On a class of stochastic semilinear PDE’s

Luigi Manca
Scuola Normale Superiore di Pisa
September 20, 2005

ABSTRACT

We consider stochastic semilinear partial differential equations with Lipschitz nonlinear terms. We prove existence and uniqueness of an invariant measure and the existence of a solution for the corresponding Kolmogorov equation in the space $L^2(H;\nu)$, where ν is the invariant measure. We also prove the closability of the derivative operator and an integration by parts formula. Finally, under boundness conditions on the nonlinear term, we prove a Poincaré inequality, a logarithmic Sobolev inequality and the iperc-contractivity of the transition semigroup.

Key words: Differential stochastic equation; invariant measure; Kolmogorov equation; log-Sobolev inequality; spectral gap

2000 Mathematics Subject Classification: 37L40, 35R60, 35K57

1 Introduction and setting of the problem

We are concerned with the following semilinear equation perturbed by noise in the Hilbert space H of all 2π-periodic real functions

\[
\begin{aligned}
 dX &= (D^2\xi X - X + D\xi F(X))dt + dW, \\
 X(0)(\xi) &= x(\xi), \quad \xi \in [0,2\pi],
\end{aligned}
\]

where $x \in H$, $F \in C^1(H;H)$ with $DF \in C_b(H;\mathcal{L}(H))$ and W is a cylindrical Wiener process defined on a probability space $(\Omega,\mathcal{F},\mathbb{P})$ with values in H. We shall denote by $\langle \cdot, \cdot \rangle$ the inner product in H, defined by

\[
\langle x, y \rangle = \int_0^{2\pi} x(\xi)y(\xi)d\xi, \quad x, y \in H
\]
and by $| \cdot |_2$ the corresponding norm. We shall prove that (1) admits a unique mild solution in the space $C_W([0,T]; H)$, consisting of all stochastic processes $X(\cdot, x) \in C([0,T]; L^2(\Omega; H))$ which are adapted to $W(t)$. We recall that a treatment of the Cauchy problem for an extensive class of Burgers-type equations can be found in [11]. We shall also prove the differentiability of $X(t, x)$ with respect to x and some approximation theorems both for $X(t, x)$ and its derivative. Through the mild solution $X(t, x)$ of (1) we shall define the transition semigroup $\{P_t\}_{t \geq 0}$ as

$$ P_t \varphi(x) = \mathbb{E}[\varphi(X(t, x))], $$

where $\varphi : H \in \mathbb{R}$ is Borel and bounded. We shall prove strong Feller and irreducibility properties of the transition semigroup $\{P_t\}_{t \geq 0}$ in order to ensure, thanks to the Doob theorem, the uniqueness of an invariant measure for the transition semigroup. We recall that a Borel probability measure ν is invariant for the semigroup P_t if we have

$$ \int_H P_t \varphi d\nu = \int_H \varphi d\nu $$

for all $\varphi : H \rightarrow \mathbb{R}$ continuous and bounded. Then we shall present some sufficient conditions on F that imply the existence (and consequently, by the Doob theorem, the uniqueness) of an invariant measure. The existence of an invariant measure ν allow us to extend uniquely P_t to a strongly continuous semigroup (still denoted by P_t) in $L^2(H; \nu)$. We shall denote by K_2 its infinitesimal generator. Then we shall show that K_2 is the closure of the following differential operator

$$ K_0 \varphi(x) = \frac{1}{2} Tr[D^2 \varphi(x)] + \langle (D_x^2 - I)x + D_x F(x), D\varphi(x) \rangle $$

where Tr denote the trace, D denote the derivative with respect to x and φ belong to a suitable subspace of $L^2(H; \nu)$ that will be rigorously defined in the following. This kind of result was proved for a Burgers equation with coloured noise (see [3]). In the present situation (Lipschitz nonlinearities and a white noise perturbation) the result seems to be new. An extensive survey on second order partial differential operators in Hilbert spaces can be found in the monographs [1], [2], [6]. A second new result of this paper is the closability of the operator D in $L^2(H; \nu)$ and that $D(K_2)$ is included in the Sobolev space $W^{1, 2}(H; \nu)$. This implies the integration by parts formula

$$ \int_H \varphi K_2 \varphi d\nu = -\frac{1}{2} \int_H |D\varphi|^2 d\nu, \quad \varphi \in D(K_2). $$

(3)
Moreover (but only in the case $\|DF\|_0 < 2$) we shall show that by (3) it follows a Poincaré-type inequality, i.e.

$$\int_H |\varphi - \overline{\varphi}|^2 d\nu \leq \frac{1}{2(1 - \frac{\|DF\|_0^2}{4})} \int_H |D\varphi|^2 d\nu, \quad \varphi \in W^{1,2}(H, \nu). \quad (4)$$

As consequence of (4) we shall derive that the spectrum of K_2 in the space $L^2_0(H; \nu) = \{\varphi \in L^2(H; \nu) : \int_H \varphi d\nu = 0\}$ is contained in the half space $\{\lambda \in \mathbb{C} : \Re \lambda < -(1 - \|DF\|_0^2/4)\}$. Moreover, we shall prove a logarithmic Sobolev inequality and consequently the hypercontractivity of P_t.

This paper is organized as follows: in the next section we introduce some notations and some functional spaces that will be used in what follows. Section 3 is devoted in proving existence and uniqueness of a mild solution $X(t, x)$ of problem (1) and to its differentiability with respect to x, and in section 4 we prove some approximation theorems. In section 5 we introduce the transition semigroup P_t, and in sections 6, 7 we discuss the strong Feller and irreducibility properties respectively. In section 8 we prove the existence of an invariant measure. In section 9 we study the infinitesimal generator K_2 of the semigroup P_t in $L^2(H; \nu)$, where ν is an invariant measure for P_t. Section 10 is devoted to the integration by parts formula, and section 11 to the Sobolev space $W^{1,2}(H; \nu)$, i.e. the domain of the closure of D in $L^2(H; \nu)$. Finally, the Poincaré inequality, the spectral gap and the logarithmic Sobolev inequality are discussed in section 12.

2 Preliminaries

Let us write problem (1) in an abstract form. For this it is convenient to consider

the complete orthogonal system $\{e_k\}_{k \in \mathbb{Z}}$ in H given by

$$e_k(\xi) = \begin{cases} \frac{1}{\sqrt{2\pi}} \cos(k\xi), & k \geq 0, \; \xi \in [0, 2\pi], \\ \frac{1}{\sqrt{2\pi}} \sin(k\xi), & k < 0, \; \xi \in [0, 2\pi]. \end{cases}$$

We represent any element $x \in H$ by its Fourier series

$$x = \sum_{k \in \mathbb{Z}} x_k e_k, \quad x_k = \langle x, e_k \rangle,$$

and for any $\sigma \geq 0$ we define the set

$$H^2_\sigma = \{x \in H : |x|_{2,\sigma} < \infty\},$$

3
where

\[|x|_{2,\sigma} = \left(\sum_{k \in \mathbb{Z}} (1 + k^2)^{\sigma/2} |x_k|^2 \right)^{1/2}. \]

Now, we define a linear operator \(A : D(A) \to H \) by

\[Ax(\xi) = D_\xi^2 x(\xi) - x(\xi), \quad \xi \in [0, 2\pi], \quad D(A) = H^2_\#(0, 2\pi). \]

The linear operator \(A \) is selfadjoint and \(Ae_k = -(1 + k^2)e_k, \quad k \in \mathbb{Z} \). Clearly we have that \(|(-A)^{\sigma/2} x|_2 = |x|_{2,\sigma} \) and \(|(-A + I)^{1/2} x|_2 = |D_\xi x|_2 \). The cylindrical Wiener process \(W(t) \) is formally defined by

\[W(t) = \sum_{z \in \mathbb{Z}} \beta_k(t)e_k, \quad t \geq 0, \]

where \(\{\beta_k\} \) is a sequence of mutually independent real Brownian process in a given probability space \((\Omega, \mathcal{F}, \mathbb{P})\). Finally (1) can be written as

\[
\begin{cases}
 dX(t) = (AX(t) + D_\xi F(X(t)))dt + dW(t), \\
 X(0) = x \in H
\end{cases}
\]

(5)

In the following we will denote by \(\| \cdot \|_0 \) the supremum norm in the space \(C(H; L^2(H)) \). Clearly the conditions on \(F \) implies \(\|DF\|_0 < \infty \). We write (5) in the following mild form

\[X(t) = e^{tA}x + \int_0^t D_\xi e^{(t-s)A}F(X(t))ds + W_A(t) \]

(6)

where \(W_A(t) \) is the stochastic convolution

\[W_A(t) = \int_0^t e^{(t-s)A}dW(s) = \sum_{k \in \mathbb{Z}} \int_0^t e^{-(t-s)k^2}e_kd\beta_k(s). \]

Notice that for any \(\sigma \in [0, 1/2) \) we have that \(W_A(t) \in L^2(\Omega; H^\sigma_\#) \), since

\[\|W_A(t)\|_{L^2(\Omega; H^\sigma_\#)}^2 = \mathbb{E}|W_A(t)|_{2,\sigma}^2 \leq \sum_{k \in \mathbb{Z}} \frac{(1 + k^2)^{\sigma}}{2(1 + k^2)} < \infty. \]

In order to give a precise meaning to equation (6), we introduce, for any \(t > 0 \), the linear mapping

\[K(t) : H \to H, \quad x \mapsto K(t)x, \quad K(t)x = D_\xi e^{tA}x. \]

We have
Lemma 1. $K(t)$ is a linear bounded mapping from H into itself. Moreover there exists $\kappa > 0$ such that

$$|K(t)x|_2 \leq \kappa e^{-t}t^{-1/2}|x|_2, \quad x \in H \quad (7)$$

Proof. For any $t > 0$ we have

$$D_\xi e^{tA}x = \sum_{k \in \mathbb{Z}} k:e^{-(1+k^2)t}x_k e^{-k}.$$

Then

$$|D_\xi e^{tA}x|_2^2 = \sum_{k \in \mathbb{Z}} k^2 e^{-2(1+k^2)t}|x_k|^2 \leq \sup_{k \in \mathbb{Z}} k^2 e^{-(1+k^2)t}|x|_2^2.$$

Since, as it can be easily seen,

$$\sup_{k \in \mathbb{Z}} k^2 e^{-2(1+k^2)t} \leq \frac{1}{4\sqrt{e}}t^{-1}e^{-2t},$$

the conclusion follows.

In the following will be useful the next Lemma 2.

Lemma 2. Suppose $b \geq 0$, $\beta > 0$ and that $a(t)$ is a nonnegative function locally integrable on $0 \leq t < T$ fulfilling

$$u(t) \leq a(t) + b \int_0^t (t-s)^{\beta-1}u(s)ds, \quad t \in [0,T].$$

Then we have

$$u(t) \leq a(t) + \theta \int_0^t E'_\beta(\theta(t-s))a(s)ds, \quad 0 \leq t < T$$

where

$$\theta = (b\Gamma(\beta))^{1/\beta}, \quad E_\beta(z) = \sum_{n=0}^\infty \frac{z^n}{\Gamma(n\beta+1)}, \quad E'_\beta(z) = \frac{d}{dz}E_\beta(z).$$

Moreover

$$E'_\beta(z) \sim \frac{z^{\beta-1}}{\Gamma(\beta)} \text{ as } z \to 0^+, \quad E'_\beta(z) \sim E_\beta(z) \sim \frac{e^z}{\beta} \text{ as } z \to +\infty,$$

and if $a(t) = a$, constant, then $u(t) \leq aE_\beta(\theta t)$.

Proof. See e.g. Lemma 7.1.1 on [12].
3 The mild solution $X(t, x)$ and its differentiability

Theorem 1. For any $x \in H$ and $T > 0$ there exists a unique mild solution $X \in C_W([0, T]; H)$ of equation (5).

Proof. Existence and uniqueness of a solution of equation (5) follows easily by the fixed point method in the space $C_W([0, T]; H)$.

We prove here that the mild solution $X(t, x)$ of (6) is differentiable with respect to x and that for any $h \in H$ it holds

$$DX(t, x) \cdot h = \eta^h(t, x),$$

where $\eta^h(t, x)$ is the mild solution of the equation

$$\begin{align*}
\frac{d}{dt}\eta^h(t, x) &= A\eta^h(t, x) + D\xi(DF(X(t, x) \cdot \eta^h(t, x))) \\
\eta^h(0, x) &= h
\end{align*}$$ (8)

This means that $\eta^h(t, x)$ is the solution of the integral equation

$$\eta^h(t, x) = e^{tA}h + \int_0^t K(t-s)DF(X(s, x)) \cdot \eta^h(s, x)ds, \quad t \geq 0. \quad (9)$$

Theorem 2. Assume that $X(t, x)$ is the solution of equation (6). Then it is differentiable with respect to x \mathbb{P}-a.s., and for any $h \in H$ we have

$$DX(t, x) \cdot h = \eta^h(t, x), \quad \mathbb{P} \text{- a.s.} \quad (10)$$

and

$$|\eta^h(t, x)|_2 \leq e^{\left(\frac{\|DF\|_2^2}{4}\right)t}|h|_2, \quad t \geq 0 \quad (11)$$

Proof. Arguing as in the proof of Theorem 1, we notice that (8) has a unique mild solution $\eta^h(t, x)$ in $C_W([0, T]; H)$. Let us prove (11). By multiplying both sides of (8) by $\eta^h(t, x)$ and integrating on $[0, 2\pi]$ we have

$$\frac{1}{2}\frac{d}{dt}|\eta^h(t, x)|_2^2 = \langle A\eta^h(t, x), \eta^h(t, x) \rangle + \langle D\xi(DF(X(t, x)) \cdot \eta^h(t, x)), \eta^h(t, x) \rangle.$$

Integrating by parts and applying the H"older inequality we find

$$\frac{1}{2}\frac{d}{dt}|\eta^h(t, x)|_2^2 \leq \langle A\eta^h(t, x), \eta^h(t, x) \rangle + \frac{\|DF\|_2^2}{4}|\eta^h(t, x)|_2^2 + |D\xi\eta^h(t, x)|_2^2 = $$

$$= \left(\frac{\|DF\|_2^2}{4} - 1\right)|\eta^h(t, x)|_2^2.$$
Then (11) follows by Gronwall’s lemma.

Now we prove that \(\eta^h(t, x) \) fulfills (10). For this fix \(T > 0, x, h \in H \) such that \(|h|_2 \leq 1 \). We claim that there exist a constant \(C_T > 0 \) and a function \(\sigma_T(\cdot): H \to \mathbb{R}^+ \), with \(\sigma_T(h) \to 0 \) as \(h \to 0 \), such that

\[
|X(t, x + h) - X(t, x) - \eta^h(t, x)|_2 \leq C_T \sigma_T(h)|h|_2, \quad \mathbb{P} - \text{a.s.}
\]

Setting \(r_h(t, x) = X(t, x + h) - X(t, x) - \eta^h(t, x) \), \(r_h(t, x) \) satisfies the equation

\[
r_h(t, x) = \int_0^t K(t - s) [F(X(s, x + h)) - F(X(s, x))] ds + \int_0^t K(t - s) DF(X(s, x)) \cdot \eta^h(s, x) ds.
\]

Consequently we have that

\[
r_h(t, x) = \int_0^t K(t - s) \int_0^1 DF(\rho(\zeta, s)) \cdot \eta^h(s, x) ds + \int_0^t K(t - s) DF(X(s, x)) \cdot \eta^h(s, x) ds = \\
= \int_0^t K(t - s) \int_0^1 DF(\rho(\zeta, s)) \cdot \eta^h(s, x) ds + \\
+ \int_0^t K(t - s) \int_0^1 (DF(\rho(\zeta, s)) - DF(X(s, x))) \cdot \eta^h(s, x) ds.
\]

where \(\rho(\zeta, s) = \zeta X(s, x + h) + (1 - \zeta) X(s, x) \). Notice that since \(F \in C_b^1(H) \) and \(X(t, x) \) is continuous with respect to \(x \) uniformly in \([0, T]\), there exists a function \(\sigma_T: H \to \mathbb{R}^+ \) such that \(\sigma_T \to 0 \) as \(h \to 0 \) and

\[
|DF(\rho(\zeta, s)) - DF(X(s, x))|_2 \leq \sigma_T(h).
\]

(12)

Setting

\[
\gamma_T = \sup_{t \in [0,T]} e^{(\|DF\|_0^2/4-1)t},
\]

and taking into account (11),(12), we find

\[
| \int_0^t K(t - s) \int_0^1 (DF(\rho(\zeta, s)) - DF(X(s, x))) \cdot \eta^h(s, x) ds |_2 \leq \\
\leq \kappa \int_0^t e^{-(t-s)(t-s)-1/2} ds \sigma_T(h)|h|_2 \leq \kappa \Gamma(1/4) \gamma_T \sigma_T(h)|h|_2.
\]
It follows that
\[|r_h(t, x)|_2 \leq \|DF\|_0 \int_0^t e^{-(t-s)}(t-s)^{-1/2}|r_h(s, x)|_2 ds + \kappa \Gamma(\frac{1}{4}) \gamma_T \sigma_T(h) |h|_2, \]
and thus by Lemma 2 we have \(|r_h(t, x)|_2 \leq \kappa \Gamma(1/2) \gamma_T^{1/2} (\theta T) \sigma_T(h), |h|_2 \), where \(\theta = (\|DF\|_0 \Gamma(1/2))^2 \). This implies (10).

4 Approximation of \(X(t, x) \) and \(\eta^h(t, x) \)

In this section we consider the approximated problem
\[
\begin{align*}
\frac{dX_n(t)}{dt} &= (AX_n(t) + D_{\xi,n}(F(X_n(t))))dt + dW(t), \\
X_n(0) &= x \in H,
\end{align*}
\]
where \(D_{\xi,n} \in L(H) \) is defined by \(D_{\xi,n} = D_{\xi} \circ P_n \) and \(P_n \) is the projection of \(H \) into the linear span of \(\{e_{-n}, \ldots, e_n\} \). We also consider problem (13) in its mild form, i.e.
\[
X_n(t) = e^{tA}x + \int_0^t K_n(t-s)F(X_n(s))ds + W_A(t),
\]
where \(K_n(t) = D_{\xi,n}e^{tA} \). Notice that \(D_{\xi,n} \circ F : H \to H \) is a nonlinear Lipschitz continuous function, and so, as it is well known (see, for example, [7]), problem (13) admits a mild solution in \(C(W([0, T]; H)) \). Moreover, for any \(n \in \mathbb{N}, t \geq 0 \) we have that \(K_n(t) \in L(H) \) and it holds
\[
\|K_n(t)\|_{L(H)} < \|K(t)\|_{L(H)}, \\
K_n(\cdot) \to K(\cdot) \text{ in } C([t_0, T]; L(H)), \quad 0 < t_0 < T.
\]
We have

Theorem 3. If \(X_n(t, x) \) and \(X(t, x) \) are the solutions of problem (14) and (6) respectively, then
\[
\lim_{n \to \infty} X_n(\cdot, x) = X(\cdot, x), \quad \text{in } C_W([0, T]; H).
\]

Proof. Let us fix \(\varepsilon > 0 \). Taking into account (6), (14) we have
\[
X(t, x) - X_n(t, x) = \int_0^t (K(t-s) - K_n(t-s))F(X(s))ds + \\
+ \int_0^t K_n(t-s)(F(X(s)) - F(X_n(s)))ds
\]

8
Moreover, taking into account (15), for all $0 < t_0 < t \leq T$ it holds

$$\left| \int_0^t (K(t-s) - K_n(t-s))F(X(s))ds \right|_2 \leq$$

$$\leq \int_0^t \|K_n(s) - K(s)\|_{\mathcal{L}(\mathbb{H})}ds \|DF\|_0 \sup_{0 \leq t \leq T} |X(t)|_2 \leq$$

$$\leq (2 \int_0^{t_0} \|K(s)\|_{\mathcal{L}(\mathbb{H})} + \int_{t_0}^t \|K(s) - K_n(s)\|_{\mathcal{L}(\mathbb{H})}ds) \|DF\|_0 \sup_{0 \leq t \leq T} |X(t)|_2 \leq$$

$$\leq (4\kappa \sqrt{t_0} + T \sup_{t_0 \leq t \leq T} \|K(t) - K_n(t)\|_{\mathcal{L}(\mathbb{H})}) \|DF\|_0 \sup_{0 \leq t \leq T} |X(t)|_2$$

and

$$\left| \int_0^t K_n(t-s)(F(X(s)) - F(X_n(s)))ds \right|_2 \leq$$

$$\leq \kappa \|DF\|_0 \int_0^t (t-s)^{-1/2}e^{-(t-s)}|X(s) - X_n(s)|_2 ds.$$
Denote with $\eta^h_n(t,x)$ the mild solution of problem
\[
\begin{cases}
\frac{d}{dt}\eta^h_n(t,x) = A\eta^h_n(t,x) + D\xi_n(DF(X_n(t,x) \cdot \eta^h_n(t,x)), \\
\eta^h_n(0,x) = h.
\end{cases}
\] (17)

It is well known that the solution $X_n(t,x)$ of problem (13) it is differentiable with respect to x P–a.s. (see, for example, [7]), and that
\[
\langle DX_n(t,x), h \rangle = \eta^h_n(t,x), \quad h \in H, t \geq 0.
\]
Moreover it is easy to see that (11) still holds for $\eta^h_n(t,x)$. We have also the next

Theorem 4. If $\eta^h(t,x)$ and $\eta^h_n(t,x)$ are the solutions of problems (8), (17) respectively, then for all $h \in H$
\[
\lim_{n \to \infty} \eta^h_n(t,x) = \eta^h(t,x)
\] (18)
in $C_W([0,T];H)$

Proof. The proof is similar to that of Theorem 3

5 The transition semigroup

The transition semigroup corresponding to the mild solution $X(t,x)$ of (6) is defined by
\[
P_t \varphi(x) = \mathbb{E}[\varphi(X(t,x))], \quad \varphi \in B_b(H), \ t \geq 0, \ x \in H.
\] (19)
Let us also consider the approximating semigroup
\[
P^n_t \varphi(x) = \mathbb{E}[\varphi(X_n(t,x))], \quad \varphi \in B_b(H), \ t \geq 0, \ x \in H,
\] (20)
for all $n \in \mathbb{N}$, where $X_n(t,x)$ is the solution of (14). We have obviously
\[
\|P_t \varphi\|_0 \leq \|\varphi\|_0, \quad \varphi \in B_b(H),
\]
and by the dominated convergence theorem it follows that
\[
\lim_{n \to \infty} P^n_t \varphi(x) = P_t \varphi(x), \quad \varphi \in C_b(H), \ x \in H.
\]
If $F \in C^1_b(H;H)$, by Theorem 2 we have that, for all $\varphi \in C^1_b(H)$, $P_t \varphi(x)$ and $P^n_t \varphi(x)$ are differentiable with respect to x and it holds
\[
\langle DP_t \varphi(x), h \rangle = \mathbb{E}\langle D\varphi(X(t,x)), \eta^h(t,x) \rangle, \quad h \in H,
\]
\[\langle DP^n_t \varphi(x), h \rangle = \mathbb{E} \langle D \varphi(X_n(t,x)), \eta^n_h(t,x) \rangle, \quad h \in H. \]

Moreover, by Theorem 3 and (18) it follows that for all \(\varphi \in C^1_0(H) \), \(h \in H \),
\[
\lim_{n \to \infty} \langle DP^n_t \varphi(x), h \rangle = \langle DP_t \varphi(x), h \rangle
\]
in \(C([0,T]; \mathbb{R}) \).

6 Strong Feller property

In order to prove the strong Feller property of the transition semigroup \(P_t \), i.e for all \(\varphi \in B_b(H), \ t > 0 \), it follows that \(P_t \varphi \in C_b(H) \), we shall use the Bismut-Elworthy formula (see [4]). Since \(D\xi F \) is not Lipschitz continuous, we will apply the Bismut-Elworthy formula to the approximated transition semigroup \(P^n_t \), defined in (20), and then let \(n \to \infty \).

Lemma 3. If \(\varphi \in C^2_b(H) \) and \(t > 0 \) we have, for all \(n \in \mathbb{N} \), \(P^n_t \varphi \in C^1_b(H) \) and, for any \(h \in H \),
\[
\langle DP^n_t \varphi(x), h \rangle = \frac{1}{t} \mathbb{E} \left[\varphi(X_n(t,x)) \int_0^t \eta^n_h(s,x) \, dW(s) \right]. \tag{21}
\]

Proof. See [4]. \qed

Formula (21) remains true also for \(\varphi \in C_b(H) \), since we can pointwise approximate a \(C^2_b(H) \)-function by a sequence of \(C^2_b(H) \)-functions.

Theorem 5. The transition semigroup \(P_t \) defined in (19) is strong Feller.

Proof. Step 1. If \(\varphi \in C^2_b(H) \), for all \(t > 0 \) we have
\[
|DP_t \varphi(x)|_2 \leq t^{-1} \frac{\sqrt{2}}{\|DF\|_0} (e^{\frac{\|DF\|_0^2}{4}t} - 1)^{1/2} \|\varphi\|_0.
\]

In fact by (21), using the Hölder inequality and recalling (11), for all \(n \in \mathbb{N} \) we have
\[
|\langle DP^n_t \varphi(x), h \rangle|^2 \leq t^{-2} \|\varphi\|_0^2 \int_0^t \|\eta^n_h(s,x)\|_2^2 ds \leq t^{-2} \|\varphi\|_0^2 \int_0^t e^{\frac{\|DF\|_0^2}{4}s} |h|^2 ds = t^{-2} \|\varphi\|_0^2 \|DF\|_0^2 (e^{\frac{\|DF\|_0^2}{4}t} - 1) |h|^2.
\]

Now, letting \(n \to \infty \), the conclusion holds for the arbitrariness of \(h \).

Step 2. For any \(\varphi \in B_b(H), \ t > 0 \) and \(x, y \in H \) it holds
\[
|P_t \varphi(x) - P_t \varphi(y)| \leq t^{-1} \frac{\sqrt{2}}{\|DF\|_0} (e^{\frac{\|DF\|_0^2}{4}t} - 1)^{1/2} \|\varphi\|_0 |x - y|_2 \tag{22}
\]

11
In order to prove the step we need to approximate \(\varphi \) by a sequence of \(\mathcal{C}^2_b(H) \)-functions. Since \(\mathcal{C}^2_b(H) \) is not dense in \(B_b(H) \), we will use a suitable pointwise approximation. Fix \(t > 0 \) and \(x, y \in H \). Let us define a signed measure \(\zeta \) setting

\[
\zeta = \lambda_{t,x} - \lambda_{t,y},
\]

where \(\lambda_{t,x} \), \(\lambda_{t,y} \) are the law of \(X(t,x) \) and \(X(t,y) \) respectively, and consider a sequence \(\{\varphi_n\} \) of \(\mathcal{C}^2_b(H) \)-functions such that

\[
\lim_{n \to \infty} \varphi_n(x) = \varphi(x) \quad \zeta\text{-a.s.}, \quad \|\varphi_n\|_0 \leq \|\varphi\|_0 \quad \forall n \in \mathbb{N}.
\]

By step 1 we have

\[
|P_t\varphi_n(x) - P_t\varphi_n(y)| \leq \sup_{0 \leq \theta \leq 1} \|D P_t \varphi_n(\theta x + (1-\theta)y)\|_{\mathcal{L}(H)} |x - y|_2 \leq \frac{\sqrt{2}}{\|DF\|_0} (e^{\|DF\|_2 t} - 1)^{1/2} \|\varphi_n\|_0 |x - y|_2.
\]

By the dominate convergence theorem, it follows that (22) holds and so \(P_t \varphi \in C_b(H) \) as claimed. Theorem 5 is proved.

7 Irreducibility

A basic tool for proving irreducibility of \(P_t \) is the approximate controllability of the following controlled system

\[
\begin{cases}
y'(t) = A y(t) + D \xi F(y(t)) + u(t) \\
y(0) = x
\end{cases}
\]

where \(u \in L^2([0,T];H) \). Let us denote by \(y(\cdot, x; u) \) the mild solution of (23), that is the solution of the integral equation

\[
y(t) = e^{tA} x + \int_0^t K(t-s)F(y(s))ds + \sigma_u(t),
\]

where

\[
\sigma_u(t) = \int_0^t e^{(t-s)A} u(s)ds.
\]

We say that the sistem (23) is approximatively controllable if for any \(\varepsilon > 0, T > 0, x, z \in H \), there exists \(u \in L^2([0,T];H) \) such that

\[
|y(T, x; u) - z| \leq \varepsilon.
\]

We have
Lemma 4. The system (23) is approximatively controllable.

Proof. Let be $\varepsilon > 0$, $T > 0$, x, $z \in H$. we have to show that there exists $u \in L^2([0, T]; H)$ such that (25) holds.

Step 1. The mapping

$$\sigma : L^2([0, T]; H) \rightarrow C_0([0, T]; H) \quad u \mapsto \sigma_u,$$

where

$$C_0([0, T]; H) = \{x \in C([0, T]; H) : x(0) = 0\}$$

has dense range. In fact is easy to check that the set

$$D_0 = \{\varphi \in C^1([0, T]; D(A)) : x(0) = 0\}$$

is dense in $C_0([0, T]; H)$. Now let $\varphi \in D_0$ and set

$$u(t) = \varphi(t) - A\varphi(t) - D\xi\varphi(t).$$

It is clear that $\sigma_u = \varphi$, so the range of σ is dense as claimed.

Step 2. Conclusion.

Choose $\psi \in C([0, T]; H)$ such that $\psi(0) = 0$, $\psi(T) = z$, for instance

$$\psi(t) = \frac{T-t}{T}x + \frac{t}{T}z, \quad t \in [0, T],$$

and set

$$g(t) = \psi(t) - e^{tA}x - \int_0^t K(t-s)F(\psi(s))ds, \quad t \in [0, T].$$

Now, given $\varepsilon > 0$, by Step 1 there exists $u \in L^2([0, T]; H)$ such that

$$|\sigma_u(t) - g(t)| \leq C, \quad t \in [0, T],$$

where the constant C will be choosen later. Let us show that (25) holds. In fact, let $y(\cdot; x; u)$ be the solution of (23). By (7) we have

$$|y(t) - \psi(t)|_2 \leq \int_0^t |K(t-s)(F(y(s)) - F(\psi(s)))|_2ds + |\sigma_u(t) - g(t)|_2 \leq$$

$$\leq \kappa\|DF\|_0 \int_0^t e^{-(t-s)}(t-s)^{-1/2}|y(s) - \psi(s)|_2ds + |\sigma_u(t) - g(t)|_2.$$

Then by Lemma 2 it follows that

$$|y(t) - \psi(t)|_2 \leq CE_{1/2}(\theta t)$$

and consequently

$$|y(T) - z|_2 \leq CE_{1/2}(\theta T).$$

Now it is enough to choose $C < E_{1/4}(\theta T)^{-1}\varepsilon$. □ □
Theorem 6. The transition semigroup P_t defined in (19) is irreducible.

Proof. Let be $\varepsilon, T > 0, x, z \in H$. We have to show that

$$P_t X_{B^c(z,\varepsilon)}(x) = \mathbb{P}(|X(t, x) - z|_2 > \varepsilon) < 1,$$

(26)

where $X(t, x)$ is the solution of (6). For this purpose we choose a control $u \in L^2([0, T]; H)$ such that $|y(T, x; u) - z|_2 \leq \varepsilon/2$, where y is the solution of (24). Since

$$|X(T, x) - z|_2 \leq |X(T, x) - y(T, x)|_2 + \frac{\varepsilon}{2},$$

we have

$$\mathbb{P}(|X(T, x) - z|_2 > 1) \leq \mathbb{P}(|X(T, x) - y(T, x)|_2 > \frac{\varepsilon}{2}).$$

(27)

But by (7) it holds

$$|X(t, x) - y(t)|_2 \leq \int_0^t |K(t - s)(F(X(s, x)) - F(y(s, x)))|_2 ds + |W_A(t) - \sigma_u(t)|_2 \leq$$

$$\leq \kappa |DF|_0 \int_0^t e^{-(t-s)}(t-s)^{-1/2}|X(s, x) - y(s, x)|_2 ds + |W_A(t) - \sigma_u(t)|_2.$$

consequently, by Lemma 2, it follows that

$$|X(t, x) - y(t)|_2 \leq |W_A(t) - \sigma_u(t)|_2 + \theta \int_0^t E_0^{1/2} \theta(t - s)|W_A(s) - \sigma_u(s)|_2.$$

Moreover, since $W_A(\cdot)$ is a nondegenerate continuous Gaussian random variable, we have that $\mathbb{P}(\sup_{t \in [0, T]} |W_A(t) - \sigma(t)|_2 > \varepsilon) < 1$. This implies that

$$\mathbb{P}(|X(T, x) - y(T)|_2 > \varepsilon) \leq \mathbb{P}(|W_A(t) - \sigma_u(t)|_2 + \theta \int_0^t E_0^{1/2} \theta(t - s)|W_A(s) - \sigma_u(s)|_2 > \varepsilon) < 1,$$

and therefore (26) is proved.

8 Existence and uniqueness of an invariant measure

In this section we shall assume that
Hypotesis 6.1.

\[
\| F \|_0 < \infty \quad \text{(28)}
\]

or

\[
\| DF \|_0 < 2 \quad \text{(29)}
\]

or

\[
F \in C^1(\mathbb{R}; \mathbb{R}) \text{ and } \| F' \|_0 < \infty \quad \text{(30)}
\]

In order to prove the existence of an invariant measure we set

\[
Y(t) = X(t, x) - W_A(t),
\]

where \(X(t, x) \) is the solution of problem (5). Since \(Y(t) \) is the solution of the integral equation

\[
Y(t) = e^{tA}x + \int_0^t K(t - s)F(Y(s) + W_A(s))ds,
\]

it follows easily that \(Y(t) \) is the strong solution of

\[
\begin{cases}
\frac{d}{dt} Y(t) = AY(t) + D\xi F(Y(t) + W_A(t)), \\
Y(0) = x.
\end{cases}
\quad \text{(31)}
\]

Multiplying both sides of (31) by \(Y(t) \) and integrating over \([0, 2\pi]\) we find

\[
\frac{1}{2} \frac{d}{dt} |Y(t)|_2^2 = \langle AY(t), Y(t) \rangle + \langle D\xi F(Y(t) + W_A(t)), Y(t) \rangle. \quad \text{(32)}
\]

We have the next

Lemma 5. Assume that (28) holds. Then for all \(0 \leq \varepsilon \leq 1 \) it holds

\[
|Y(t)|_2^2 + \int_0^t e^{-2(1-\varepsilon)(t-s)}|D\xi Y(s)|_2^2 ds \leq |x|_2 e^{-2(1-\varepsilon)t} + \| F \|_0^2 \int_0^t e^{-2(1-\varepsilon)(t-s)} ds
\]

\[
\text{(33)}
\]

Proof. Fix \(0 \leq \varepsilon \leq 1 \). By (28) and (32) it holds

\[
\frac{1}{2} \frac{d}{dt} |Y(t)|_2^2 \leq \langle AY(t), Y(t) \rangle + \| F \|_0^2 + |D\xi Y(t)|_2^2 =
\]

\[
= -|Y(t)|_2^2 + \| F \|_0^2 \leq -(1-\varepsilon)|Y(t)|_2^2 - \| F \|_0^2
\]

Now (33) follows by the Gronwall lemma.
Lemma 6. Assume that (29) holds. Then for all $\|DF\|_0^2/4 < \varepsilon \leq 1$ it holds

$$|Y(t)|^2 + (1 - \frac{\|DF\|_0^2}{4\varepsilon}) \int_0^t e^{-(1-\varepsilon)(t-s)}|D_\xi Y(s)|^2 ds \leq$$

$$\leq e^{-(1-\varepsilon)t}|x|^2 + \frac{\|DF\|_0^2}{4\varepsilon} \left(\int_0^t e^{-(1-\varepsilon)(t-s)}\|W_A(s)\|^2 ds \right) \tag{34}$$

Proof. Fix $\|DF\|_0^2/4 < \varepsilon \leq 1$. Integrating by parts and applying the Young inequality we find, for all $M > 0$,

$$||D_\xi F(Y(t) + W_A(t)), Y(t)|| \leq \|F(Y(t) + W_A(t)) \|_2 |D_\xi Y(t)|_2 \leq$$

$$\leq \|DF\|_0 |Y(t)|_2 |D_\xi Y(t)|_2 + \|DF\|_0 W_A(t)|_2 |D_\xi Y(t)|_2 \leq$$

$$\leq \varepsilon |Y(t)|_2 + \frac{\|DF\|_0^2}{4\varepsilon} |D_\xi Y(t)|_2 + \frac{\|DF\|_0^2}{2M} |W_A(t)|_2 + \frac{M}{2} |D_\xi Y(t)|_2.$$

Then by (32) we have

$$\frac{1}{2} \frac{d}{dt} |Y(t)|^2 \leq - (1-\varepsilon)|Y(t)|^2 + \frac{M}{2} + \frac{\|DF\|_0^2}{4\varepsilon} - 1)|D_\xi Y(t)|_2 + \frac{\|DF\|_0^2}{2M} |W_A(t)|_2$$

Since $\|DF\|_0 < 2$ we can set $M = 1 - \frac{\|DF\|_0^2}{4\varepsilon}$ and so we find

$$\frac{1}{2} \frac{d}{dt} |Y(t)|^2 \leq - (1-\varepsilon)|Y(t)|^2 - \frac{1}{2} (1 - \frac{\|DF\|_0^2}{4\varepsilon}) |D_\xi Y(t)|_2 + \frac{\|DF\|_0^2}{1 - \frac{\|DF\|_0^2}{4\varepsilon}} |W_A(t)|_2.$$

Now applying the Gronwall lemma we find (34). \hfill \Box

Lemma 7. If (30) holds, then $DF = F'$ and for all $0 \leq \varepsilon \leq 1$ it holds

$$|Y(t)|^2 + \int_0^t e^{2(1-\varepsilon)(t-s)}|D_\xi Y(s)|^2 ds \leq$$

$$\leq e^{-2(1-\varepsilon)t}|x|^2 + \|DF\|_0^2 \int_0^t e^{2(1-\varepsilon)(t-s)}\|W_A(s)\|^2 ds \tag{35}$$

Proof. Since $F \in C^1(\mathbb{R};\mathbb{R})$, it is easy to see that for all $x \in H$, $\xi \in [0, 2\pi]$, we have $F(x)(\xi) = F(x(\xi))$ and therefore $DF = F'$. We have also that for all $x \in H^1$ it holds

$$\langle D_\xi F(x), x \rangle = 0. \tag{36}$$

In fact we have

$$\langle D_\xi F(x), x \rangle = -\langle F(x), D_\xi x \rangle =$$

$$= \int_0^{2\pi} F(x(\xi)) D_\xi x(\xi) d\xi = \int_0^{2\pi} D_\xi (\int_0^{x(\xi)} F(\xi') d\xi') d\xi = 0.$$

16
This implies that for all $x \in H^1$, $y \in H$ it holds
\[
|\langle D_\xi F(x + y), x \rangle| \leq \|DF\|_0 |y|_2 |D_\xi x|_2
\] (37)

In fact, taking into account (36) we have
\[
|\langle D_\xi F(x + y), x \rangle| = |\langle F(x + y), D_\xi x \rangle| = |\langle F(x + y) - F(x), D_\xi x \rangle|
\]
that implies (37). Now fix $\varepsilon \geq 0$. Then, by (32), it follows
\[
\frac{1}{2} \frac{d}{dt} |Y(t)|_2^2 \leq \langle AY(t), Y(t) \rangle + \|DF\|_0 |W_A(t)|_2 |D_\xi Y(t)|_2 =
\]
\[
= -|Y(t)|_2^2 - \frac{|D_\xi Y(t)|_2^2}{2} + \frac{\|DF\|_0}{2} |W_A(t)|_2^2 \leq
\]
\[
\leq -(1 - \varepsilon)|Y(t)|_2^2 - \frac{|D_\xi Y(t)|_2^2}{2} + \frac{\|DF\|_0}{2} |W_A(t)|_2^2,
\]
and so applying the Gronwall lemma yields (35).

Now we are able to prove the main result of this section.

Theorem 7. Let $X(t, x)$ be the mild solution of problem (5). If hypothesis 5.1 holds then there exists a unique invariant measure for the transition semigroup P_t defined in (19).

Proof. Since for Theorem 5 and Theorem 6 the transition semigroup P_t is strong Feller and irreducible, it is sufficient to prove the existence of an invariant measure (see [5]). So, fix $x \in H$ and denote with $\lambda_{t,x}$ the law of $X(t, x)$ and by μ_T the measure
\[
\mu_T = \frac{1}{T} \int_0^T \lambda_{t,x} dt
\]
Now we shall prove that the family of measure $\left\{ \mu_T \right\}_{T \geq 0}$ is tight. So, denote with B_R the set $B_R = \{ x \in H^{1/4} : |x|_{2,1/4}^2 \leq R \}$. Notice that since $H^{1/4} \subset H$ with compact embedding, the set B_R is compact in H. Moreover we have
\[
|X(t, x)|_{1/4}^2 - 2|W_A(t)|_{1/4}^2 \leq 2|Y(t, x)|_{1/4}^2 \leq
\]
\[
\leq 2|2(-A + I)^{1/4}Y(t, x)|_{1/4}^2 \leq 8|D_\xi Y(t, x)|_2^2,
\]
where $Y(t, x)$ is a strong solution of (31). Setting $\varepsilon = 1$ in (33), (34), (35), it is clear that there exists a constant $C(x)$, depending by x, such that
\[
\int_0^T |D_\xi Y(t, x)|_2^2 dt \leq C(x)(1 + T).
\]
Then

\[
\mu(B_R^c) = \frac{1}{T} \int_0^T \lambda_{t,x}(B_R^c) dt = \frac{1}{T} \int_0^T \mathbb{P}(|X(t,x)|^2_{1/4} > R) dt \leq \frac{1}{TR} \int_0^T \mathbb{P}(|X(t,x)|^2_{1/2} > R) dt + \frac{2}{TR} \int_0^T \mathbb{E}|W_A(t)|^2_{1/2} dt \leq \frac{8}{R} \mathbb{E}|D_\xi Y(t,x)|^2_{1/2} dt + \frac{2}{R} \sup_{t>0} \mathbb{E}|W_A(t)|^2_{1/2}.
\]

So, it follows that \(\{\mu_T\}_{t \geq 0} \) is tight. Now, by the Krylov-Bogoliubov theorem it follows that there exists an invariant measure for the transition semigroup \(P_t \). The theorem is proved.

\[\square\]

Lemma 8. Assume that hypothesis 5.1 holds. Then for any \(n \in \mathbb{N} \) we have

\[
\int_H |x|^{2n} \nu(dx) < +\infty \quad (38)
\]

Proof. Fix \(n \in \mathbb{N} \). For any \(t > 0 \) we have

\[
|X(t,x)|^{2n}_{1/2} \leq 2n|Y(t,x)|^{2n}_{1/2} + 2n|W_A(t)|^{2n}_{1/2},
\]

where \(Y(t,x) \) is the solution of problem (31). Setting \(\varepsilon = (1 + \|DF\|^2_{0}/4)/2 \) in (33), (34), (35) it is clear that there exist \(\gamma_n, c_n > 0 \) such that

\[
\mathbb{E}|Y(t,x)|^{2n}_{1/2} \leq c_n(1 + e^{-\gamma_n t}|x|^{2n}_{1/2}).
\]

Then, since \(W_A(t) \) is a gaussian random variable, it follows that for some \(c'_n > 0 \) it holds

\[
\mathbb{E}|X(t,x)|^{2n}_{1/2} \leq c'_n(1 + e^{-\gamma_n t}|x|^{2n}_{1/2}).
\]

Now denote with \(\lambda_{t,x} \) the law of \(X(t,x) \). For any \(\alpha > 0 \) it holds

\[
\int_H \frac{|y|^{2n}_{1/2}}{1 + \alpha|y|^{2n}_{1/2}} \lambda_{t,x}(dy) \leq \int_H |y|^{2n}_{1/2} \lambda_{t,x}(dy) = \mathbb{E}|X(t,x)|^{2n}_{1/2} \leq c'_n(1 + e^{-\gamma_n t}|x|^{2n}_{1/2}).
\]

Since \(\lambda_{t,x} \) converges weakly to \(\nu \), it follows that

\[
\int_H \frac{|y|^{2n}_{1/2}}{1 + \alpha|y|^{2n}_{1/2}} \lambda_{t,x}(dy) \leq c'_n.
\]

Letting \(\alpha \to 0 \) yields (38). \(\square\)
We are concerned with the semigroup P_t in $L^2(H, \nu)$, where ν is the unique invariant measure for P_t. In the following we only assume that $\int_H |x|^2 d\nu < \infty$. We denote by K_2 the infinitesimal generator of P_t in $L^2(H, \nu)$ and by $E_A(H)$ is linear span of the set of the functions

$$x \mapsto \cos(\langle x, h \rangle), x \mapsto \sin(\langle x, h \rangle), x \in H, h \in D(A').$$

Let us consider the Kolmogorov operator

$$K_0\varphi = L\varphi - \langle F(x), D\xi D\varphi \rangle, \quad \varphi \in E_A(H)$$

where

$$L\varphi(\cdot) = \frac{1}{2} \text{Tr}[D^2 \varphi(\cdot)] + \langle \cdot, AD\varphi(\cdot) \rangle$$

is the Ornstein-Uhlenbek generator (see [7]). Notice that $E_A(H) \subset L^2(H, \nu)$ and $E_A(H)$ is dense in $L^2(H, \nu)$, since $D(A)$ is dense in H. Our aim is to prove that $K_2 = K_0$ in $L^2(H, \nu)$. First we have

Lemma 9. For any $\varphi \in E_A(H)$ we have $\varphi \in D(K_2)$ and $K_2\varphi = K_0\varphi$.

Proof. By Itô’s formula it follows that for all $\varphi \in E_A(H)$

$$\lim_{t \searrow 0} \frac{1}{t} \left(P_t \varphi(x) - \varphi(x) \right) = K_0\varphi(x), \quad x \in H$$

pointwise. Now it is sufficient to show that $\frac{1}{t}(P_t \varphi(x) - \varphi(x))$, $t \in (0, 1]$ is equibounded in $L^2(H, \nu)$. For all $\varphi \in E_A(H)$ and $x \in H$ we have

$$|P_t \varphi(x) - \varphi(x)|_2^2 \leq 2t \int_0^t \mathbb{E}|L\varphi(X(s, x))|_2^2 ds + 2t \int_0^t \mathbb{E}(|D\xi D\varphi(X(s, x)), F(X(s, x))|_2^2 ds.$$

It is clear that there exist two positive constants a, b (depending on φ) such that for all $x \in H$ it holds

$$|L\varphi(x)|_2 \leq a + b|x|_2, \quad |\langle x, D\xi D\varphi(x) \rangle| \leq b|x|_2.$$

Then we have

$$|P_t \varphi_h(x) - \varphi_h(x)|_2^2 \leq 2t \int_0^t \mathbb{E}(a + b|x|_2) |X(s, x)|_2^2 ds + 2bt \int_0^t |F(X(s, x))|_2^2 ds.$$
Integrating with respect to ν and taking into account the invariance of P_t with respect to ν yields

$$\|P_t\varphi_h - \varphi_h\|_{L^2(H,\nu)}^2 \leq 2t^2 \left(\int_H (a + b|x|_2)^2 \nu(dx) + b \int_H |F(x)|^2 d\nu(dx) \right).$$

Since $\int_H |x|^2 d\nu < \infty$ by assumption, the equiboundness of $t^{-1}(P_t\varphi_h - \varphi_h)$ follows easily.

Before concluding that $K_2 = K_0$ we need two lemmas

Lemma 10. There exists a constant $c_1 > 0$ such that for all $h \in H$ we have

$$|\eta^{Dh}(t, x)|_2 \leq c_1 \left(t^{-1/2} + e^{\theta t} \right) |h|_2, \quad (39)$$

where $\theta = (\kappa \|DF\|_0 \Gamma(1/2))^2$ and $\eta^z(t, x)$ is defined as in (8).

Proof. Notice that by the density of H^1 in H it is sufficient to prove (39) for $h \in H^1$. So, if $h \in H^1$, $\eta^{Dh}(t, x)$ is the solution of

$$\eta^{Dh}(t, x) = K(t)h + \int_0^t K(t - s)\langle DF(X(s, x)), \eta^{Dh}(s, x) \rangle ds.$$

By (7) it follows that

$$|\eta^{Dh}(t, x)|_2 \leq \kappa t^{-1/2} |h|_2 + \kappa \|DF\|_0 \int_0^t (t - s)^{-1/2} |\eta^{Dh}(s, x)|_2 ds$$

and by Lemma 2 that

$$|\eta^{Dh}(t, x)|_2 \leq \kappa t^{-1/2} |h|_2 + \kappa \theta \int_0^t E_{1/2}'(\theta(t - s)) s^{-1/2} ds |h|_2. \quad (40)$$

Since $E_{1/2}(\cdot) : \mathbb{R}^+ \to \mathbb{R}$ is a continuous function with

$$E_{1/2}'(z) \sim 2z^{-1/2} \text{ as } z \to 0^+, \quad E_{1/2}'(z) \sim 2e^z \text{ as } z \to +\infty,$$

it is clear that there exists a constant $C > 0$ such that

$$E_{1/2}'(z) \leq C(z^{-1/2} + e^z) \quad z > 0.$$

Taking into account that

$$\int_0^t (t - s)^{-1/2} s^{-1/2} ds = \int_0^1 (1 - s)^{-1/2} s^{-1/2} ds = \beta(1/2, 1/2),$$

where $\beta(\cdot, \cdot)$ is the Euler beta function, by an easy computation we find (39)
Lemma 11. Assume that \(f \in C^1_b(H) \). Then there exists \(c_2 > 0 \) such that for all \(\lambda > \theta \), \(h \in H \) we have

\[
|\langle D_\xi D\varphi(x), h \rangle| \leq c_2(\lambda^{-1/2} + \frac{1}{\lambda-\theta})\|f\|_1\|h\|_2
\]

(41)

where

\[\theta = \left(\kappa \|DF\|_0 \Gamma(1/2) \right)^2 \]

and

\[\varphi(x) = \int_0^\infty e^{-\lambda t} P_t f(x) dt. \]

Proof. Notice that since \(H^1 \) is dense in \(H \) it is sufficient to prove (41) for \(h \in H^1 \). We have

\[
\langle D_\xi D\varphi(x), h \rangle = -\langle D\varphi(x), D_\xi h \rangle =
\]

\[= -\int_0^\infty e^{-\lambda t} \mathbb{E}\left[\langle Df(X(t,x)), \langle X_x(t,x), D_\xi h \rangle \rangle \right] dt =
\]

\[= -\int_0^\infty e^{-\lambda t} \mathbb{E}\left[\langle Df(X(t,x)), \eta D_\xi h(t,x) \rangle \right] dt. \]

So, taking into account (39),

\[
|\langle D_\xi D\varphi(x), h \rangle|_2 \leq \|f\|_1 \int_0^\infty e^{-\lambda t} |\eta D_\xi h(t,x)|_2 dt \leq
\]

\[\leq \|f\|_1 c_1 \int_0^\infty e^{-\lambda t} (t^{-1/2} + e^{\theta t}) dt |h|_2
\]

that implies (41). \(\square \)

Now we are able to prove the main result of this section.

Theorem 8. \(K_2 \) is the closure of \(K_0 \) in \(L^2(H,\nu) \).

Proof. By Lemma 9 we know that \(K_2 \) extends \(K_0 \). Since \(K_2 \) is dissipative, so is \(K_0 \). Consequently, \(K_0 \) is closable. Let us denote by \(\overline{K_0} \) its closure. We have to show that \(K_2 = \overline{K_0} \). For this purpose, we will show that the range of \(\lambda - \overline{K_0} \) is dense in \(L^2(H,\nu) \) for some \(\lambda > 0 \). In fact by the Lumer-Philipps theorem this implies that \(\overline{K_0} \) is \(m \)-dissipative and it is the generator of a semigroup of contraction. Therefore, since \(K_2 \) extends \(K_0 \), it must coincide with \(\overline{K_0} \). So, if \(f \in \mathcal{E}_A(H) \), we are interested in solving the problem

\[\lambda \varphi - \overline{K_0} \varphi = f. \]
Setting
\[\varphi(x) = R(\lambda, K_2)f(x) = \int_0^\infty e^{-\lambda t}P_tf(x)dt, \]
we will show in the next two steps that \(\varphi \in D(K_0) \), that implies \(\lambda \varphi - K_0 \varphi = f \), since \(K_2 \) extends \(K_0 \). Let us denote with \(C_{b,1}(H) \) the Banach space of all continuous function \(\psi : H \to \mathbb{R} \) such that \(\psi(x)/(1 + |x|^2) \in C_b(H) \).

Step 1. \(\varphi \in D(L, C_{b,1}(H)) \)

Notice that by Theorem 5 it follows that \(\varphi \in C^1_b(H) \). We have to compute the derivative
\[\frac{d}{dt} R_t \varphi|_{t=0}, \]
where
\[R_t \varphi(x) = \mathbb{E}[\varphi(Z(t,x))], \quad Z(t,x) = e^{tA}x + W_A(t). \]

We have
\[R_t \varphi(x) = \mathbb{E}[\varphi(Z(t,x))] = \mathbb{E}[\varphi(X(t,x) - \int_0^t K(t-s)F(X(s,x))ds)] = \]
\[= P_t \varphi(x) - \mathbb{E}[\langle D\varphi(X(t,x)), \int_0^t K(t-s)F(X(s,x))ds \rangle] + o(t), \] \((42) \)
where \(\lim_{t \to 0} \frac{o(t)}{t} = 0 \). Now, since \(\forall x \in H \) we have that \(\mathbb{P}-a.s. \)
\[\lim_{t \to 0^+} \frac{1}{t} \langle D\varphi(X(t,x)), \int_0^t K(t-s)F(X(s,x))ds \rangle = -\langle D_\xi D\varphi(x), F(x) \rangle \] \((43) \)
Taking into account \((41) \) with \(\lambda > \theta \) we find
\[\frac{1}{t} \langle D\varphi(X(t,x)), \int_0^t K(t-s)F(X(s,x))ds \rangle = \]
\[= e^{\lambda t} \frac{1}{t} \langle D\varphi(x), \int_0^t K(t-s)F(X(s,x))ds \rangle = \]
\[= e^{\lambda t} \frac{1}{t} \langle D_\xi D\varphi(x), \int_0^t e^{(t-s)\lambda}F(X(s,x))ds \rangle | \leq \]
\[\leq e^{\lambda t} c_2(\lambda^{1/2} + \frac{1}{\lambda - \theta})\|DF\|_0 \frac{1}{t} \sup_{0 \leq s \leq T} |X(s,x)| \] \((44) \)
So, since \((43), (44) \) hold, we can apply the dominated convergence theorem in \((42) \) and obtain
\[\lim_{t \to 0} \frac{R_t \varphi(x) - \varphi(x)}{t} = \lambda \varphi(x) - f(x) + \langle D_\xi D\varphi(x), F(x) \rangle \]
for all $x \in H$. Now we have to prove that $t^{-1}(R_t \varphi(x) - \varphi(x))$ is equibounded in $C_{b,1}(H)$ for $t \in (0, 1]$. To see this we need to observe that by (6) it follows easily that

$$
\sup_{t \in [0, 1]} \mathbb{E}|X(t, x)|_2 \leq |x|_2 C,
$$

where $C = \sup_{t \geq 0} \mathbb{E}|W(t)|_2 E_{1/2}(\theta)$. Now set

$$
C' = c_2(\lambda^{-1/2} + \frac{1}{\lambda - \theta})\|DF\|_0 C.
$$

By (42) and (44) we have

$$
\frac{|R_t \varphi(x) - \varphi(x)|}{t(1 + |x|_2)} \leq \frac{|P_t \varphi(x) - \varphi(x)|}{t(1 + |x|_2)} + \frac{1}{t(1 + |x|_2)} \mathbb{E}[\langle D\varphi(X(t, x)), \int_0^t K(t-s)F(X(s, x))ds \rangle] + \frac{o(t)}{t} \leq \frac{\lambda t - 1}{t} \|\varphi\|_{b,1} + C' \frac{\lambda^t (1 - e^{-t})|x|_2}{t(1 + |x|_2)} + \frac{o(t)}{t}
$$

which is equibounded in $(0, 1]$.

Step 2. $D(L, C_{b,1}(H)) \subset D(K_0)$.

By Proposition 2.6 of [8] there exists a 4-index sequence $(\varphi_{n_1, n_2, n_3, n_4}) \subset \mathcal{E}_A(H)$ such that for all $x \in H$

$$
\lim_{n_1 \to \infty} \lim_{n_2 \to \infty} \lim_{n_3 \to \infty} \lim_{n_4 \to \infty} \varphi_{n_1, n_2, n_3, n_4}(x) = \varphi(x)
$$

$$
\lim_{n_1 \to \infty} \lim_{n_2 \to \infty} \lim_{n_3 \to \infty} \lim_{n_4 \to \infty} L\varphi_{n_1, n_2, n_3, n_4}(x) = L\varphi(x)
$$

$$
\lim_{n_1 \to \infty} \lim_{n_2 \to \infty} \lim_{n_3 \to \infty} \lim_{n_4 \to \infty} D\varphi_{n_1, n_2, n_3, n_4}(x) = D\varphi(x)
$$

and

$$
\sup_{n_1, n_2, n_3, n_4} \{\|\varphi_{n_1, n_2, n_3, n_4}\|_{b,2} + \|D\varphi_{n_1, n_2, n_3, n_4}\|_{b,2} + \|L\varphi_{n_1, n_2, n_3, n_4}\|_{b,2}\} < \infty.
$$

So, by the dominated convergence theorem it follows that

$$
\lim_{n \to \infty} K_0 \varphi_n = \lim_{n \to \infty} (L\varphi_n - \langle D\xi D\varphi_n, F \rangle) = L\varphi - \langle D\xi D\varphi, F \rangle
$$

in $L^2(H, \nu)$, that implies $\varphi \in D(K_0)$. The theorem is proved. \end{proof}
10 Integration by parts formula

Let us denote by ν the invariant measure for the transition semigroup P_t and by K_2 its infinitesimal generator in $L^2(H, \nu)$.

Proposition 9. The operator $D : \mathcal{E}_A(H) \to C_b(H, H)$, $\varphi \mapsto D\varphi$, is uniquely extendible to a linear bounded operator $D : D(K_2) \to L^2(H, \nu; H)$. Moreover, (3) holds.

Proof. Let $\varphi \in \mathcal{E}_A(H)$. Taking into account Lemma 9 and that $\varphi^2 \in \mathcal{E}_A(H)$ by a simple computation we see that $K_2(\varphi^2) = 2\varphi K_2\varphi + |D\varphi|^2_2$. Integrating both sides over H with respect to ν and taking into account that

\[\int_H K_2(\varphi^2) d\nu = 0 \]

by the invariance of P_t with respect to ν, it follows (3). Now we will prove that (3) holds for all $\varphi \in D(K_2)$. Let us fix $\varphi \in D(K_2)$. Since $\mathcal{E}_A(H)$ is a core for P_t, there exists a sequence $\{\varphi_n\} \subset \mathcal{E}_A(H)$ such that $\varphi_n \to \varphi$, $K_2 \varphi_n \to K_2 \varphi$ in $L^2(H, \nu)$, and consequently

\[\int_H |D(\varphi_n - \varphi_m)|^2 d\nu \leq 2 \int_H |\varphi_n - \varphi_m|^2 |K_2(\varphi_n - \varphi_m)|^2 d\nu \leq \|\varphi_n - \varphi_m\|^2_{L^2(H, \nu)} + \|K_2(\varphi_n - \varphi_m)\|^2_{L^2(H, \nu)} \]

Therefore the sequence $\{D\varphi_n\}$ is Cauchy in $L^2(H, \nu; H)$, and the conclusion follows.

11 The Sobolev space $W^{1,2}(H, \nu)$

We want to show that the mapping

\[D : \mathcal{E}_A(H) \subset L^2(H, \nu) \to L^2(H, \nu; H), \varphi \mapsto D\varphi \]

is closable.

Theorem 10. D is closable. Moreover, if φ belongs to the domain \overline{D} of the closure of D and $\overline{D}\varphi = 0$ we have that $\overline{D}P_t \varphi = 0$ for any $t > 0$.

Proof. Since $\|R(\lambda, L)\|_{L^2(H, \nu)} \leq \sqrt{\lambda/t}$, $\lambda > 0$ and (8) holds, we can apply Proposition 3.5 of [9]. The theorem is proved.
We define by $W^{1,2}(H,\nu)$ the domain of D in $L^2(H,\nu)$. By (3) it follows that $D(K_2) \subset W^{1,2}(H,\nu)$. We have the next

Proposition 11. Let $\varphi \in L^2(H,\nu)$ and $t \geq 0$. Set $u(t, x) = P_t \varphi(x)$. Then, for any $T > 0$, we have $u \in L^2(0, T; W^{1,2}(H,\nu))$ and the following identity holds

$$\int_H (P_t \varphi)^2 d\nu + \int_0^t ds \int_H |D P_s \varphi|^2 d\nu = \int_H \varphi^2 d\nu. \quad (45)$$

Proof. Let first $\varphi \in D(K_2)$. We have that $P_t \varphi \in D(K_2)$ and for all $t \geq 0$

$$\frac{d}{dt} P_t \varphi(x) = K_2 P_t \varphi(x).$$

Multiplying both sides of this identity by $P_t \varphi(x)$ and integrating with respect to x over H, by (3) yields

$$\frac{1}{2} \frac{d}{dt} \int_H (P_t \varphi)^2 d\nu = \int_H P_t \varphi K_2 P_t \varphi d\nu - \frac{1}{2} \int_H |D P_t \varphi|^2 d\nu.$$

Integrating with respect to t it yields (45). Now the conclusion follows by the density of $D(K_2)$ in $L^2(H,\nu)$. \qed

Letting $t \to \infty$ in (45) we have

Proposition 12. For any $\varphi \in L^2(H,\nu)$, we have

$$\int_H |\varphi - \bar{\varphi}|^2 d\nu = \int_0^\infty dt \int_H |D P_t \varphi|^2 d\nu, \quad (46)$$

where $\bar{\varphi} = \int_H \varphi d\nu$.

12 Poincaré and log-Sobolev inequality, spectral gap

As in (46) we will use the notation $\bar{\varphi} = \int_H \varphi d\nu$. Let us prove the Poincaré inequality.

Theorem 13 (Poincaré inequality). Let us assume $\|DF\|_0 < 2$. Then for any $\varphi \in W^{1,2}(H,\nu)$ inequality (4) holds.
Proof. Let first $\varphi \in E(H)$. Then for any $h \in H$ and $t \geq 0$ we have
\[\langle DP_t \varphi(x), h \rangle = \mathbb{E}[\langle D\varphi(X(t,x)), \eta^h(t,x) \rangle] \]
Taking into account (10) it follows that
\[|\langle DP_t \varphi(x), h \rangle|^2 \leq \mathbb{E}[|D\varphi(X(t,x))|^2]|h|^2 \]
\[\leq e^{2|\frac{\|DF\|_0^2}{4} - 1|t}\mathbb{E}[|D\varphi(X(t,x))|^2]|h|^2 = e^{2|\frac{\|DF\|_0^2}{4} - 1|t}P_t(|D\varphi|^2_2)(x)|h|^2. \]
By the arbitrariness of h it yields
\[|DP_t \varphi(x)|^2 \leq e^{2|\frac{\|DF\|_0^2}{4} - 1|t}P_t(|D\varphi|^2_2)(x) \]
for all $x \in H$, $s \geq 0$. Taking into account (46) and the invariance of ν, we obtain
\[\int_H |\varphi - \overline{\varphi}|^2 d\nu \leq \int_0^\infty dt \int_H e^{2|\frac{\|DF\|_0^2}{4} - 1|t}P_t(|D\varphi|^2_2)dv = \]
\[= \frac{1}{2(1 - \frac{\|DF\|_0^2}{4})} \int_H |D\varphi|^2_2 d\nu \]
and the conclusion follows. If $\varphi \in W^{1,2}(H,\nu)$ we proceed by density.

Now we show that if (4) holds then there is a gap in the spectrum of K_2 and that the convergence to the equilibrium point is exponential. We have

Theorem 14 (Spectral gap). *Let us assume $\|DF\|_0 < 2$. Then we have*
\[\sigma(K_2) \setminus \{0\} \subset \{\lambda \in \mathbb{C} : \mathbb{R}{\lambda} \leq -(1 - \frac{\|DF\|_0^2}{4})\}. \]
(47)
Moreover
\[\int_H |P_t \varphi - \overline{\varphi}|^2 d\nu \leq e^{2(1 - \frac{\|DF\|_0^2}{4})t} \int_H |\varphi|^2 dv. \]
(48)
Proof. The proof is an easy consequence of (3) and (4) (see [9] and [10, Prop. 2.3]).

Theorem 15 (Log-Sobolev inequality). *Let us assume $\|DF\|_0 < 2$. Then or any $\varphi \in W^{1,2}(H,\nu)$ we have*
\[\|\varphi^2 \log(\varphi^2)\|_{L^2(H,\nu)} \leq \frac{1}{1 - \frac{\|DF\|_0^2}{4}} \|D\varphi\|_{L^2(H,\nu)}^2 + \|\varphi^2\|_{L^2(H,\nu)} \log(\|\varphi^2\|_{L^2(H,\nu)}). \]
(49)
Moreover, the transition semigroup $\{P_t\}_{t \geq 0}$ is hypercontractive.

Proof. Let us take $\varphi \in \mathcal{E}_A(H)$, with $\varphi \neq 0$. We have
\[
\frac{d}{dt} \int_H P_t(\varphi^2) \log(P_t(\varphi^2)) d\nu = \int_H K_2 P_t(\varphi^2) \log(P_t(\varphi^2)) d\nu + \int_H K_2 P_t(\varphi^2) d\nu,
\]
where the last term vanishes due to the invariance of ν. Moreover, it holds the identity
\[
\int_H g'(\varphi) K_2 \varphi d\nu = -\frac{1}{2} \int_H g''(\varphi) |D\varphi|^2 d\nu.
\]
(50)

Since
\[
DP_t(\varphi^2) = 2E[\varphi(X(t,x)) D\varphi(X(t,x)) \cdot X_x(t,x)]
\]
it follows, from the Hölder inequality and (11) that
\[
|DP_t(\varphi^2)|^2 \leq 4E[|\varphi|^2(X(t,x))] \mathbb{E}[|D\varphi|^2(X(t,x))] e^{-2(1 - \|DF\|_0^2/4) t} = 4e^{-2(1 - \|DF\|_0^2/4) t} P_t(|\varphi|^2)(x) P_t(|D\varphi|^2)(x).
\]

Therefore, by (50) it yields
\[
\frac{d}{dt} \int_H P_t(\varphi^2) \log(P_t(\varphi^2)) d\nu \geq -2e^{-2(1 - \|DF\|_0^2/4) t} \int_H P_t(|D\varphi|^2)(x) d\nu = -2e^{-2(1 - \|DF\|_0^2/4) t} \int_H |D\varphi|^2(x) d\nu
\]
due to the invariance of ν. Integrating with respect to t gives
\[
\int_H P_t(\varphi^2) \log(P_t(\varphi^2)) d\nu \geq \int_H \varphi^2 \log(\varphi^2) d\nu - \frac{1 - e^{-2(1 - \|DF\|_0^2/4) t}}{2(1 - \|DF\|_0^2/4)} \int_H |D\varphi|^2(x) d\nu.
\]
Then the conclusion follows letting $t \to \infty$. Finally, as shown in [10], a logarithmic Sobolev inequality implies that the transition semigroup $\{P_t\}_{t \geq 0}$ is hypercontractive.

\[
\square
\]

References

