n

n− 1
log

Iκ ◦ Vρ(α)

Aρ(α)

and equality is achieved by the unique volume-preserving azimuthal map ϕ̄ :
Bρ(α)→ Xκ.

Assume further that the only domains in N satisfying the equality case in
the isoperimetric inequality are balls isometric to geodesic balls in Xκ. Then
whenever aniso(ϕ) = aniso(ϕ̄), the domain of ϕ has constant curvature ρ and
its range is isometric to a constant curvature ball Bκ(R(α)). However, there
are uncountably many different maps achieving equality.

Proof. — The key point is the following Lemma, which is a direct adaptation
of Theorem 3.5 in [MJ00].

Lemma 4.2. — Under the assumptions RicM > ρ and κ 6 ρ, we have

Iκ(|B(α)|)
|S(α)|

>
Iκ ◦ Vρ(α)

Aρ(α)

If there is equality, then B(α) is isometric to Bρ(α).
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Proof of Lemma. — Setting δ0 := |S(α)|
Aρ(α) , the strong form of Bishop’s inequality

yields for all t 6 α

δ0 6
|S(t)|
Aρ(t)

6 1.

By integration, it comes

δ0 6 δ1 :=
|B(α)|
Vρ(α)

6 1.

Since Iκ is concave, we have Iκ(δ1Vρ(α)) > δ1Iκ(Vρ(α)); therefore

Iκ(|B(α)|) > δ0Iκ(Vρ(α)) = |S(α)|Iκ(Vρ(α))

Aρ(α)
.

In case of equality, we must have δ0 = δ1, which implies δ0 = δ1 = 1.
The equality case in Bishop’s inequality then implies that B(α) is isometric to
Bρ(α).

Now, since ϕ is volume-preserving and N satisfies the isoperimetric inequal-
ity, we have

|ϕ(S(α))| > Iκ(|B(α)|) > |S(α)|Iκ(Vρ(α))

Aρ(α)
.

Then, there must be a point x on S(α) such that the Jacobian of ϕ|S(α) is at
least Iκ(Vρ(α))

Aρ(α) so that

σ2 >

(
Iκ(Vρ(α))

Aρ(α)

) 1
n−1

but also, since jacϕx = 1, Lemma 2.2 shows that a direction transverse to the
boundary must be contracted by ϕ and

σ1 6

(
Iκ(Vρ(α))

Aρ(α)

)−1

.

These two bounds combined imply the desired inequality on aniso(ϕ).
It is straightforward to see that the unique volume-preserving azimuthal

map ϕ̄ : Bρ(α) → Xκ realizes equality. Moreover, if there is equality then
there must be equality in the Lemma, so that B(α) is isometric to Bρ(α), and
there must be equality in the isoperimetric inequality on N .

However, ϕ̄ is far from being the only optimal map: both σ1 and σ2 are
realized on the boundary, and for all t < α,

σ1(ϕ̄|Bρ(t)) > σ1(ϕ̄) and σ2(ϕ̄|Bρ(t)) < σ2(ϕ̄).

If we compose ϕ̄ with any diffeomorphism of Bρ(α) close to identity and sup-
ported on some Bρ(t), we get another optimal map.
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5. Conformal and quasiconformal maps

The following result is the heart of our results for quasiconformal maps; it’s
formulation has been chosen to avoid repetition of arguments while keeping as
much flexibility as we shall need, and it is therefore rather technical.

Theorem 5.1 (Main quasiconformal inequality). — Assume ϕ is a Q-
quasiconformal maps from BM (x, α) to N , where RicM > ρ and N satisfies
the isoperimetric inequality of Xκ.

Let Gκ be the function defined by

Gκ(x) = sinκ(2 arctanκ(x)) =
2x

1 + κx2

If κ > 0, assume further that the volume of the image of ϕ is not greater
than the volume 1

2 |Xκ| of an hemisphere of curvature κ.
Then, for all β < α we have

σ2(ϕ) >

Gκ

(
tanκ( r(β)

2 ) ·
(

tanρ(α
2

)

tanρ(β
2

)

) 1
Q

)
sinρ(α)

where r(β) is the radius of a ball in Xκ that has the same volume as the image
of BM (x, β).

The proof of this inequality follows a simple idea: at each time t, the isoperi-
metric inequality forces the image of the sphere of radius t to have large vol-
ume, and the quasiconformality then translates this into a large increase in
the volume of the image of the ball. These two effects therefore amplify one
another. At t = α, we get a lower bound on V (α), and using the isoperimetric
inequality again we bound from below the perimeter of the image of the α-ball.
Comparing with the perimeter of the ball, we get a lower bound on σ2.

Proof of the main quasiconformal inequality. — For convenience, for all t ∈
(0, α) set V (t) = |ϕ(B(t))|. In particular, r(t) = V −1

κ (V (t)).
Using Hölder’s inequality we get

V ′(t) =

∫
S(t)
| jacϕ|(y) dy

>

(∫
S(t) | jacϕ|

n−1
n (y) dy

) n
n−1

|S(t)|
1

n−1

where jacϕ(y) is the Jacobian of ϕ at y. Let ϕ0 be the restriction of ϕ along
S(t): using Lemma 2.2, Bishop’s inequality and the isoperimetric inequality
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on N it follows that

V ′(t) >

1
Q

(∫
S(t) | jacϕ0|(y) dy

) n
n−1

|S(t)|
1

n−1

>
|ϕ(S(t))|

n
n−1

Q|Sρ(t)|
1

n−1

V ′(t) >
Iκ(V (t))

n
n−1

Qω
1

n−1

n−1 sinρ(t)
.(5)

Let F = Fκ,Q be defined by

F ◦ Vκ(t) = Q log tanκ(t/2)

and let us compute F ′:
d

dx
(F ◦ Vκ(x)) =

d

dx
(Q log tanκ(x/2))

V ′κ(x)F ′(Vκ(x)) =
Q

sinκ(x)

F ′(Vκ(x)) =
Q

Aκ(x) sinκ(x)

=
Qω

1
n−1

n−1

Aκ(x)1+ 1
n−1

=
Qω

1
n−1

n−1

(Iκ ◦ Vκ(x))
n
n−1

F ′ =
Qω

1
n−1

n−1

I
n
n−1
κ

(6)

From (5) and (6) it comes

F ′(V (t))V ′(t) >
1

sinρ(t)

As above, log(tanρ(t/2)) defines an antiderivative of 1/ sinρ(t) and integrat-
ing we conclude

(7) F (V (α))− F (V (β)) > log
tanρ(α/2)

tanρ(β/2)

since F ′ is a positive function, F is increasing and invertible, so that the
above inequality gives a lower bound on V (α); using |ϕ(S(α))| > Iκ(V (α))
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and proceeding as in the proof of Theorem 3.2, we get

σ2(ϕ) >

(
Iκ(V (α))

|S(α)|

) 1
n−1

>
(Iκ ◦ F−1)

1
n−1

(
F (V (β)) + log(

tanρ(α/2)
tanρ(β/2) )

)
ω

1
n−1

n−1 sinρ(α)

(beware that exponent 1
n−1 is a multiplicative power while exponent −1 stands

for inverse function).
Now

(Iκ ◦ F−1)
1

n−1 = (Iκ ◦ Vκ ◦ (F ◦ Vκ)−1)
1

n−1

= (Aκ ◦ (F ◦ Vκ)−1)
1

n−1

= ω
1

n−1

n−1 sinκ ◦(F ◦ Vκ)−1

and the desired inequality follows from the identity

sinκ(2 arctanκ x) =
2x

1 + κx2
.

Remark. — In the above proof, two small difficulties are hidden.
1. When κ > 0, Iκ is decreasing beyond the volume of an hemisphere; this

is why we assumed an upper bound on V (α).
2. When κ < 0, F has bounded image so that F−1 is not defined on the

whole positive axis. Our proof shows that any quasiconformal map must
map small balls to domains of relatively small volume (bounded in terms
of α, κ, ρ and the radius of the considered ball), for otherwise the differ-
ential inequality on V (t) would blow up in time less than α and the map
would not have compact image. This is the base to a generalization of
the Schwarz-Pick-Ahlfors lemma by Gromov, see the appendix.

Definition. — Let A3 = A3(M,κ, ρ, n) be defined as the greatest real number
such that for all α 6 A3 it holds

– α 6 inj(M),
– if κ > 0, (

|Xκ|
2Vρ(α)

) 1
n

> 1 + (ρ− κ)
tan2

ρ(α/2)

1 + κ tan2
ρ(α/2)

.

Let us now prove Theorem 1.3 which we restate as follows.



20 BENOîT R. KLOECKNER

Theorem 5.2. — Assume RicM > ρ, N satisfies the best isoperimetric in-
equality holding on Xκ and α 6 A3(M,κ, ρ, n). For the equality case below,
assume further that any domain Ω ⊂ N such that |∂Ω| = Iκ(|Ω|) is isometric
to a geodesic ball in Xκ. Let ϕ : B(x, α) ⊂M → N be a conformal map.

If κ > 0, then

aniso(ϕ) > log

(
1 + (ρ− κ)

tan2
ρ(α/2)

1 + κ tan2
ρ(α/2)

)
with equality when ϕ is conjugated by isometries to the conformal azimuthal
map Bρ(α)→ Xκ with R′(0) = 1.

If κ = 0, then
aniso(ϕ) > log

(
1 + ρ tan2

ρ(α/2)
)

with equality when ϕ is conjugated by isometries to a conformal azimuthal map
Bρ(α)→ X0 = Rn with R′(0) 6 1 and σ2 > 1 (e.g. R′(0) = 1).

If κ < 0, then

aniso(ϕ) > log
−2κ sin2

ρ(
α
2 )√

1− κ sinρ α− 1

with equality when ϕ is conjugated by isometries to the conformal azimuthal
map Bρ(α)→ Xκ that induces an isometry on the boundaries (or, equivalently,
that preserves volumes along the boundary).

Remark. — In the case κ = 0 it is easy to compare the bound for general
maps and conformal ones. When α → 0, this will be done more generally
below; when α → π, both lower bounds go to infinity, but in the conformal
case it does so twice as fast (after taking logs!) in the sense that

aniso(ϕ̄c)

aniso(ϕ̄)
→ 2

where ϕ̄ and ϕ̄c denote the optimal azimuthal maps for radius α in the gen-
eral and conformal cases, respectively. Conformality thus appears to have a
significant effect on anisometry.

Proof. — The bound A3 has been designed so that either B(α) is mapped to
a domain so large that at some point y Dϕy itself must have anisometry at
least equal to the claimed bound, or the volume of ϕ(B(α)) is at most 1

2 |Xκ|
and we can use the main quasiconformal inequality with Q = 1 and β → 0.

Since r(β) > σ1β + o(β), when β → 0 we have

tanκ( r(β)
2 )

tanρ(β/2)
> σ1 + oβ(1)
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and we obtain

σ2(ϕ) > σ̄2 :=
Gκ(σ1 tanρ(α/2))

sinρ(α)
.

We would like to optimize in σ1 the corresponding bound

f(σ1) := | log σ1|+ | log σ̄2(σ1)|

on aniso(ϕ).
For this, we observe that for all positive σ, the number f(σ) is the anisometry

of a conformal map with co-Lipschitz coefficient equal to σ. For this, let

Φσ,κ : Bρ(α)→ Xκ

be the unique conformal azimuthal map such that σ1(Φσ,κ) = σ (i.e., its dis-
tance function satisfies R′σ,κ(0) = σ). Then following the proof of the main
quasiconformal inequality with Q = 1, we see that all inequalities are equalities
so that indeed f(σ) = aniso(Φσ,κ).

Moreover, if aniso(ϕ) = f(σ1) (recall that σ1 stands for σ1(ϕ)) then we
must have equality in all inequalities in the proof of the main quasiconformal
inequality, and this implies that ϕ and Φσ1,κ are conjugated by isometries.

Observe that aniso(Φσ,κ) is decreasing with κ, and increasing with σ when-
ever

(8) σ 6 1 6 σ2(Φσ,κ).

It is clear that the minimum of f(σ) occurs in this range. Observe further that

aniso(Φσ,κ) = aniso(Φσ/λ,λ2κ)

whenever σ and σ/λ both are in the range (8), since Φσ/λ,λ2κ is the composition
of Φσ,κ with a homothety of ratio λ.

When κ > 0, if σ < 1 is in the above range then we get

aniso(Φσ,κ) = aniso(Φ1,σ2κ) > aniso(Φ1,κ)

so that f(σ1) > f(1) with equality if and only if σ = 1.
When κ < 0, if 1 < σ̄2(σ) = σ2(Φσ,κ), then

aniso(Φσ,κ) = aniso(Φσ/σ̄2,σ̄2
2κ

) > aniso(Φσ/σ̄2,κ)

so that f(σ) reaches its unique minimum for the value of σ such that σ2(Φσ,κ) =
1.

When κ = 0, f is constant on the range (8).
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Note that we could also have proceeded via calculus: setting x = σ1 tanρ(α/2)
we then have

d

dσ1
ef(σ1) =

1

σ2
1

(
xG′κ(x)−Gκ(x)

)
=

−4κx3

σ2
1(1 + κx2)2

Therefore, if κ > 0 then f has its only minimum when σ1 = 1, and if κ < 0
then f has its only maximum when σ̄2(σ1) = 1. When κ = 0, any value of σ1

between this two cases yields the same result.
We only have left to compute min f . When κ > 0, we get

aniso(ϕ) > log
Gκ(tanρ(

α
2 ))

sinρ(α)
.

Then, using

sinρ(α) =
2 tanρ(

α
2 )

1 + ρ tan2
ρ(
α
2 )

we easily get the claimed inequality.
When κ < 0, the minimum of f is attained when σ̄2 = 1 and, therefore, σ1

is such that Gκ(σ1 tanρ(
α
2 )) = sinρ(α). Since at this point we have f(σ1) =

− log(σ1), we only have to invert Gκ to get the desired inequality.

Corollary 5.3. — If ϕ is conformal, then

aniso(ϕ) >
ρ− κ

4
α2 + o(α2)

where the remainder depends on the curvature bounds and N .

As mentioned above, we can even relax the assumption on M and N to be
ScalM > ρ and ScalN 6 κ: the infinitesimal Bishop inequality holds true under
a scalar curvature bound, and so does the isoperimetric inequality as proved
by Druet [Dru02].

Theorem 5.4. — Assume RicM > ρ and N satisfies the best isoperimetric
inequality holding on Xκ. For the equality case below, assume further that any
domain Ω ⊂ N such that |∂Ω| = Iκ(|Ω|) is isometric to a geodesic ball in Xκ.
Let ϕ : B(x, α) ⊂M → N be a Q-conformal map.

If κ > 0, let ϕ̄ : Bρ(α)→ Xκ be the azimuthal map whose distance function
satisfies

R(t) = t when t 6 β R′(t) =
sinκ(R(t))

Q sinρ(t)
when t > β
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where β > 0 is such that
sinκ(β)

Q sinρ(β)
= 1.

There is a positive number A4 = A4(M,N,Q) such that if α 6 A4 then

aniso(ϕ) > aniso(ϕ̄)

and there is equality if and only if ϕ and ϕ̄ are conjugated by isometries (except
in the case κ = 0 where the conjugating map on the range can be a homothety).

If κ < 0, let ϕ̄ : Bρ(α)→ Xκ be the azimuthal map whose distance function
satisfies

R(t) = σt when t 6 β R′(t) =
sinκ(R(t))

Q sinρ(t)
when t > β

where β > 0 is such that
sinκ(σβ)

Q sinρ(β)
= σ

and σ is such that σ2(ϕ̄) = 1 (in particular, ϕ̄ induces an isometry on the
boundary). Then whenever α 6 inj(x) we have

aniso(ϕ) > aniso(ϕ̄)

and there is equality if and only if ϕ and ϕ̄ are conjugated by isometries.

Proof. — The proof follows exactly the same lines as the proof of Theorem
5.2, using the quasi-conformal inequality with the chosen β and Q. Fixing ρ
and α, for all given σ and κ we construct a comparison map

ϕ̄σ,κ : Bρ(α)→ Xκ

as in the conclusion of the Theorem. We remark that, restricted to Bρ(β), ϕ̄
is both the least anisometrical map and Q-conformal. Then for larger radii,
A4 is designed so that either the anisometry bound is true or the main quasi-
conformal inequality shows that ϕ̄σ1(ϕ),κ has lesser anisometry than ϕ.

To get the desired conclusion, we only have left to optimize the anisometry
of these comparison maps in σ. This does not differ from the conformal case.

We do not give explicit values for the lower anisometry bounds, but they
can be obtained explicitly from the above computations (though probably not
in closed form).

Remark 5.5. — It can be checked that in Theorem 5.4 the optimal azimuthal
map is C1 but not C2 when Q > 1.
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6. Appendix: the generalized Schwarz-Pick-Ahlfors lemma

The method used to prove the main quasiconformal inequality was already
used by Gromov [Gro81, Gro85] and Pansu [Pan86] in relation with gener-
alizations of Ahlfors lemma.

The classical Schwarz lemma says that a holomorphic map f : ∆ → ∆
from the unit disc to itself, such that f(0) = 0 must satisfy |f ′(0)| 6 1 and,
in case of equality, f must be a rotation. Pick reinterpreted this result by
endowing the disc with its hyperbolic metric: the lemma then amounts to say
that any conformal map from H2 to H2 must be non-dilating in the hyperbolic
metric, and if at any point its Jacobian has modulus 1 then the map must
be a hyperbolic isometry. Then, Ahlfors extended this result to conformal
maps from a surface with curvature bounded below by −1 to a surface with
curvature bounded above by −1. This had a lasting impact on several fields of
mathematics. Among possible generalization to higher dimensions, one that
fits particularly well with the content of the present article is the following.

Theorem 6.1. — Let M and N be complete manifolds of the same dimension
(at least 2) with RicM > −1 and KN 6 −1, and let ϕ : M → N be a smooth
conformal map. If the Cartan-Hadamard conjecture holds, then | jacϕ(x)| 6 1
for all x ∈ M , and if there is equality at any one point, then ϕ lifts to an
isometry of the universal coverings ϕ̃ : M̃ → Ñ (in particular, M and N have
constant curvature −1).

The current knowledge gives us the conclusion unconditionally when N is
the real hyperbolic space, and when the dimension is 2 or 3.

The above result can hardly be considered new, but we could not find a
written proof; we therefore provide one.

Proof. — Let ϕ̃ : M̃ → Ñ be the lift to Ñ of the composition of the universal
covering map π : M̃ → M with ϕ. Then ϕ̃ is a smooth conformal map with
the same local behavior as ϕ.

We apply to ϕ̃ inequality (7) from the proof of the main quasiconformal
inequality. As in the beginning of the proof of Theorem 5.2, with Q = 1 and
β → 0 we get for all x ∈ M̃ and all α > 0:

tanh(
r(α)

2
) > σ0 tanh(

α

2
)

where r(α) is the radius of a ball in hyperbolic space whose volume equals
|ϕ̃(BM̃ (x, α))|, and σ0 is the conformal dilation factor at x (i.e. σn0 = | jac ϕ̃(x)|).

If we had σ0 > 1, then for large enough α the above inequality would yield
r(α) > ∞, a contradiction. Therefore, σ0 6 1 independently of x. Together
with the conformality of ϕ̃, this implies that ϕ̃ is distance-nonincreasing.
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If σ0 = 1 (for one given x), then we have from the above inequality r(α) > α
for all α, so that ϕ̃ maps balls of volume at most V−1(r) to balls of volume
at least V−1(r), while not increasing distances. This implies that we have
equalities in the Bishop and Günther inequalities, so that M̃ and Ñ both have
constant curvature −1 and ϕ̃ is an isometry.

Remark. — 1. The above result may seem weak in the sense that it asks
for a conformal map, which may not exist for given M and N . However
the hypothesis cannot be weakened to quasiconformal as there are local
Q-quasiconformal diffeomorphisms of arbitrarily high supremum of the
Jacobian. Using the above method one can only get bounds on averaged
Jacobians, i.e. volume of balls.

2. Theorem 6.1 can be interpreted as follows: given a manifold M , if one
can find in the same conformal class two complete metrics g and σg such
that Ricg > −1 and Kσg 6 −1, then σ is uniformly bounded above by 1,
and if there is a point at which σ(x) = 1 then σ ≡ 1.
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