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The Space of Closed Subgroups of R2

and Seifert Invariants

Benoît Kloeckner

Abstract

In this note we give a version of the proof of the Hubbard-Pourezza

Theorem, introduced below, using Seifert �bration. Our main goal

is to compute explicitely and directly Seifert invariants in this nice

example. The fact that it is fairly hard to �nd such a direct com-

putation in the litterature is our main motivation.
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1 Introduction

Let G be a topological group whose neutral element is de-
noted by 0 (although G need not be abelian). Its Chabauty
space C (G) is the set of closed subgroups of G endowed
with the following topology: the neighborhoods of a point
Γ ∈ C (G) are the sets

NK
U (Γ) = {Γ′ ∈ G | Γ′ ∩K ⊂ Γ · U and Γ ∩K ⊂ Γ′ · U}

where K runs over the compact subsets of G and U runs
over the neighborhoods of 0. In words, Γ′ is very close to
Γ if, on a large compact set, every of its elements is in a
uniformly small neighborhood of an element of Γ, and con-
versely. The preprint [13] contains a more detailed account
of this topology.

The simplest example of a Chabauty space is that of the
line: C (R) contains the trivial subgroup {0}, the discrete
groups αZ and the total group R. Two discrete groups
αZ and βZ are close one to another when α and β are
close, a neighborhood of {0} consists in the set of αZ with
large α (and we de�ne ∞Z = {0}) and a neighborhood of
R consists in the set of αZ with small α (and we de�ne
0Z = R). Putting all this together, we see that C (R) is
homeomorphic to a closed interval.

αZ {0} =∞ZR = 0Z

Fig. 1: Chabauty space of R.

Only for a few groups G do we have a precise descrip-
tion of C (G). Works of Bridson, de la Harpe and Klept-
syn [3] and Haettel [11] have added to the list the three-
dimensional Heisenberg group and R× Z respectively, but
the topology of C (Rn) is unknown for n > 2 (although we
proved in [17] that it is simply connected). Even C (R2)
is not easy to describe; it was tackled by Hubbard and
Pourezza [15] who proved the following.

Theorem 1.1 (Hubbard-Pourezza). Let C be the Chabauty
space of R2 and L be the subset of lattices. The topolog-
ical pair (C ,C r L ) is homeomorphic to the suspension
of (S3,K) where K is a trefoil knot in the 3-sphere. In
particular, C is a 4-sphere.

Let us recall some de�nitions. A topological pair is a
pair (X,Y ) of topological spaces where Y is a subset of
X (endowed with the induced topology). Two topological
pairs (X,Y ) and (X ′, Y ′) are homeomorphic if there is a
homeomorphism Φ : X → X ′ that maps Y onto Y ′. The
(open) cone over X is the quotient cX of X × [0, 1) by the
relation (x0, 0) ∼ (x1, 0), while the suspension of X is the
quotient sX of X × [0, 1] by the relations (x0, 0) ∼ (x1, 0)
and (x0, 1) ∼ (x1, 1) for all x0, x1 ∈ X. If Y is a subset of
X, then sY embeds naturally in sX and the resulting topo-
logical pair (sX, sY ) is called the suspension of (X,Y ). The
Hubbard-Pourezza theorem shows in particular that the set
of non-lattices is a 2-sphere that is non-tamely embedded
in C ' S4.

The goal of this note is to give a proof of this theorem
using Seifert �bration. This proof is not really original, it is
even alluded to in the paper of Hubbard and Pourezza. The
topology of the subspace of lattices is a very classical topic,
see for example [23], [13] which also contains a detailed
version of the original proof of Hubbard-Pourezza's result,
or [22] which also links to Seifert �brations. However we
could not �nd the explicit computation of Seifert invariants,
as presented here, in the literature.
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2 The Chabauty space of R2 is a 4-sphere

2.1 De�nitions and notations

In this section, we denote by C the Chabauty space of R2.
A closed subgroup of R2 is of one of the following types:

• (0, 0): the trivial subgroup 0 ;

• (0, 1): isomorphic to Z ;

• (0, 2): isomorphic to Z2 (these are the lattices) ;

• (1, 0): isomorphic to R ;

• (1, 1): isomorphic to R× Z ;

• (2, 0): the total group R2.

Each type is an orbit of the action of GL(2;R) on C . The
set of lattices is L =: C (0,2), its complement is denoted by
H .

A closed subgroup Γ of R2 has a determinant, or covol-
ume, covol(Γ). If Γ is a lattice, it is its usual determinant,
that is the determinant of any direct base of Γ. It is 0 if
Γ is isomorphic to R × Z or R2, and ∞ if Γ is isomorphic
to Z or 0. By convention, covol(Γ) takes simultaneously all
values in [0,∞] if Γ is isomorphic to R. So de�ned, the lev-
els of covol are closed in C . Outside the set R := C (1,0) of
subgroups isomorphic to R, covol is a continuous function.

Let C>1, respectively C61, be the subsets of C de�ned
by covol > 1 and covol 6 1. These sets both contain R.
Let H>1 = H ∩ C>1 be the set of subgroups isomorphic
to R, Z or 0, and H61 = H ∩C61 be the set of subgroups
isomorphic to R, R× Z or R2.

Let L1 be the set of covolume 1 lattices, and C1 its
closure. Then C1 is the union of L1 and of the set R.

We use the usual identi�cation R2 ' C, so that any
subgroup isomorphic to R can be written in the form eiθR.

We also de�ne the norm (or systol)

N(Γ) = N1(Γ) = inf {|x| | x ∈ Γ \ {0}}

It is a continuous functions taking its values in [0,∞]. Let
C 1 be the set of norm 1 subgroups of R2. A point of C 1 is
either isomorphic to Z, or a lattice. We denote by Z 1 the
set C 1 \L .

Figure 2 sums up this notations.
The proof of Theorem 1.1 is in two parts. We �rst

prove that the topological pair (C ,H ) is the suspension of
(C 1,Z 1), then that the latter is homeomorphic to (S3,K)
where K is a trefoil knot.

2.2 The Chabauty space of R2 is a
suspension

In this �rst part of the proof, which is not our main moti-
vation, the proof will be given only few details.

Lemma 2.1. The topological pair (C>1,H>1) is homeo-
morphic to the cone over (C1,R).

0

C>1

H61

R = C (1,0)

C1

Z 1

H>1

C61

R2

C 1

Fig. 2: Sum up of notations

Proof. We consider the map

Φ : C1 × [0,∞] → C>1

(Γ1, t) 7→

{ (
t

N(Γ1) + 1
)

Γ1 if Γ1 ∈ L1

teiθZ if Γ1 = eiθR

where by convention 0eiθZ = eiθR and ∞Γ = 0 if Γ is
discrete.

This map is continuous, maps C1×{0} onto C1 and R×
[0,∞] onto H>1. It induces a continuous bijection Φ̃ from
the quotient of C1×[0,∞] by the relation (Γ1,∞) ∼ (Γ′1,∞)
onto C>1. Since the latter is compact, Φ̃ is a homeomor-
phism between the cone over (C1,R) and (C>1,H>1).

Lemma 2.2. The topological pair (C1,R) is homeomorphic
to (C 1,Z 1).

Proof. The map Ψ : C 1 → C1 that assigns to Γ the only
tΓ of unit covolume (t = 0 if Γ is isomorphic to Z, t =
covol(Γ)−1/2 otherwise) is continuous and a bijection. By
compacity of C1, closed in C , it is a homeomorphism.

Proposition 2.3. The topological pair (C ,H ) is homeo-
morphic to the suspension of (C 1,Z 1).

Proof. We can either reproduce the previous arguments to
prove that (C61,H61) is also a cone over (C 1,Z 1) or use
the duality ∗ which maps C>1 on C61 and preserves L .

2.3 Subgroups of unit norm

To get Theorem 1.1, we have left to prove the following.

Proposition 2.4. The topological pair (C 1,Z 1) is home-
omorphic to (S3,K).

The proof runs over the rest of the Section. We shall
describe C 1 as a Seifert �bration (see for example [1] for an
introduction to Seifert �brations). Let Γ be a point of C 1.
The isometry group SO(2) acts on C 1, and up to a rotation
we can assume that 1 ∈ Γ ⊂ C. Then Γ is determined by
the choice of a second vector in the fundamental domain

D = {z ∈ C; |z| > 1 and − 1/2 > Re(z) > 1/2} ∪ {∞}
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where z = ∞ means that Γ is isomorphic to Z (�gure 3).
Identifying the points of D that represent the same Γ leads
to the quotient of D by the relation z ∼ z−1 if Re(z) = 1/2
and z ∼ −z̄ if |z| = 1, turning it into a 2-sphere denoted
by B, that will be the base of the Seifert �bration.
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Fig. 3: Fundamental domain: the vertical lines and the cir-
cle arcs are glued according to the arrows, � and 4
are the singular points.

The kernel of the action of SO(2) is reduced to {±1},
and the quotient gives an action of the circle that is almost
free: the only points of C 1 that have nontrivial stabilizers
are the triangular lattices (stabilizer of order 3) and the
square lattices (stabilizer of order 2). It follows that C 1 is
a Seifert �bration with base B ' S2 and two singular �bers
of order 2 and 3, and where Z 1 is a regular �ber. The
unnormalized Seifert invariants of C 1 are (0|(2, β1); (3, β2))
and we have left to �nd the rational Euler number β1/2 +
β2/3 to determine (C 1,Z 1).

We �rst choose a cross-section of the regular part of the
Seifert �bration. It would be natural to lift each point u in
the fundamental domain to the subgroup generated by u
and 1, but this would not de�ne a continuous cross-section.
The gluing of the unit circle indeed identi�es, for all θ ∈
[0, π/6], the subgroups 1Z+ ei(π/2−θ)Z and 1Z+ ei(π/2+θ)Z
by a rotation of angle π/2 + θ. We shall therefore modify
this cross-section in a neighborhood of one of the circular
arcs of D.

Let S1 = R/πZ be the quotient SO(2)/{±1}, D′ be
the fundamental domain D minus the singular points (i,
eiπ/3 and e2iπ/3) and B′ be the base B minus the two sin-
gular points (corresponding to i and eiπ/3 ∼ e2iπ/3). We
choose a continuous map f : D′ → [0, π/2] that is con-
stant with value 0 except in a neighborhood of the arc{
ei(π/2+θ)

∣∣ θ ∈]0, π/6[
}
, where it satis�es f(ei(π/2+θ)) =

π/2 − θ. We then de�ne a cross-section σ : B′ → C 1 by
σ(u) = eif(u)(1Z + uZ). It is continuous since

σ(ei(π/2+θ)) = ei(π/2−θ)(1Z + ei(π/2+θ)Z)

= ei(π/2−θ)Z + 1Z
= σ(ei(π/2−θ)).

Let b be the homotopy class in C 1 of a regular �ber, d1 and
d2 be the homotopy classes de�ned by σ on the boundary of
C 1
• = C 1\{F1, F2} where F1 and F2 are invariant neighbor-

hoods of the singular �bers of order 2 and 3, respectively.
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Fig. 4: The cross-section σ de�nes homotopy classes in the
boundary of C 1

• .

b

d1

π

π
2

0
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Fig. 5: Neighborhood F1 and F2 of the singular �bers

In ∂F1 and ∂F2 respectively, we get that 2d1 + b and
3d2 − b are homotopic to meridians (see �gure 5 where F1

and F2 are pictured with coordinates (u, ϕ) ∈ B×R/πZ 7→
eiϕ(1Z + uZ), with the suitable identi�cations). It follows
that C 1 has unnormalized Seifert invariants (0|(2, 1), (3,−1))
and rational Euler number equal to 1/2− 1/3 = 1/6.

We shall know exhibit a very classical Seifert �bration
on S3 whose regular �bers are trefoil knots, that has base
S2, two singular �bers of order 2 and 3 and rational Euler
number 1/6. Since a Seifert �bration is determined by these
data, we will conclude that (C 1,Z 1) is homeomorphic to
(S3,K).

Consider the following action of the circle R/Z on S3,
identi�ed to the unit sphere of C2:

s · (z1, z2) = (e2πm1isz1, e
2πm2isz2)

with m1 = 2 and m2 = 3. The stabilizer of almost every
point is trivial, the exceptions being the polar orbits (z1, 0)
and (0, z2). If m1 and m2 where equal to 1, we would get
the Hopf �bration where the non-polar orbits are Villarceau
circles of the tori |z1/z2| = c, where c runs over [0,∞].
Taking m1 = 2 and m2 = 3, we replaced the Villarceau
circle by toric knots, here trefoil knots (�gure 6).

We see that the regular part of the base is foliated by
the circles obtained by quotienting the tori |z1/z2| = c by
the action of S1, and is therefore an annulus. One can see
this annulus as the S2 base of the Hopf �bration minus two
points for the singular �bers.

Let us compute the Seifert invariants of this action,
which are surprisingly di�cult to �nd in the litterature.
We use a representation found in [18].
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Fig. 6: The torus knot (2, 3) is a trefoil knot.

Let T 2 = R/Z × R/Z be the standard 2-torus equiped
with the foliation by straight lines of slope 3/2. If we denote
by x the homotopy class of

R/Z → T 2

t 7→ (t, 0)

and by y the homotopy class of

R/Z → T 2

t 7→ (0, t)

the homotopy class of any leave of this foliation is ` =
2x+ 3y.

In the space T 2 × [0, 1] de�ne Tt := T2 × {t}, endowed
with the above foliation for t ∈ (0, 1). Let Π : T 2× [0, 1]→
S3 be the mapping de�ned as follows. First, Π contracts
T0 to the singular �ber {(0, z2) | |z2| = 1} and T1 to the
singular �ber {(z1, 0) | |z1| = 1} with Π(a, b, 0) = (0, e2iπb)
and Π(a, b, 1) = (e2iπa, 0). Second, it maps Tt to a torus
de�ned by |z1/z2| = c(t) with c an increasing continuous
function such that c(t)→ 0 (resp. +∞) when t→ 0 (resp.
1), and maps the foliation of Tt to the Seifert foliation in S3.
Think of T 2 × [0, 1] as a blow-up of S3 along the singular
�bers.

The point is that in this presentation, one can give ex-
plicitely a cross-section of the Seifert �bration over the reg-
ular part: just consider the set

{(s, 2s, t) | s ∈ R/Z, t ∈ (0, 1)} ⊂ T 2 × (0, 1)

This set intersects each of the Tt along a straight line ho-
motopic to x+ 2y, which intersects each 2x+ 3y line once,
thus it does de�ne a section.

In the boundary of a neighborhood of T0, the section
de�nes a curve homotopic to d0 = −x−2y (the sign depends
upon the choice of orientation). Since ` = 2x + 3y is the
homotopy class of a regular �ber, we have 3d0 + 2` = x, a
meridian. Similarly, in the boundary of a neighborhood of
T1, the section de�nes a curve homotopic to d1 = x + 2y
and 2d1 − ` = y is a meridian.

Therefore, this Seifert �bration has unnormalized in-
variants (0|(3, 2), (2,−1)) and rational Euler number 2/3−
1/2 = 1/6 as needed.

Remark 2.5. As we said in the introduction, it is well known
that the homogeneous space SL(2;R)/SL(2;Z) is homeo-
morphic to the complement of a trefoil knot in S3. Here
the di�culty is to prove that when gluing the �ber Z 1 we
do get a sphere and not some other 3-manifold obtained by
surgery along a trefoil knot.

Remark 2.6. Christopher Tu�ey studied [28] the spaces
expk(S1) of all non-empty subset of the circle of cardinality
at most k. In particular, he proved using Seifert �brations
that exp3(S1) is a 3-sphere, its subset exp1(S1) being a
trefoil knot.

The similarity with Proposition 2.4 is not fortuitous:
Jacob Mostovoy proved [21] by a simple geometric argu-
ment that (exp3(S1), exp1(S1)) is homeomorphic to (C 1,Z 1).
Combining these two results one gets another Seifert �bra-
tion proof of Proposition 2.4. Note that even the Seifert
part is somewhat di�erent from ours, since it is �rst proved
that exp3(S1) is simply connected, which reduces drasti-
cally its possible Euler numbers.

Remark 2.7. A nice feature of the study of exp3(S1) is that
its subset exp2(S1) is easily seen to be a Möbius strip, with
boundary exp1(S1): we recover the fact that a trefoil knot
bounds a Möbius strip. This can be seen in (C 1,Z 1) as
well: over the vertical line L = {iy | y ∈ [1,+∞]} of the
base B, the Seifert �bration is a closed Möbius strip whith
boundary Z 1, obtained by identifying antipodal points of
the (y = 1) boundary component of the strip L× S1.
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