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Abstract

We study the Wasserstein distance of order 1 between the empirical distribution and the
marginal distribution of stationary ↵-dependent sequences. We prove some moments inequalities
of order p for any p � 1, and we give some conditions under which the central limit theorem holds.
We apply our results to unbounded functions of expanding maps of the interval with a neutral
fixed point at zero. The moment inequalities for the Wasserstein distance are similar to the well
known von Bahr-Esseen or Rosenthal bounds for partial sums, and seem to be new even in the
case of independent and identically distributed random variables.
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1 Introduction

Let (Xi)i2Z be a stationary sequence of integrable real-valued random variables, with common
marginal distribution µ. Let µn be the empirical measure of {X1, . . . , Xn}, that is

µn =
1
n

n
X

k=1

�Xk .

In this paper, we study the behavior of the quantity W1(µn, µ) for a large class of stationary
sequences, where W1(µ1, µ2) is the Wasserstein distance of order 1 between two probability mea-
sures µ1, µ2 having finite first moments. The precise definition is as follows:

W1(µ1, µ2) = inf
⇡2M(µ1,µ2)

Z

|x� y|⇡(dx, dy) , (1.1)

where M(µ1, µ2) is the set of probability measures on R2 with marginal distributions µ1 and µ2.
The distance W1 belongs to the general class of minimal distances, as the total variation distance.
Since the cost function c1(x, y) = |x � y| is regular, W1 can be used to compare two singular
measures, which is not possible with the total variation distance, whose cost function is given by
the discrete metric c0(x, y) = 1x 6=y.

The quantity W1(µn, µ) appears very frequently in statistics, and can be understood from
many points of view:

⇤
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• The well known dual representation of W1 implies that

W1(µn, µ) = sup
f2⇤1

�

�

�

�

�

1
n

n
X

k=1

(f(Xk)� µ(f))

�

�

�

�

�

, (1.2)

where ⇤1 is the set of Lipschitz functions f from R to R such that |f(x) � f(y)|  |x � y|.
Hence, W1(µn, µ) is a measure of the concentration of µn around µ through the class ⇤1.

• In the one dimensional setting the minimization problem (1.1) can be explicitely solved, and
leads to the expression

W1(µn, µ) =

Z 1

0

|F�1
n (t)� F�1(t)|dt , (1.3)

where Fn and F are the distribution functions of µn and µ, and F�1
n and F�1 are their usual

generalized inverses. Hence W1(µn, µ) is the L1-distance between the empirical quantile
function F�1

n and the quantile function of µ.

• Starting from (1.3), it follows immediately that

W1(µn, µ) =

Z

R
|Fn(t)� F (t)|dt . (1.4)

Hence W1(µn, µ) is the L1-distance between the empirical distribution function Fn and the
distribution function of µ.

At this point, it should be clearly quoted that, if (1.3) and (1.4) have no analogue in higher
dimension, the dual expression (1.2) is very general and holds if the Xi’s take their values in a
Polish space X , as soon as the cost function c is a lower semi-continuous metric (the class ⇤1

being the class of 1-Lipschitz functions from X to R with respect to c).
Assume now that the sequence (Xi)i2Z is ergodic. Since µ has a finite first moment, it is well

known that W1(µn, µ) converges to zero almost surely, and that E(W1(µn, µ)) converges to zero
(this is a uniform version of Birkho↵’s ergodic theorem, which can be easily deduced from the
Glivenko-Cantelli theorem for ergodic sequences). However, without additional asumptions on µ
the rate of convergence can be arbitrarily slow.

The purpose of this paper is to give some conditions under which the central limit theorem
(CLT) holds (meaning that

p
nW1(µn, µ) converges in distribution to a certain law), and to prove

some inequalities for kW1(µn, µ)kp when p � 1 (von Bahr-Esseen type inequalities for p 2 (1, 2)
and Rosenthal type inequalities for p > 2). We will do this for the class of ↵-dependent sequences,
which is quite natural in this context, since the related dependency coe�cients are defined through
indicator of half lines. Hence our results apply to mixing sequences in the sense of Rosenblatt [25],
but also to many other dependent sequences including a large class of one dimensional dynamical
systems. We shall illustrate our results through the examples of Generalized Pomeau-Manneville
maps, as defined in [9].

The central limit question for
p
nW1(µn, µ) has been already investigated for dependent se-

quences in the papers by Dédé [7] and Cuny [6] (see Sections 4 and 5 for more details). This is not
the case of the upper bounds for kW1(µn, µ)kp, even for sequences of independent and identically
distributed (i.i.d.) random variables (except for p = 1, see for instance [4]). Hence, for p > 1, our
moment bounds seem to be new even in the i.i.d. context.

Thanks to the relation (1.4), the central limit question for
p
nW1(µn, µ) is closely related to

the empirical central limit theorem in L1(dt), as first quoted by del Barrio, Giné and Matrán [3].
We shall deal with the more general central limit question for L1(m)-valued random variables
in the separate Section 4. In Section 5, we shall express some of our conditions in terms of the
quantile function of X0, in the spirit of Doukhan, Massart and Rio [12]. It will then be easier to
compare our conditions for the CLT to previous ones in the literature.

For r > 1, the quantity W r
r (µn, µ) may be defined as in (1.1), with the cost function cr(x, y) =

|x � y|r instead of c1 (Wr is the Wasserstein distance of order r). In the i.i.d. case, some
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sharp upper bounds on E(W r
r (µn, µ)) are given in the recent paper [4]. In particular, if µ has

an absolutely component with respect to the Lebesgue measure which does not vanishes on the
support of µ, then the optimal rate n�r/2 can be reached. But in general, the rate can be much
slower. Note that for W r

r (µn, µ) there is no such nice dual expression as (1.2). However the
minimization problem can still be explicitely solved and implies that Wr(µn, µ) is the Lr-distance
between F�1

n and F�1. There is no simple way to express W r
r (µn, µ) in terms of Fn and F (as in

(1.4)), but the following upper bound due to Èbralidze [13] holds:

W r
r (µn, µ)  r

Z

R
|x|r�1|Fn(x)� F (x)|dx , (1.5)

where r = 2r�1r. Starting from this inequality, we shall also give some upper bounds on
kW r

r (µn, µ)kp for p � 1, but it is very likely that these bounds can be improved by assuming the
existence of an absolutely regular component for µ, as in [4].

To be complete, let us mention the recent paper by Fournier and Guillin [15], who give some
upper bounds for E(W r

r (µn, µ)) in any dimension, starting from an inequality which can be viewed
as a d-dimensional analogue of (1.5). Note that the case of ⇢-mixing sequences is also considered
in this paper.

2 Definitions and notations

In this section, we give the notations and definitions which we will used all along the paper.
Let us start with the notation an ⌧ bn, which means that there exists a numerical constant

C not depending on n such that an  Cbn, for all positive integers n.

2.1 Stationary sequences and dependency coe�cients

Let (⌦,A,P) be a probability space, and T : ⌦ 7! ⌦ be a bijective bi-measurable transformation
preserving the probability P. Let F0 be a sub-�-algebra of A satisfying F0 ✓ T�1(F0). We say
that the couple (T,P) is ergodic if any A 2 A satisfying T (A) = A has probability 0 or 1.

Let X0 be an F0-measurable and integrable real-valued random variable with distribution µ.
Define the stationary sequence X = (Xi)i2Z by Xi = X0 � T i.

Let us first define the tail and quantile functions of the random variable X0.

Definition 2.1. The tail function H : R+ ! [0, 1] of X0 is defined by H(t) = P(|X0| > t). The
quantile function Q : [0, 1] ! R+ of X0 is the generalized inverse of H, that is

Q(u) = inf {t � 0 : f(t)  u} .

Let us now define the dependency coe�cients of the sequence (Xi)i2Z. These coe�cients are
less restrictive than the usual mixing coe�cients of Rosenblatt [25].

Definition 2.2. For any integrable random variable Z, let Z(0) = Y � E(Z). For any random
variable Y = (Y1, · · · , Yk) with values in Rk and any �-algebra F , let

↵(F , Y ) = sup
(x1,...,xk)2Rk

�

�

�

�

�

E
 

k
Y

j=1

(1Yjxj )
(0)
�

�

�

F
!

� E
 

k
Y

j=1

(1Yjxj )
(0)

!

�

�

�

�

�

1

.

For the stationary sequence X = (Xi)i2Z, let

↵k,X(n) = max
1lk

sup
ni1...il

↵(F0, (Xi1 , . . . , Xil)). (2.1)

Note that ↵1,X(n) is then simply given by

↵1,X(n) = sup
x2R

kE (1Xnx|F0)� F (x)k1 , (2.2)

where F is the distribution function of µ.
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All the results of Section 3 below involve only the coe�cients ↵1,X(n), except for the Rosenthal
bounds (Subsection 3.4) for which the coe�cient ↵2,X(n) is needed.

2.2 Intermittent maps

Let us first recall the definition of the generalized Pomeau-Manneville maps introduced in [9].

Definition 2.3. A map ✓ : [0, 1] ! [0, 1] is a generalized Pomeau-Manneville map (or GPM map)
of parameter � 2 (0, 1) if there exist 0 = y0 < y1 < · · · < yd = 1 such that, writing Ik = (yk, yk+1),

1. The restriction of ✓ to Ik admits a C1 extension ✓(k) to Ik.

2. For k � 1, ✓(k) is C2 on Ik, and |✓0(k)| > 1.

3. ✓(0) is C2 on (0, y1], with ✓
0
(0)(x) > 1 for x 2 (0, y1], ✓

0
(0)(0) = 1 and ✓00(0)(x) ⇠ cx��1 when

x ! 0, for some c > 0.

4. ✓ is topologically transitive.

The third condition ensures that 0 is a neutral fixed point of ✓, with ✓(x) = x+c0x1+�(1+o(1))
when x ! 0. The fourth condition is necessary to avoid situations where there are several
absolutely continuous invariant measures, or where the neutral fixed point does not belong to the
support of the absolutely continuous invariant measure.

y0 = 0 y1 y2 y3 y4 = 1

Figure 1: The graph of a GPM map, with d = 4

The following well known example of GPM map with only two branches has been introduced
by Liverani, Saussol and Vaienti [21]:

✓(x) =

(

x(1 + 2�x�) if x 2 [0, 1/2[

2x� 1 if x 2 [1/2, 1].
(2.3)

As quoted in [9], a GPM map ✓ admits a unique invariant absolutely continuous (with respect
to the Lebesgue measure) probability ⌫ with density h. Moreover, it is ergodic, has full support,
and x�h(x) is bounded from above and below.

We shall illustrate each result of Section 3 by controlling, on the probability space ([0, 1], ⌫),
the quantity W1(µ̃n, µ), where

µ̃n =
1
n

n
X

k=1

�g�✓k , (2.4)

✓ is a GPM map, g is a monotonic function from (0, 1) to R (which can blow up near 0 or 1), and
µ is the distribution of g.
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To do this, we go back to the Markov chain associated to ✓, as we describe now. Let first K
be the Perron-Frobenius operator of ✓ with respect to ⌫, defined as follows: for any functions u, v
in L2([0, 1], ⌫)

⌫(u · v � ✓) = ⌫(K(u) · v) . (2.5)

The relation (2.5) states that K is the adjoint operator of the isometry U : u 7! u � ✓ acting on
L2([0, 1], ⌫). It is easy to see that the operator K is a transition kernel, and that ⌫ is invariant by
K. Let now Y = (Yi)i�0 be a stationary Markov chain with invariant measure ⌫ and transition
kernel K. It is well known (see for instance Lemma XI.3 in [19]) that on the probability space
([0, 1], ⌫), the random vector (✓, ✓2, . . . , ✓n) is distributed as (Yn, Yn�1, . . . , Y1).

Let T be the shift operator from [0, 1]Z to [0, 1]Z defined by (T (x))i = xi+1, and let ⇡i be the
projection from [0, 1]Z to [0, 1] defined by ⇡i(x) = xi. By Kolmogorov’s extension theorem, there
exists a shift-invariant probability P on ([0, 1]Z, (B([0, 1]))Z), such that ⇡ = (⇡i)i�0 is distributed
as Y.

Let then X0 = g �⇡0 and Xi = X0 �T i = g �⇡i, and define F0 = �(⇡i, i  0). From the above
considerations, we infer that the two random variables W1(µn, µ) (defined on the probability space
(RZ,P)) and W1(µ̃n, µ) (defined on the probability space ([0, 1], ⌫)) have the same distribution.
Hence, any information on the distribution of W1(µ̃n, µ) can be derived from the distribution of
W1(µn, µ).

From Proposition 1.17 (and the comments right after) in [9], we know that for any positive
integer k, there exist two positive constants C and D such that, for any n > 0,

D

n(1��)/�
 ↵k,⇡(n) 

C

n(1��)/�
.

Since Xi = g � ⇡i, and since g is monotonic, it follows immediately that

↵k,X(n)  ↵k,⇡(n) 
C

n(1��)/�
. (2.6)

This control of the coe�cients ↵k,X(n) (for k = 1 or k = 2) and a control of the tail ⌫(|g| > t)
are all we need to apply the results of Section 3 to the random variable W1(µ̃n, µ).

3 CLT and moment bounds

In all this section, we use the notations of Sections 1 and 2.

3.1 Central limit theorem

Our first result is a central limit theorem for W1(µn, µ). It is a straightforward consequence of a
CLT in L1(m) for the empirical distribution function given in Proposition 4.2 of Subsection 4.4
(it su�ces to consider the case where m is the Lebesgue measure on R and to use the continuous
mapping theorem).

Proposition 3.1. Assume that the couple (T,P) is ergodic, and that

Z 1

0

v

u

u

t

1
X

k=0

min {↵1,X(k), H(t)} dt < 1 . (3.1)

Then

p
nW1(µn, µ) converges in distribution to the random variable

R

|G(t)| dt, where G is a

Gaussian random variable in L1(dt) whose covariance function may be described as follows: for

any f, g in L1(µ),

Cov

✓

Z

f(t)G(t)dt,

Z

g(t)G(t)dt

◆

=
X

k2Z
E
✓

ZZ

f(t)g(s)(1X0t � F (t))(1Xks � F (s)) dtds

◆

.

(3.2)
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Remark 3.1. Let m be a nonnegative integer. As usual, the stationary sequence X is m-
dependent if �(Xi, i  0) is independent of �(Xi, i � m+ 1), and m = 0 corresponds to the i.i.d.
case. In the m-dependent case, the condition (3.1) becomes simply

Z 1

0

p

H(t) dt < 1 , (3.3)

which is exactly the condition given by del Barrio, Giné and Matrán [3] in the i.i.d. case. Note
that these authors also proved that, in the i.i.d. case, the condition (3.3) is necessary and su�cient
for the stochastic boundedness of

p
nW1(µn, µ).

In the dependent context, other general criteria have been proposed by Dédé [7] and Cuny [6].
We shall discuss these conditions in Sections 4 and 5, and show that, in the ↵-dependent case,
the condition (3.1) is weaker than the corresponding condition obtained by applying the criteria
by Dédé or Cuny.

Example. Let ✓ be a GPM map of parameter � 2 (0, 1/2), with absolutely continuous invariant
probability ⌫. Let µ̃n be defined as in (2.4), where g is a monotonic function from (0, 1) to
R. Let then (Xi)i2Z be the stationary sequence constructed in Subsection 2.2, whose dependency
coe�cients ↵k,X(n) satisfy (2.6). Note that H(t) = P(|X0| > t) = ⌫(|g| > t). From Subsection 2.2,
Proposition 3.1 and Item 3 of Proposition 5.3, we infer that

p
nW1(µ̃n, µ) converges in distribution

to the random variable
R

|G(t)|dt, where G is a Gaussian random variable in L1(dt) as soon as

Z 1

0

(H(t))
1�2�

2(1��) dt < 1 . (3.4)

As a consequence:

1. If g is positive and non increasing on (0, 1), with

g(x)  C

x(1�2�)/2| ln(x)|b near 0, for some C > 0 and b > 1,

then (3.4) holds.

2. If g is positive and non decreasing on (0, 1), with

g(x)  C

(1� x)(1�2�)/(2�2�)| ln(1� x)|b near 1, for some C > 0 and b > 1,

then (3.4) holds.

Recall from (1.2) that W1(µ̃n, µ) = supf2⇤1
|µ̃n(f) � µ(f)|, so that the condition (3.4) allows to

control the supremum of
p
n(µn(f) � µ(f)) over the class ⇤1. Now if we only want a central

limit theorem for
p
n(µn(f)�µ(f)) where f is an element of ⇤1, then it follows from [9] that the

condition
Z 1

0

t(H(t))
1�2�
1�� dt < 1 . (3.5)

is su�cient. For the two simple examples above, this would give the constraint b > 1/2 instead
of b > 1.

3.2 Upper bounds for moments of order 1 and 2

In this section, we give some upper bounds for the quantities E(W1(µn, µ)) and kW1(µn, µ)k2 in
terms of the coe↵cients ↵1,X(k) and of the tail function H. For any t � 0, let

S↵,n(t) =
n
X

k=0

min {↵1,X(k), H(t)} . (3.6)

6



Proposition 3.2. The following upper bounds hold:

E(W1(µn, µ))  4

Z 1

0

r

min
n

�

H(t)
�2
,
S↵,n(t)

n

o

dt , (3.7)

and

kW1(µn, µ)k2  2
p
2p
n

Z 1

0

p

S↵,n(t) dt . (3.8)

Remark 3.2. As will be clear from the proof, one can also get some upper bounds involving
the quantity B(t) = F (t)(1 � F (t)) instead of H(t). For instance, we can obtain an extension
of the upper bound given in Theorem 3.5 of [4] to ↵-dependent sequences. We have chosen to
express the upper bounds in terms of the function H, because they are easier to compute in the
↵-dependent case (see Remark 3.4 below).

The proof of Proposition 3.2 is based on the following elementary inequality applied to p = 1
and p = 2:

For any p � 1,

�

�

�

�

Z

|Fn(t)� F (t)| dt
�

�

�

�

p


Z

kFn(t)� F (t)kp dt .

One could also start from this inequality in the case where p 2 (1, 2) (resp. p > 2) by applying a
von Bahr-Esseen bound (resp. a Rosenthal bound) to kFn(t)� F (t)kp. However, this would give
less satisfactory bounds than in Subsections 3.3 and 3.4, even in the i.i.d. case. For instance, in
the i.i.d. case and p 2 (1, 2), this would give

kW1(µn, µ))kpp ⌧ 1
np�1

✓

Z

(H(t))1/p dt

◆p

. (3.9)

Note that the condition
R

(H(t))1/pdt < 1 is more restrictive than kX0kp < 1. Hence the upper
bound (3.24) of Subsection 3.3 is always better than (3.9).

Remark 3.3. Starting from Inequality (1.5) and following the proof of Proposition 3.2 we obtain
the upper bounds

E(W r
r (µn, µ))  4

Z 1

0

tr�1

r

min
n

�

H(t)
�2
,
S↵,n(t)

n

o

dt , (3.10)

and

kW r
r (µn, µ)k2  2

p
2p
n

Z 1

0

tr�1
p

S↵,n(t) dt . (3.11)

Remark 3.4. As a consequence of Proposition 3.2, the following upper bounds hold:

1. If (3.1) holds, then kW1(µn, µ)k2 ⌧ n�1/2.

2. If ↵(k) = O(k�a) for some a > 1, then

E(W1(µn, µ)) ⌧

0

@

Z n
� a

a+1

0

Q(u)du+
1p
n

Z 1

n
� a

a+1

Q(u)

u
a+1
2a

du

1

A , (3.12)

and

kW1(µn, µ)k2 ⌧
 

Z n�a

0

Q(u)p
u

du+
1p
n

Z 1

n�a

Q(u)

u
a+1
2a

du

!

. (3.13)

3. If ↵(k) = O(ak) for some a < 1, then

E(W1(µn, µ)) ⌧
 

Z

ln(n)
n

0

Q(u)du+
1p
n

Z 1

ln(n)
n

Q(u)| ln(u)|p
u

du

!

,

and

kW1(µn, µ)k2 ⌧
 

Z e�n

0

Q(u)p
u

du+
1p
n

Z 1

e�n

Q(u)| ln(u)|p
u

du

!

.
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4. Assume that the ↵k’s converge to zero, but are not summable, and let

un =
1
n

n
X

k=1

↵k .

Then

E(W1(µn, µ)) ⌧
Z

p
un

0

Q(u) du , (3.14)

and

kW1(µn, µ)k2 ⌧
Z un

0

Q(u)p
u

du . (3.15)

Remark 3.5. In the m-dependent case, the inequality (3.12) holds with a = 1, that is

E(W1(µn, µ)) ⌧
 

Z n�1

0

Q(u)du+
1p
n

Z 1

n�1

Q(u)p
u

du

!

.

In particular, if H(t) = O(t�1(ln(t))�a) for some a > 1 (which implies that E(|X0|) < 1), then
Q(u) = O(u�1| ln(u)|�a), and consequently

E(W1(µn, µ)) ⌧
1

(ln(n))a�1
.

Example (continued). We continue the example of Subsection 3.1.

1. If g is positive and non increasing on (0, 1), with

g(x)  C
xb

near 0, for some C > 0 and b 2 [0, 1� �),

then Q(u)  Du�b/(1��) for some D > 0. Applying (3.12)-(3.13) and (3.14)-(3.15), the
following upper bounds hold.

For � 2 (0, 1/2),

E(W1(µ̃n, µ)) ⌧

8

>

<

>

:

n�1/2 if b < (1� 2�)/2

n�1/2 ln(n) if b = (1� 2�)/2

nb+��1 if b > (1� 2�)/2,

and

kW1(µ̃n, µ)k2 ⌧

8

>

<

>

:

n�1/2 if b < (1� 2�)/2

n�1/2 ln(n) if b = (1� 2�)/2

n(2b+��1)/2� if (1� 2�)/2 < b < (1� �)/2.

For � = 1/2,

E(W1(µ̃n, µ)) ⌧
✓

ln(n)
n

◆

1�2b
2

, and kW1(µ̃n, µ)k2 ⌧
✓

ln(n)
n

◆

1�4b
2

if b < 1/4.

For � 2 (1/2, 1),

E(W1(µ̃n, µ)) ⌧ n
b+��1

2� , and kW1(µ̃n, µ)k2  Cn
2b+��1

2� if b < (1� �)/2.

2. If g is positive and non decreasing on (0, 1), with

g(x)  C
(1� x)b

near 1, for some C > 0 and b 2 [0, 1),

8



then Q(u)  Du�b for some D > 0. Applying (3.12)-(3.13) and (3.14)-(3.15), the following
upper bounds hold.

For � 2 (0, 1/2),

E(W1(µ̃n, µ)) ⌧

8

>

<

>

:

n�1/2 if b < (1� 2�)/2(1� �)

n�1/2 ln(n) if b = (1� 2�)/2(1� �)

n(��1)(1�b) if b > (1� 2�)/2(1� �),

and

kW1(µ̃n, µ)k2 ⌧

8

>

<

>

:

n�1/2 if b < (1� 2�)/2(1� �)

n�1/2 ln(n) if b = (1� 2�)/2(1� �)

n(��1)(1�2b)/2� if (1� 2�)/2(1� �) < b < 1/2.

For � = 1/2,

E(W1(µ̃n, µ)) ⌧
✓

ln(n)
n

◆

1�b
2

, and kW1(µ̃n, µ)k2 ⌧
✓

ln(n)
n

◆

1�2b
2

if b < 1/2.

For � 2 (1/2, 1),

E(W1(µ̃n, µ)) ⌧ n
(��1)(1�b)

2� , and kW1(µ̃n, µ)k2 ⌧ n
(��1)(1�2b)

2� if b < 1/2.

Proof of Proposition 3.2. Starting from (1.4), we immediately see that

E(W1(µn, µ)) 
Z

kFn(t)� F (t)k1 dt and kW1(µn, µ)k2 
Z

kFn(t)� F (t)k2 dt . (3.16)

Let B(t) = F (t)(1� F (t)), and note first that

kFn(t)� F (t)k1  k1X0t � F (t)k1 = 2B(t) . (3.17)

On another hand

kFn(t)� F (t)k21  kFn(t)� F (t)k22  1
n
Var(1X0t) +

2
n

n
X

k=1

|Cov(1X0t,1Xkt)| . (3.18)

Now, the two following upper bounds hold:

|Cov(1X0t,1Xkt)|  kE(1Xkt|F0)� F (t)k1  ↵1,X(k) , (3.19)

|Cov(1X0t,1Xkt)|  Var(1X0t) = B(t) . (3.20)

From (3.17), (3.18), (3.19) and (3.20) it follows that

kFn(t)� F (t)k1  2

v

u

u

tmin
n

�

B(t)
�2
,
1
n

n
X

k=0

min {↵1,X(k), B(t)}
o

and

kFn(t)� F (t)k2 

v

u

u

t

2
n

n
X

k=0

min {↵1,X(k), B(t)} .

These two upper bounds combined with (3.16) imply that

E(W1(µn, µ))  2

Z

v

u

u

tmin
n

�

B(t)
�2
,
1
n

n
X

k=0

min {↵1,X(k), B(t)}
o

dt

 4

Z 1

0

r

min
n

�

H(t)
�2
,
S↵,n(t)

n

o

dt

9



and

kW1(µn, µ)k2 
r

2
n

Z

v

u

u

t

n
X

k=0

min {↵1,X(k), B(t)} dt  2
p
2p
n

Z 1

0

p

S↵,n(t) dt ,

which are the desired inequalities.

3.3 A von Bahr-Esseen type inequality

In this section, we give some upper bounds for the quantity kW1(µn, µ)kp when p 2 (1, 2) in terms
of the coe�cients ↵1,X(k) and of the quantile function Q. For u 2 (0, 1), let

↵�1
1,X(u) =

1
X

k=0

1u↵1,X(k) . (3.21)

Proposition 3.3. For p 2 (1, 2), the following inequality holds

kW1(µn, µ)kpp ⌧ 1
np�1

Z 1

0

(↵�1
1,X(u) ^ n)p�1Qp(u)du . (3.22)

Note that Inequality (3.22) writes also

kW1(µn, µ)kpp ⌧ 1
np�1

n
X

k=0

1
(k + 1)2�p

Z ↵1,X(k)

0

Qp(u)du .

Remark 3.6. Let r � 1 and p 2 (1, 2). Starting again from (1.5) and following the proof of
Proposition 3.3, we obtain the upper bound

kW r
r (µn, µ)kpp ⌧ 1

np�1

Z 1

0

(↵�1
1,X(u) ^ n)p�1Qpr(u)du . (3.23)

Remark 3.7. In the m-dependent case, Inequality (3.23) becomes

kW1(µn, µ)kpp ⌧ 1
np�1

kX0kpp . (3.24)

This inequality seems to be new even in the i.i.d. case. It is noteworthy that the upper bound
(3.24) is the same as the moment bound of order p for partial sums of i.i.d. random variables,
which can be deduced from the classical inequality of von Bahr and Esseen [2].

Example (continued). We continue the example of Subsection 3.1.

1. Let p 2 (0, 1), and let g be positive and non increasing on (0, 1), with

g(x)  C
xb

near 0, for some C > 0 and b 2 [0, (1� �)/p).

Applying Proposition 3.3, the following upper bounds hold.

For � 2 (0, 1/p),

kW1(µ̃n, µ))kp ⌧

8

>

<

>

:

n(1�p)/p if b < (1� p�)/p

(n(1�p) ln(n))1/p if b = (1� p�)/p

n(pb+��1)/p� if b > (1� p�)/p.

Moreover, if b = (1� p�)/p, Proposition 3.4 below gives the upper bound

P (W1(µn, µ) � x) ⌧ 1
np�1xp

. (3.25)

For � 2 [1/p, 1), kW1(µ̃n, µ))kp ⌧ n(pb+��1)/p� .
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2. Let p 2 (0, 1), and let g be positive and non decreasing on (0, 1), with

g(x)  C
(1� x)b

near 1, for some C > 0 and b 2 [0, 1/p).

Applying Proposition 3.3, the following upper bounds hold.

For � 2 (0, 1/p),

kW1(µ̃n, µ))kp ⌧

8

>

<

>

:

n(1�p)/p if b < (1� p�)/(p(1� �))

(n(1�p) ln(n))1/p if b = (1� p�)/(p(1� �))

n(��1)(1�pb)/p� if b > (1� p�)/(p(1� �)).

Moreover, if b = (1� p�)/(p(1� �)), Proposition 3.4 below gives the upper bound (3.25).

For � 2 [1/p, 1), kW1(µ̃n, µ))kp ⌧ n(��1)(1�pb)/p� .

Remark 3.8. The upper bound (3.25) is in accordance with a result by Gouëzel [17]. He proved
that, if g is exactly of the form g(x) = x�(1�p�)/p and ✓ is the LSV map defined by (2.3), then
for any positive real x,

lim
n!1

⌫

 

1

n1/p

�

�

�

�

�

n
X

k=1

⇣

g � ✓k � ⌫(g)
⌘

�

�

�

�

�

> x

!

= P(|Zp| > x) ,

where Zp is a p-stable random variable such that limx!1 xpP(|Zp| > x) = c > 0.

Proof of Proposition 3.3. For any n 2 N, let us introduce the following notations:

Rn(u) = (min{q 2 N⇤ : ↵1,X(q)  u} ^ n)Q(u) and R�1
n (x) = inf{u 2 [0, 1] : Rn(u)  x} .

The proof is based on the following proposition:

Proposition 3.4. For any positive integer n, any x > 0, and any ⌘ 2 [1, 2[, the following

inequality holds:

P (nW1(µn, µ) � 6x)  c1
n
x

Z R�1
n (x)

0

Q(u)du+ c2
n
x⌘

Z 1

R�1
n (x)

R⌘�1
n (u)Q(u)du , (3.26)

where c1 = 36 and c2 = 64(2� ⌘)�1
.

Before proving the proposition above, let us see how it entails Proposition 3.3. We have

knW1(µn, µ)kpp = 6pp

Z 1

0

xp�1P
�

nW1(µn, µ) � 6x
�

dx .

Therefore applying Inequality (3.26) with ⌘ 2 (p, 2) and using the fact that

u < R�1
n (x) () x < Rn(u) ,

we get

knW1(µn, µ)kpp  6pp nc1

Z 1

0

Q(u)

Z 1

0

xp�2
1x<Rn(u) dxdu

+ 6pp nc2

Z 1

0

R⌘�1
n (u)Q(u)

Z 1

0

xp�1�⌘
1x�Rn(u) dxdu ,

which gives the desired result since 1 < p < ⌘ < 2. Hence it remains to prove Proposition 3.4.

Proof of Proposition 3.4. Let

v = R�1
n (x) , M = Q(v) (3.27)
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and set gM (y) = (y ^M) _ (�M). For any integer i, let

X 0
i = gM (Xi) and X 00

i = Xi �X 0
i . (3.28)

Starting from (1.2), we first notice that

nW1(µn, µ) = sup
f2⇤1

n
X

i=1

(f(Xi)� E(f(Xi)))

 sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

+ sup
f2⇤1

n
X

i=1

�

f(Xi)� f(X 0
i)� E(f(Xi)� f(X 0

i))
�

.

Therefore

nW1(µn, µ)  sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

+
n
X

i=1

(|X 00
i |+ E(|X 00

i |) . (3.29)

Let now
q = min{k 2 N⇤ : ↵1,X(k)  v} ^ n . (3.30)

Since Rn is right continuous, we have Rn(R
�1
n (w))  w for any w, hence

qM = Rn(v) = Rn(R
�1
n (x))  x . (3.31)

Assume first that q = n. Bounding f(X 0
i)� E(f(X 0

i)) by 2M in (3.29), we obtain

nW1(µn, µ)  2qM +
n
X

k=1

(|X 00
k |+ E(|X 00

k |)) . (3.32)

Taking into account (3.31) this gives

P
�

nW1(µn, µ) � 6x
�

 1
2x

n
X

k=1

E(|X 00
k |) .

Writing 'M (x) = (|x|�M)+, we have

n
X

k=1

E(|X 00
k |) 

n
X

k=1

E('M (Xk)) .

But Q'M (Xk)  Q|Xk|1[0,v]  Q1[0,v]. Consequently

n
X

k=1

E(|X 00
k |)  n

Z R�1
n (x)

0

Q(u)du . (3.33)

From (3.32) and (3.33), we infer that

P
�

nW1(µn, µ) � 6x
�

 n
2x

Z R�1
n (x)

0

Q(u)du , (3.34)

which then proves the proposition in case where q = n.
From now on, we assume that q < n. Therefore q = min{k 2 N⇤ : ↵1,X(k)  v} and then

↵1,X(q)  v. Starting from (3.29), we first notice that

P (nW1(µn, µ) � 6x)  P
 

sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

� 5x

!

+
2
x

n
X

k=1

E(|X 00
k |) .

Therefore taking into account (3.33),

P (nW1(µn, µ) � 6x)  P
 

sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

� 5x

!

+
2n
x

Z R�1
n (x)

0

Q(u)du . (3.35)

12



To control the first term on the right-hand side, we first notice that

sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

 sup
f2⇤1

[n/q]q
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

+ 2(n� [n/q]q)M


Z

R

�

�

�

�

�

�

[n/q]q
X

i=1

⇣

1X0
it � E

⇣

1X0
it

⌘⌘

�

�

�

�

�

�

dt+ 2qM.

Using (3.31), it follows that

P
 

sup
f2⇤1

n
X

i=1

f(X 0
i)� E(f(X 0

i)) � 5x

!

 P

0

@

Z

R

�

�

�

�

�

�

[n/q]q
X

i=1

⇣

1X0
it � E

⇣

1X0
it

⌘⌘

�

�

�

�

�

�

dt � 3x

1

A .

For any integer i, define

Ui(t) =
iq
X

k=(i�1)q+1

⇣

1X0
kt � E

⇣

1X0
kt

⌘⌘

.

Consider now the �-algebras Gi = Fiq and define the variables Ũi(t) as follows: Ũ2i�1(t) =
U2i�1(t) � E(U2i�1(t)|G2(i�1)�1) and Ũ2i(t) = U2i(t) � E(U2i(t)|G2(i�1)). Substituting Ũi(t) to
Ui(t), we obtain the inequality

�

�

�

�

�

�

[n/q]q
X

i=1

⇣

1X0
it � E

⇣

1X0
it

⌘⌘

�

�

�

�

�

�

=

�

�

�

�

�

�

[n/q]
X

i=1

Ui(t)

�

�

�

�

�

�

 max
22j[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i(t)

�

�

�

�

�

+ max
12j�1[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i�1(t)

�

�

�

�

�

+

[n/q]
X

i=1

|Ui(t)� Ũi(t)| . (3.36)

Therefore

P
 

sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

� 5x

!

 I1(n) + I2(n) + I3(n) , (3.37)

where

I1(n) = P

0

@

Z

R

[n/q]
X

i=1

|Ui(t)� Ũi(t)| dt � x

1

A

I2(n) = P
 

Z

R
max

22j[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i(t)

�

�

�

�

�

dt � x

!

I3(n) = P
 

Z

R
max

12j�1[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i�1(t)

�

�

�

�

�

dt � x

!

.

Using Markov’s inequality and stationarity, we get

I1(n) 
n
x

Z

R
E
�

�

�

E
⇣

1X0
1t|F�q

⌘

� E
⇣

1X0
1t

⌘

�

�

�

dt =
n
x

Z M

�M

E
�

�

�

E
⇣

1X0
1t|F�q

⌘

� E
⇣

1X0
1t

⌘

�

�

�

dt .

But,

sup
t2R

�

�

�

E
⇣

1X0
1t|F�q

⌘

� E
⇣

1X0
1t

⌘

�

�

�

1
= sup

t2R

�

�E
�

1gM (X1)t|F�q

�

� E
�

1g(X1)t

�

�

�

1
 ↵1,X(q + 1) ,
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where the inequality comes from the fact that gM is a nondecreasing function. Therefore,

I1(n) 
2n
x
Q(v)↵1,X(q + 1)  2n

x
vQ(v)  2n

x

Z v

0

Q(u)du . (3.38)

We handle now the term I2(n) in the decomposition (3.37). Using again Markov’s inequality, we
get

I2(n) 
1
x2

 

Z Q(v)

�Q(v)

�

�

�

�

�

max
22j[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i(t)

�

�

�

�

�

�

�

�

�

�

2

dt

!2

.

By Doob’s maximal inequality,

�

�

�

�

�

max
22j[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i(t)

�

�

�

�

�

�

�

�

�

�

2

2

 2

1
2 [n/q]
X

i=1

kŨ2i(t)k22  2

1
2 [n/q]
X

i=1

kU2i(t)k22 .

Now

2

1
2 [n/q]
X

i=1

kU2i(t)k22  n
q

�

�

�

�

�

q
X

k=1

⇣

1X0
kt � E

⇣

1X0
kt

⌘⌘

�

�

�

�

�

2

2

 2n
q�1
X

k=0

�

�E
��

1gM (X0)t � E
�

1gM (X0)t

�� �

1gM (Xk)t � E
�

1gM (Xk)t

���

�

� .

Note that since gM is a nondecreasing function,

sup
t2R

�

�E
��

1gM (X0)t � E
�

1gM (X0)t

�� �

1gM (Xk)t � E
�

1gM (Xk)t

���

�

�

 sup
t2R

|E ((1X0t � E (1X0t)) (1Xkt � E (1Xkt)))| .

Moreover

sup
t2R

|E ((1X0>t � E (1X0>t)) (1Xk>t � E (1Xk>t)))|

 sup
t2R

kE (1Xk>t|F0)� E (1Xk>t)k1 = ↵1,X(k) .

On an other hand, the following bound is also valid

�

�E
��

1gM (X0)t � E
�

1gM (X0)t

�� �

1gM (Xk)t � E
�

1gM (Xk)t

���

�

�

 Var
�

1gM (X0)t

�

 min
�

E
�

1gM (X0)t

�

,E
�

1gM (X0)>t

� 

.

So, overall, we get

I2(n)

 2n
x2

0

@

Z Q(v)

0

 

q�1
X

k=0

↵1,X(k) ^ P(gM (X0) > t)

!

1
2

+

 

q�1
X

k=0

↵1,X(k) ^ P(�gM (X0) � t)

!

1
2

dt

1

A

2

 2n
x2

0

@

Z Q(v)

0

 

q�1
X

k=0

↵1,X(k) ^ P(|X0| > t)

!

1
2

+

 

q�1
X

k=0

↵1,X(k) ^ P(|X0| � t)

!

1
2

dt

1

A

2

.
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We then derive that

I2(n) 
8n
x2

0

@

Z Q(v)

0

 

q�1
X

k=0

↵1,X(k) ^H(t)

!1/2

dt

1

A

2

=
8n
x2

0

@

Z Q(v)

0

 

q�1
X

k=0

Z H(t)

0

1u↵1,X(k)du

!1/2

dt

1

A

2

.

Using the fact that
Pq�1

k=0 1u↵1,X(k) = ↵�1
1,X(u) ^ q, we then get

I2(n) 
8n
x2

0

@

Z Q(v)

0

 

vq +

Z H(t)

v

�

↵�1
1,X(u) ^ n

�

du

!

1
2

dt

1

A

2

 16n
x2

vq(Q(v))2 +
16n
x2

0

@

Z Q(v)

0

 

Z H(t)

v

�

↵�1
1,X(u) ^ n

�

du

!

1
2

dt

1

A

2

 16n
x

Z v

0

Q(u)du+
16n
x2

0

@

Z Q(v)

0

 

Z H(t)

v

�

↵�1
1,X(u) ^ n

�

du

!1/2

dt

1

A

2

. (3.39)

where for the last inequality we have used (3.31) and the fact that vQ(v) 
R v

0
Q(u)du, since Q

is non increasing. To handle the last term on the right-hand side, we proceed as follows. For any
⌘ in [1, 2), we first note that

Z H(t)

v

(↵�1
1,X(u)^n)du =

Z H(t)

v

�

↵�1
1,X(u) ^ n

�

Q⌘(u)Q�⌘(u)du  1
t⌘

Z H(t)

v

�

↵�1
1,X(u) ^ n

�

Q⌘(u)du ,

where the inequality comes from the fact that u < H(t) () t < Q(u), and then u < H(t)
implies that Q�⌘(u) < t�⌘. Now, since u > v implies that ↵�1

1,X(u)  ↵�1
1,X(v), we get

Z H(t)

v

�

↵�1
1,X(u) ^ n

�

du  1
t⌘
�

↵�1
1,X(v) ^ n

�2�⌘
Z 1

v

�

↵�1
1,X(u) ^ n

�⌘�1
Q⌘(u)du .

Therefore, since ⌘/2 < 1,

0

@

Z Q(v)

0

 

Z H(t)

v

�

↵�1
1,X(u) ^ n

�

du

!1/2

dt

1

A

2


�

↵�1
1,X(v) ^ n

�2�⌘

 

Z Q(v)

0

t�⌘/2dt

!2
Z 1

v

�

R�1
n (u)

�⌘�1
Q(u)du

 2
2� ⌘

�

↵�1
1,X(v) ^ n

�2�⌘
Q2�⌘(v)

Z 1

v

�

R�1
n (u)

�⌘�1
Q(u)du .

But, by (3.31),
�

↵�1
1,X(v) ^ n

�2��
Q2��(v) = R2��

n (v)  x2�� . Therefore,

1
x2

0

@

Z Q(v)

0

 

Z H(t)

v

�

↵�1
1,X(u) ^ n

�

du

!1/2

dt

1

A

2

 2
x⌘(2� ⌘)

Z 1

v

�

R�1
n (u)

�⌘�1
Q(u)du ,

which combined with (3.39) gives

I2(n) 
16n
x

Z v

0

Q(u)du+
32n

x⌘(2� ⌘)

Z 1

v

�

R�1
n (u)

�⌘�1
Q(u)du . (3.40)
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With similar arguments, we get

I3(n) 
16n
x

Z v

0

Q(u)du+
32n

x⌘(2� ⌘)

Z 1

v

�

R�1
n (u)

�⌘�1
Q(u)du . (3.41)

Starting from (3.37) and using the upper bounds (3.38), (3.40) and (3.41), we derive that

P
 

sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

� 5x

!

 34n
x

Z v

0

Q(u)du+
64n

x⌘(2� ⌘)

Z 1

v

(R�1
n (u))⌘�1Q(u)du ,

which combined with (3.35) ends the proof of the proposition. ⇧

3.4 A Rosenthal type inequality

In this section, we give some upper bounds for the quantity kW1(µn, µ)kp when p > 2 in terms of
the coe�cients ↵2,X(k) and of the quantile function Q. The function ↵�1

2,X is defined as in (3.21)
by replacing the coe�cient ↵1,X(k) by ↵2,X(k).

Proposition 3.5. For p > 2, the following inequality holds:

kW1(µn, µ)kpp ⌧
sp↵,n

np/2
+

1
np�1

Z 1

0

�

↵�1
2,X(u) ^ n

�p�1
Qp(u)du , (3.42)

where

s↵,n =

Z 1

0

p

S↵,n(t)dt

and S↵,n is the function defined in (3.6).

Note that Inequality (3.42) writes also

kW1(µn, µ)kpp ⌧
sp↵,n

np/2
+

1
np�1

n
X

k=0

(k + 1)p�2
Z ↵1,X(k)

0

Qp(u)du .

Remark 3.9. Inequality (3.42) is similar to the Rosenthal inequality for partial sums given in
Theorem 6.3 of Rio [24], with however two main di↵erences:

• Firstly, the variance terms is not the same, but this is because we consider the quan-
tity W1(µn, µ) and not only the partial sums, in accordance with the upper bounds for
kW1(µn, µ)k2 given in Subsection 3.2.

• Secondly, Rio’s inequality is stated for ↵-mixing sequences in the sense of Rosenblatt [25],
and its proof relies on the coupling properties of these coe�cients. Our result is valid for
the larger class of ↵-dependent sequences as defined in 2.1 (with k = 2 for the index of the
dependency), and the proof is based on a version of the Rosenthal inequality for martingales
given in [23]. Note that Rio’s inequality cannot be applied to GPM maps, because the
associated Markov chain is not ↵-mixing in the sense of Rosenblatt.

Remark 3.10. Let r � 1 and p > 2. Starting again from (1.5) and following the proof of
Proposition 3.5, we obtain the upper bound

kW r
r (µn, µ)kpp ⌧ 1

np/2

✓

Z 1

0

tr�1
p

S↵,n(t)dt

◆p

+
1

np�1

Z 1

0

�

↵�1
2,X(u) ^ n

�p�1
Qrp(u)du . (3.43)

Remark 3.11. Inequality (3.42) implies in particular that if p > 2 and
Z 1

0

�

↵�1
2,X(u)

�p/2
Qp(u)du < 1 , (3.44)

then

kW1(µn, µ)kp ⌧ 1p
n
.
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Remark 3.12. In the m-dependent case, Inequality (3.42) becomes

kW1(µn, µ)kpp ⌧ 1

np/2

✓

Z 1

0

p

H(t)dt

◆p

+
1

np�1
kX0kpp .

This inequality seems to be new even in the i.i.d. case. Compared to the usual Rosenthal bound
for sums of i.i.d. random variables, the variance term is replaced by the integral involving H, in
accordance with the upper bound (3.8).

Example (continued). We continue the example of Subsection 3.1.

1. Let p > 2, and let g be positive and non increasing on (0, 1), with

g(x)  C
xb

near 0, for some C > 0 and b 2 [0, (1� �)/p).

Applying Proposition 3.5, the following upper bounds hold.

For � 2 (0, 1/2)

kW1(µ̃n, µ))kp ⌧
(

n�1/2 if b  (2� �(p+ 2))/2p

n(pb+��1)/p� if b > (2� �(p+ 2))/2p.

For � 2 [1/2, 1), kW1(µ̃n, µ))kp ⌧ n(pb+��1)/p� .

2. Let p 2 (0, 1), and let g be positive and non decreasing on (0, 1), with

g(x)  C
(1� x)b

near 1, for some C > 0 and b 2 [0, 1/p).

Applying Proposition 3.5, the following upper bounds hold.

For � 2 (0, 1/2)

kW1(µ̃n, µ))kp ⌧
(

n�1/2 if b  (2� �(p+ 2))/2p(1� �)

n(��1)(1�pb)/p� if b > (2� �(p+ 2))/2p(1� �).

For � 2 [1/2, 1), kW1(µ̃n, µ))kp ⌧ n(��1)(1�pb)/p� .

Remark 3.13. In the case where ✓ is the LSV map defined by (2.3) and g is the identity (which
is a particular case of Item 2, b = 0, of the example above) all the rates for kW1(µ̃n, µ))kp given
in Subsections 3.2, 3.3 and 3.4 have been obtained in Corollary 4.1 of [10] by using a di↵erent
approach. Moreover, all the bounds are optimal in that case (see the discussion in Section 4.2 of
[10]).

Proof of Proposition 3.5. Inequality (3.42) follows from Proposition 3.6 below.

Proposition 3.6. There exists a positive universal constant c such that, for any positive integer

n, any x > 0, any ⌘ > 2 and any � 2 (⌘ � 2, ⌘), the following inequality holds:

P (nW1(µn, µ) � x)  c
n⌘/2

x⌘
s⌘↵,n +

n

x1+�/2

Z R�1
n (x)

0

R�/2
n (u)Q(u)du

+ c
n

x1+⌘/2

Z 1

R�1
n (x)

R⌘/2
n (u)Q(u)du , (3.45)

where

Rn(u) = (min{q 2 N⇤ : ↵2,X(q)  u} ^ n)Q(u) and R�1
n (x) = inf {u 2 [0, 1] : Rn(u)  x} .
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Indeed,

knW1(µn, µ)kpp = p

Z 1

0

xp�1P (nW1(µn, µ) � x) dx

⌧ np/2sp↵,n +

Z 1

n1/2s↵,n

xp�1P (nW1(µn, µ) � x) dx . (3.46)

To handle the second term on the right-hand side, we apply (3.45) with ⌘ 2 (2p � 2, 2p) and
� 2 (⌘ � 2, 2p� 2). This gives

Z 1

n1/2s↵,n

xp�1P (nW1(µn, µ) � x) dx ⌧ n⌘/2s⌘↵,n

Z 1

n1/2s↵,n

xp�⌘�1dx

+ n

Z 1

0

R�/2
n (u)Q(u)

Z 1

0

xp��/2�2
1

u<R�1
n (x)du

+ n

Z 1

0

R⌘/2
n (u)Q(u)

Z 1

0

xp�⌘/2�2
1

u�R�1
n (x)du .

Since u < R�1
n (x) () x < Rn(u), the choice of ⌘ and � implies that, for any p > 2,

Z 1

n1/2s↵,n

xp�1P (nW1(µn, µ) � x) dx ⌧ np/2sp↵,n + n

Z 1

0

Rp�1
n (u)Q(u)du ,

which together with (3.46) give (3.42).
To complete the proof of Proposition 3.5, it remains to prove Proposition 3.6. With this aim,

we proceed as for the proof of Proposition 3.4 with the following modification: in the definition
of Rn (and then also of v defined in (3.27)), ↵1,X is replaced by ↵2,X, and in the definition of
q given in (3.30), ↵1,X is also replaced by ↵2,X. Assuming first that q = n, we first notice,
by following the proof of Proposition 3.4, that the bound (3.34) is still valid. In addition since
u < R�1

n (x) () x < Rn(u),

Z R�1
n (x)

0

Q(u)du  x��/2
Z R�1

n (x)

0

R�/2
n (u)Q(u)du , (3.47)

which combined with (3.34) proves the proposition in case where q = n.
From now on, we assume that q < n (therefore ↵2,X(q)  v). The bound (3.35) is still valid

and combined with (3.47) gives

P (nW1(µn, µ) � 6x)  P
 

sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

� 5x

!

+
2n

x1+�/2

Z R�1
n (x)

0

R�/2
n (u)Q(u)du . (3.48)

As in the proof of Proposition 3.4, the first term on the right-hand side can be handled with the
help of the decomposition (3.37). Clearly since ↵1,X(q)  ↵2,X(q)  v, the term I1(n) in (3.37)
satisfies the inequality (3.38). Therefore taking into account (3.47), it follows that

I1(n) 
2n

x1+�/2

Z R�1
n (x)

0

R�/2
n (u)Q(u)du . (3.49)

We handle now the term I2(n) in the decomposition (3.37). Using again Markov’s inequality, we
get that for any ⌘ > 2,

I2(n) 
1
x⌘

0

@

Z Q(v)

�Q(v)

�

�

�

�

�

max
22j[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i(t)

�

�

�

�

�

�

�

�

�

�

⌘

dt

1

A

⌘

.
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Note that (Ũ2i(t))i2Z (resp. (Ũ2i�1(t))i2Z) is a stationary sequence of martingale di↵erences
with respect to the filtration (G2i)i2Z (resp. (G2i�1)i2Z). By using the Rosenthal inequality of
Merlevède and Peligrad [23] for martingales (see their Theorem 6), we get

�

�

�

�

�

max
22j[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i(t)

�

�

�

�

�

�

�

�

�

�

⌘

⌧ (n/q)1/⌘
�

�

�

Ũ2(t)
�

�

�

⌘
+ (n/q)1/⌘

0

B

@

[n/q]
X

k=1

1

k1+2�/⌘

�

�

�

�

�

�

E0

0

@

 

k
X

i=1

Ũ2i(t)

!2
1

A

�

�

�

�

�

�

�

⌘/2

1

C

A

1/(2�)

,

where � = min
�

1, (⌘ � 2)�1
 

. Since (Ũ2i(t))i2Z is a stationary sequence of martingale di↵erences
with respect to the filtration (G2i)i2Z,

E0

0

@

 

k
X

i=1

Ũ2i(t)

!2
1

A =
k
X

i=1

E0

⇣

Ũ2
2i(t)

⌘

.

Moreover E0

�

Ũ2
2i(t)

�

 E0

�

U2
2i(t)

�

. Therefore
�

�

�

�

�

�

E0

0

@

 

k
X

i=1

Ũ2i(t)

!2
1

A

�

�

�

�

�

�

r/2


k
X

i=1

�

�E0

�

U2
2i(t)

�

� E
�

U2
2i(t)

�

�

�

r/2
+

k
X

i=1

E
�

U2
2i(t)

�

.

By stationarity
k
X

i=1

E
�

U2
2i(t)

�

= k
�

�S0
q(t)

�

�

2

2
,

where

S0
q(t) =

q
X

i=1

⇣

1X0
it � E

⇣

1X0
it

⌘⌘

.

It follows that
�

�

�

�

�

max
22j[n/q]

�

�

�

�

�

j
X

i=1

Ũ2i(t)

�

�

�

�

�

�

�

�

�

�

r

⌧ (n/q)1/⌘
�

�S0
q(t)

�

�

⌘
+ (n/q)1/2

�

�S0
q(t)

�

�

2
+ (n/q)1/⌘

0

@

[n/q]
X

k=1

1

k1+2�/r
D�

k,q(t)

1

A

1/(2�)

,

where

Dk,q(t) =
k
X

i=1

�

�E0

�

U2
2i(t)

�

� E
�

U2
2i(t)

�

�

�

⌘/2
.

We have

Dk,q(t) q2
k
X

i=1

sup
j�`�(i�1)q+1

sup
t2R

�

�E0

�

(1X0
`t � E(1X0

`t))(1Xjt � E(1X0
jt))

�

� E
�

(1X0
`t � E(1X0

`t))(1X0
jt � E(1X0

jt))
�

�

�

⌘/2

q2
k
X

i=1

sup
j�`�(i�1)q+1

sup
t2R

�

�E0

�

(1X0
`t � E(1X0

`t))(1Xjt � E(1X0
jt))

�

� E
�

(1X0
`t � E(1X0

`t))(1X0
jt � E(1X0

jt))
�

�

�

⌘/2

q2
k
X

i=1

↵2/⌘
2,X(iq + 1) ,
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where we have used the fact that gM is nondecreasing for the second inequality. Since � < ⌘,
Hölder’s inequality gives

Dk,q(t) ⌧ q2k(⌘��)/⌘

 

k
X

i=1

i�/2�1↵2,X(iq + 1)

!2/⌘

.

Therefore, since � > ⌘ � 2,

0

B

@

Z Q(v)

�Q(v)

n1/⌘

q1/⌘

0

@

[n/q]
X

k=1

1

k1+2�/r
Dk,q(t)

�

1

A

1/(2�)

dt

1

C

A

⌘

⌧ nq⌘�1Q⌘(v)

0

@

[n/q]
X

k=1

k�(⌘��)/⌘

k1+2�/⌘

1

A

⌘/(2�)
[n/q]
X

i=1

i�/2�1↵2,X(iq + 1)

⌧ nq⌘�1Q⌘(v)

[n/q]
X

i=1

i�/2�1↵2,X(iq + 1) .

Note that since y < ↵�1
2,X(u) () ↵2,X(y) > u and ↵2,X(q)  v,

[n/q]
X

i=1

i�/2�1↵2,X(iq + 1) =

[n/q]
X

i=1

i�/2�1
Z 1

0

1u<↵2,X(iq+1)


Z v

0

[n/q]
X

i=1

i�/2�1
1

iq�1↵�1
2,X(u)  q��/2

Z v

0

�

↵�1
2,X(u) ^ n

��/2
du .

Hence
0

B

@

Z Q(v)

�Q(v)

n1/⌘

q1/⌘

0

@

[n/q]
X

k=1

1

k1+2�/r
Dk,q(t)

�

1

A

1/(2�)

dt

1

C

A

⌘

⌧ nq⌘�1��/2Q⌘(v)

Z v

0

�

↵�1
2,X(u) ^ n

��/2
du .

Using (3.31) and the fact that u < v () Q(v) < Q(u), we infer that

0

B

@

Z Q(v)

�Q(v)

n1/⌘

q1/⌘

0

@

[n/q]
X

k=1

1

k1+2�/r
Dk,q(t)

�

1

A

1/(2�)

dt

1

C

A

⌘

⌧ nx⌘��/2�1
Z v

0

R�/2
n (u)Q(u)du . (3.50)

On another hand, since

�

�S0
q(t)

�

�

2

2
 2q

q�1
X

k=0

�

�E
�

(1gM (X0)t � E(1gM (X0)t))(1gM (Xk)t � E(1gM (Xk)t))
�

�

� ,

proceeding as to bound I2(n) in the proof of Proposition 3.4, we infer that

 

Z Q(v)

�Q(v)

n1/2

q1/2
�

�S0
q(t)

�

�

2
dt

!⌘

⌧ n⌘/2s⌘↵,n . (3.51)

We prove now that
 

Z Q(v)

�Q(v)

n1/⌘

q1/⌘
�

�S0
q(t)

�

�

⌘
dt

!⌘

⌧ nx⌘��/2�1
Z v

0

R�/2
n (u)Q(u)du+ nx⌘/2�1

Z 1

v

R⌘/2
n (u)Q(u)du .

(3.52)
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With this aim, assume first that we can prove that

Z Q(v)

�Q(v)

�

�S0
q(t)

�

�

⌘
dt ⌧ q1/2

Z Q(v)

0

 

Z H(t)

0

�

↵�1
2,X(u) ^ q

�⌘/2
du

!1/⌘

dt , (3.53)

then
 

Z Q(v)

�Q(v)

n1/⌘

q1/⌘
�

�S0
q(t)

�

�

⌘
dt

!⌘

⌧ A(n) +B(n) ,

where

A(n) = nvq⌘�1Q⌘(v) and B(n) = nq⌘/2�1

0

@

Z Q(v)

0

 

Z H(t)

v

�

↵�1
2,X(u) ^ q

�⌘/2
du

!1/⌘

dt

1

A

⌘

dx .

Using (3.31), the fact that u < v () Q(v) < Q(u) and that u < R�1
n (x) = v () x < Rn(u),

we successively derive

A(n) ⌧ nx⌘�1vQ(v) ⌧ nx⌘�1
Z v

0

Q(u)dx ⌧ nx⌘��/2�1
Z v

0

R�/2
n (u)Q(u)du . (3.54)

On the other hand, since u < H(t) () t < Q(u), we have

B(n)  nq⌘/2�1

0

@

Z Q(v)

0

1

t1/2+1/⌘

 

Z H(t)

v

�

↵�1
2,X(u) ^ q

�r/2
Q⌘/2+1(u)du

!1/⌘

dt

1

A

⌘

dx

⌧ n(qQ(v))⌘/2�1
Z 1

v

�

↵�1
2,X(u) ^ n

�⌘/2
Q⌘/2+1(u)du .

Using (3.31), it follows that

B(n) ⌧ nx⌘/2�1
Z 1

v

R⌘/2
n (u)Q(u)du .

This last upper bound together with (3.54) show that to prove (3.52) it su�ces to prove (3.53). To
prove this moment inequality, we use Corollary 2 in [8]. Since, for any t 2 R, |1X0

0t�E(1X0
0t)| 

1, this gives

�

�S0
q(t)

�

�

⌘

p

2q⌘

 

Z kY (t)k1

0

�

��1(u) ^ q
�⌘/2

du

!1/⌘

,

where Y (t) = 1gM (X0)t � E(1gM (X0)t) and

��1(u) =
1
X

k=0

1u�(k) with �(k) =
�

�E0

�

1gM (Xk)t � E
�

1gM (Xk)t

��

�

�

1
.

Since gM is nondecreasing �(k)  ↵1,X(k)  ↵2,X(k) in such a way that ��1(u)  ↵�1
2,X(u).

Moreover, for any t 2 R,

kY (t)k1 = 2P(gM (X0)  t)P(gM (X0) > t)  2min {P(|X0| � �t),P(|X0| > t)} .

All these considerations end the proof of (3.53).
So, overall, we get

I2(n) ⌧ x�⌘n⌘/2s⌘↵,n + nx��/2�1
Z v

0

R�/2
n (u)Q(u)du+ nx�⌘/2�1

Z 1

v

R⌘/2
n (u)Q(u)du .

With similar arguments, we can prove that

I3(n) ⌧ x�⌘n⌘/2s⌘↵,n + nx��/2�1
Z v

0

R�/2
n (u)Q(u)du+ nx�⌘/2�1

Z 1

v

R⌘/2
n (u)Q(u)du .
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Therefore starting from (3.37) and taking into account (3.49), (3.4) and (3.4), it follows that

P
 

sup
f2⇤1

n
X

i=1

�

f(X 0
i)� E(f(X 0

i))
�

� 5x

!

⌧ x�⌘n⌘/2s⌘↵,n + nx��/2�1
Z v

0

R�/2
n (u)Q(u)du+ nx�⌘/2�1

Z 1

v

R⌘/2
n (u)Q(u)du ,

which combined with (3.48) ends the proof of Proposition 3.6. ⇧

4 Weak convergence of partial sums in L1

(m)

Let (S,S,m) be a �-finite measure space such that L1(S,S,m) is separable. In what follows, we
shall denote by L1(m) the space L1(S,S,m).

We use the notations of Section 2. Let Y0 = {Y0(t), t 2 S} be a random variable with values
in L1(m), such that

Z

kY0(t)k1 m(dt) < 1 and

Z

Y0(t) m(dt) = 0 .

Define the stationary sequence Y = (Yi)i2Z by Yi = Y0 � T i, and let

Sn =
n
X

k=1

Yk .

4.1 Previous results

If Y is a sequence of i.i.d. random variables, Jain [20] proved that n�1/2Sn satisfies the CLT (i.e.
converges in distribution to an L1(m)-valued Gaussian random variable) if and only if

Z

kY0(t)k2 m(dt) < 1. (4.1)

Using a general result by de Acosta, Araujo and Giné [1], Dédé [7] proved that the CLT remains
valid under (4.1) for stationary and ergodic martingale di↵erences (meaning that E(Y1|F0) = 0
almost surely). Starting from a martingale approximation, she proved then that, if Y is ergodic,
the CLT holds as soon as (4.1) holds and

X

k2Z

Z

kP0(Yk(t))k2 m(dt) < 1, (4.2)

where P0(Yk(t)) = E(Yk(t)|F0)� E(Yk(t)|F�1).
In a recent paper, Cuny [6] has given many new results concerning the behavior of partial

sums of dependent sequences in Banach spaces of cotype 2. Among these results, he showed that,
if Y is ergodic, Y0 is F0-measurable, (4.1) holds and

X

n>0

Z

kE(Sn|F0)k2
n3/2

m(dt) < 1 , (4.3)

then the CLT and the weak invariance principle (WIP) hold. By WIP, we mean that the partial
sum process {n�1/2S[nt], t 2 [0, 1]} converges in distribution to an L1(m)-valued Wiener process
in the space DL1(m)([0, 1]) of L1(m)-valued càdlàg functions equipped with the uniform metric.
As usual, an L1(m)-valued Wiener process with covariance ⇤ is a centered Gaussian process
W = {W (t), t 2 [0, 1]} such that E(kW (t)k2L1(m) < 1 for all t 2 [0, 1] and, for all f, g in L1(m),

Cov

✓

Z

f(u)Wt(u) m(du),

Z

g(u)Ws(u) m(du)

◆

= min{s, t}⇤(f, g)

22



(as usual, we identify a function f in L1(m) with an element of the dual of L1(m)).
Note that Cuny [6] also proved that the WIP holds under (4.2), and that the almost sure

invariance principle with rate o(
p
n ln lnn) is true if either (4.2) of (4.3) holds.

The condition (4.2) is the L1(m) version of Hannan’s criterion [18], and the condition (4.3) is
the L1(m) version of Maxwell-Woodroofe’s criterion criterion [22]. If Y0 is F0-measurable, both
criteria hold as soon as

1
X

k=0

1
k + 1

Z

kE(Yk(t)|F0)k2 m(dt) < 1 . (4.4)

As shown in [6], if either (4.2) or (4.3) holds, there exists a stationary and ergodic sequence
of martingale di↵erences (Di)i2Z with values in L1(m), such that, setting Mn =

Pn
k=1 Dk,

�

�

�

�

max
1kn

Z

|Sk(t)�Mk(t)| m(dt)

�

�

�

�

2

= o(
p
n) .

In the next subsections, we shall rather look for a martingale approximation in L1, in the spirit
of Gordin [16]. Our criterion will not be directly comparable to either (4.2) or (4.3), but its
application to the empirical distribution function of ↵-dependent sequences will lead to weaker
conditions (see Section 5 for a deeper discussion).

4.2 A central limit theorem in L1

(m) for non-adapted sequences

In this section, we give an extension of Gordin’s criterion [16] for the central limit theorem to
L1(m)-valued random variables.

Theorem 4.1. Assume that, for m almost every t, the series

U(t) =
1
X

k=1

E0(Yk(t)) and V (t) = �
0
X

k=�1

�

Yk(t)� E0(Yk(t))
�

(4.5)

converge in probability, and let

D0(t) =
X

k2Z

�

E0(Yk(t))� E�1(Yk(t))
�

and Mn(t) =
n
X

k=1

D0(t) � T k .

If

Z

kU(t) + V (t)k1 m(dt) < 1 , (4.6)

then

lim
n!1

Z

�

�

�

�

Sn(t)p
n

� Mn(t)p
n

�

�

�

�

1

m(dt) = 0 . (4.7)

If moreover, for m almost every t,

C(t) = lim inf
n!1

1p
n
E(|Sn(t)|) < 1 and

Z

C(t) m(dt) < 1 , (4.8)

then

Z

kD0(t)k2 m(dt) < 1 , (4.9)

and for any (s1, . . . , sd) in [0, 1]d, the random vector n�1/2(S[ns1], . . . , S[nsd])
t
converges in distri-

bution in (L1(m))d to the Gaussian random vector (Ws1 , . . . ,Wsd), where W is the L1(m)-valued
Wiener process W with covariance operator ⇤ defined by: for any f, g in L1(m),

⇤(f, g) = E
✓

ZZ

f(t)g(s)D0(t)D0(s) m(dt)m(ds)

◆

. (4.10)

Proof of Theorem 4.1. We first state the following intermediate result:
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Proposition 4.1. Assume that, for m almost every t,

Y0(t) = D0(t) + Z(t)� Z(t) � T , (4.11)

where D0(t) is an integrable random variable such that E(D0(t)|F�1) = 0 almost surely. Let then

Mn(t) =
Pn

k=1 D0(t) � T k . If
Z

kZ(t)k1 m(dt) < 1 , (4.12)

then (4.7) holds. If moreover (4.9) holds, then the conclusion of Theorem 4.1 holds.

Before proving Proposition 4.1, let us continue the proof of Theorem 4.1. Note first that, if
(4.5) is satisfied, then (4.11) holds, with

D0(t) =
X

k2Z

�

E0(Yk(t))�E�1(Yk(t))
�

and Z(t)�T =
1
X

k=1

E0(Yk(t))�
0
X

k=�1

�

Yk(t)�E0(Yk(t))
�

.

Now, if Z(t) is defined as above, the conditions (4.6) and (4.12) are the same. Hence, it follows
from Proposition 4.1 that (4.7) holds as soon as (4.12) is satified. The second part of Theorem
4.1 will follow from Proposition 4.1 if we prove that (4.8) implies (4.9). By (4.6) it follows that

lim
n!1

kZ(t)k1p
n

= 0 for m-almost every t. (4.13)

Since Sn(t) = Mn(t) + Z(t)� Z(t) � Tn, we infer from (4.13) that, for m almost every t,

lim inf
n!1

kMn(t)k1p
n

= lim inf
n!1

kSn(t)k1p
n

. (4.14)

From (4.14) and (4.8), it follows that, for m almost every t,

C(t) = lim inf
n!1

kMn(t)k1p
n

< 1 .

Now, applying Theorem 1 and Remark 1.1 in Esseen and Janson [14], we deduce that, for m
almost every t,

kD0(t)k2 =

r

⇡
2
C(t) ,

so that (4.8) implies (4.9). This completes the proof of Theorem 4.1.

Proof of Proposition 4.1. Since Sn(t) = Mn(t) + Z(t)� Z(t) � Tn, it follows that
Z

�

�

�

�

Sn(t)p
n

� Mn(t)p
n

�

�

�

�

1

m(dt)  2p
n

Z

kZ(t)k1 m(dt) ,

and (4.7) follows from (4.12).
Now, let d be a positive integer, and let f be a separately Lipschitz function from (L1(m))d

to R. This means that there exists non-negative constants c1, . . . , cd such that

|f(x1, . . . , xd)� f(y1, . . . , yd)| 
d
X

i=1

ci

Z

|xi(t)� yi(t)| m(dt) .

For such a f and any (s1, . . . , sd) in [0, 1]d, we get that

�

�

�

�

E
✓

f

✓

S[ns1]p
n

, . . . ,
S[nsd]p

n

◆◆

� E
✓

f

✓

M[ns1]p
n

, . . . ,
M[nsd]p

n

◆◆

�

�

�

�


d
X

i=1

ci

Z

�

�

�

�

S[nsi](t)p
n

�
M[nsi](t)p

n

�

�

�

�

1

m(dt) ,
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and it follows from (4.7) that

lim
n!1

�

�

�

�

E
✓

f

✓

S[ns1]p
n

, . . . ,
S[nsd]p

n

◆◆

� E
✓

f

✓

M[ns1]p
n

, . . . ,
M[nsd]p

n

◆◆

�

�

�

�

= 0 . (4.15)

Now, when (4.9) holds, Cuny [6] proved that the process {n�1/2M[nt], t 2 [0, 1]} converges in
distribution in the space DL1(m)([0, 1]) to an L1(m)-valued Wiener process W , with covariance
operator ⇤ given by (4.10). Together with (4.15), this completes the proof of Proposition 4.1.

4.3 An invariance principle in L1

(m) for adapted sequences

In this subsection, we assume that the random variable Y0 is F0-measurable.

Theorem 4.2. Assume that, for m-almost every t, the series U(t) defined in (4.5) converges in

probability. Assume also that, for m-almost every t, the series

n
X

k=0

Y0(t)E0(Yk(t)) (4.16)

converge in L1
, and let

L(t) = sup
n�0

�

�

�

�

�

n
X

k=0

Y0(t)E0(Yk(t))

�

�

�

�

�

1

. (4.17)

If moreover

R

kU(t)k1 m(dt) < 1 and

Z

p

L(t) m(dt) < 1 , (4.18)

then {n�1/2S[nt], t 2 [0, 1]} converges in distribution in the space DL1(m)([0, 1]) to an L1(m)-valued
Wiener process W , with covariance operator ⇤ defined by (4.10).

As an immediate consequence of Theorem 4.2, the following corollary holds:

Corollary 4.1. Assume that

Z s

X

k�0

�

�max{1, |Y0(t)|}|E0(Yk(t))|
�

�

1
m(dt) < 1 . (4.19)

Then the conclusion of Theorem 4.2 holds.

Remark 4.3. Under the assumptions of Theorem 4.2, we shall prove that the sequence

Tn =
1
n

✓

max
1kn

Z

|Sk(t)|m(dt)

◆2

(4.20)

is uniformly integrable (see Lemma 4.1 below). By standard arguments, this implies the following
extension of Theorem 4.2: let  be any continuous function from (DL1(m)([0, 1]), k ·k1) to R such
that | (x)|  C(1 + kxk21) for some positive constant C. Then

lim
n!1

E
✓

 

✓

Snp
n

◆◆

= E(( (W )) .

In particular

lim
n!1

E(Tn) = E
 

✓

max
t2[0,1]

Z

|Wt(s)| m(ds)

◆2
!

.
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Proof of Theorem 4.2. Note first that, in this adapted case, all the conditions of Theorem 4.1
are satisfied. Indeed, since for m almost every t the series (4.16) converge in L1, it follows that
the series

P1
k=0 Cov(Y0(t), Yk(t)) converge, and then

lim
n!1

kSn(t)k22
n

= Var(Y0(t)) + 2
1
X

k=1

Cov(Y0(t), Yk(t)) .

Now, by definition of L(t),

Var(Y0(t)) + 2
1
X

k=1

Cov(Y0(t), Yk(t))  2L(t) .

Hence the condition (4.8) follows from (4.18) and the fact that

C(t) 

v

u

u

tVar(Y0(t)) + 2
1
X

k=1

Cov(Y0(t), Yk(t)) 
p

2L(t) .

So, the conclusion of Theorem 4.1 holds with the the covariance function defined by (4.10).
As usual it remains to prove the tightness, which reduces through Ascoli’s theorem to: for any

" > 0,

lim
�!0

lim sup
n!1

1
�
P
✓

max
1k[n�]

Z

|Sk(t)| m(dt) >
p
n"

◆

= 0.

But this follows straightforwardly from Lemma 4.1 below by applying Markov inequality at order
2. The proof of Theorem 4.2 is complete.

Lemma 4.1. Assume that, for m-almost every t, the series defined in (4.16) converges in L1
.

Assume moreover that the function L defined in (4.17) satisfies (4.18). Then the sequence (Tn)n�1

defined in (4.20) is uniformly integrable.

Proof of Lemma 4.1. We first note that, for any positive random variable V ,

E
 

✓

max
1kn

Z

|Sk(t)| m(dt)

◆2

V

!

 E
 

✓

Z p
V max

1kn
|Sk(t)| m(dt)

◆2
!


✓

Z

�

�

�

�

p
V max

1kn
|Sk(t)|

�

�

�

�

2

m(dt)

◆2

.

Taking V = 1Tn>M , we obtain that

E (Tn1Tn>M )  1
n

✓

Z

�

�

�

�

✓

max
1kn

|Sk(t)|
◆

1Tn>M

�

�

�

�

2

m(dt)

◆2

(4.21)

Applying Inequality (3.12) in [11] with � = 0, we get that

�

�

�

�

max
1kn

|Sk(t)|
�

�

�

�

2

2

 16
n
X

k=1

�

�

�

�

�

Yk(t)
n
X

i=k

Ek(Yi(t))

�

�

�

�

�

1

 16nL(t) . (4.22)

Using (4.18), (4.21), (4.22) and the reverse Fatou Lemma, we infer that

lim
M!1

lim sup
n!1

E (Tn1Tn>M ) = 0

as soon as, for m-almost every t,

lim
M!1

lim sup
n!1

�

�

�

�

1p
n

✓

max
1kn

|Sk(t)|
◆

1Tn>M

�

�

�

�

2

= 0 . (4.23)
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It remains to prove (4.23). In fact this follows quite easily from Proposition 1 in [11]. Indeed,
since for m-almost every t, the series defined in (4.16) converges in L1, it follows from this
proposition that the sequence

1
n

✓

max
1kn

|Sk(t)|
◆2

is uniformly integrable for m-almost every t. Hence (4.23) holds as soon as

lim
M!1

lim sup
n!1

P(Tn > M) = 0 . (4.24)

Now, applying (4.21) and (4.22),

P(Tn > M)  E(Tn)
M

 16
M

✓

Z

p

L(t) m(dt)

◆2

,

and (4.24) follows. This completes the proof of Lemma 4.1.

4.4 An invariance principle in L
1

(m) for the empirical distribution

function

In this subsection, S = R, and m is a �-finite measure on R equipped with the Borel �-field.
As in Section 2, let X0 be an F0-measurable and integrable real-valued random variable with
distribution function F . Define the stationary sequence X = (Xi)i2Z by Xi = X0 �T i, and denote
by FXk|F0 the conditional distribution function of Xk given F0.

The random variable Yk is then defined by Yk(t) = 1Xkt � F (t), in such a way that

Sn =
n
X

k=1

Yk = n(Fn � F ) ,

where Fn is the empirical distribution function of {X1, . . . , Xn}. Note that Y0 is a L1(m)-valued
random variable as soon as E(|X0|) < 1.

Theorem 4.4. Assume that

Z

v

u

u

t

1
X

k=0

kFXk|F0(t)� F (t)k1 m(dt) < 1 . (4.25)

Then {n�1/2S[ns], s 2 [0, 1]} converges in distribution in the space DL1(m)([0, 1]) to an L1(m)-
valued Wiener process W . Moreover the explicit form of the covariance operator of W is obtained

via equation (4.10) of Theorem 4.1 by taking Yk(t) = 1Xkt � F (t).

When applied to ↵-dependent sequences as defined in Section 2, Theorem 4.4 yields the fol-
lowing result.

Proposition 4.2. Let B(t) = F (t)(1� F (t)). The condition

Z

v

u

u

t

1
X

k=0

min{↵1,X(k), B(t)} m(dt) < 1 (4.26)

implies the condition (4.25), and hence the conclusion of Theorem 4.4. Moreover, the covariance

operator ⇤ of W can be expressed as follows: for any f, g in L1(m),

⇤(f, g) =
X

k2Z
E
✓

ZZ

f(t)g(s)(1X0t � F (t))(1Xks � F (s)) m(dt)m(ds)

◆

. (4.27)
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Proof of Theorem 4.4 and of Proposition 4.2. Theorem 4.4 is a direct consequence of
Corollary 4.1 applied to the random variables Yk(t) = 1Xkt�F (t). More precisely, since |Y0(t)| 
1, the criterion (4.19) is exactly the criterion (4.25).

It remains to prove Proposition 4.2. We first quote that condition (4.26) implies (4.25): this
follows easily from the two upper bounds given in (3.19). It remains to prove that the covariance
operator ⇤ given in (4.10) can be expressed as in (4.27). As usual, we identify a function f in
L1(m) with an element of the dual of L1(m), and we write

f(Yk) =

Z

f(t)Yk(t) m(dt).

By Remark 4.3, we know that, for any f in L1(m),

lim
n!1

1
n
E
�

(f(Sn))
2� = E

�

(f(W1))
2� = ⇤(f, f) . (4.28)

Now, if we can prove that, for any f, g in L1(m),

X

k2Z
|Cov(f(Y0), g(Yk))| < 1 , (4.29)

then the series
⇤̄(f, g) =

X

k2Z
Cov(f(Y0), g(Yk))

is well defined, and

lim
n!1

1
n
E
�

(f(Sn))
2� = ⇤̄(f, f) . (4.30)

From (4.28) and (4.30), we infer that, for any f in L1(m), ⇤(f, f) = ⇤̄(f, f). Applying this
equality to f , g, and f + g it follows that, for any f, g in L1(m),

⇤(f, g) = ⇤̄(f, g) ,

which is the desired result. To prove (4.29), we first note that

|Cov(f(Y0), g(Yk))|  kfk1kgk1
Z Z

k(1X0t � F (t))E0(1Xks � F (s))k1 m(dt)m(ds) .

Now
k(1X0t � F (t))E0(1Xks � F (s))k1  min{↵1,X(k), 2B(t), 2B(s)} .

Hence

X

k=0

k(1X0t � F (t))E0(1Xks � F (s))k1  2

v

u

u

t

1
X

k=0

min{↵1,X(k), B(t)}

v

u

u

t

1
X

k=0

min{↵1,X(k), B(s)} .

This implies that

X

k2Z
|Cov(f(Y0), g(Yk))|  2kfk1kgk1

0

@

Z

v

u

u

t

1
X

k=0

min{↵1,X(k), B(t)} m(dt)

1

A

2

,

and (4.29) follows from (4.26). This completes the proof of Proposition 4.2.
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5 Quantile conditions

As a consequence of the results by Dédé [7] or Cuny [6] (see the condition (4.4) of Subsection 4.1)
we know that the conclusion of Theorem 4.4 holds as soon as

1
X

k=0

1p
k + 1

Z

kFXk|F0(t)� F (t)k2 m(dt) < 1 . (5.1)

Moreover, it follows from [6] that the condition (5.1) also implies the strong invariance principle.
Let B(t) = F (t)(1� F (t)). As quoted by Dédé (2009), the condition (5.1) is implied by

1
X

k=0

1p
k + 1

Z

p

min{↵1,X(k), B(t)} m(dt) . (5.2)

The conditions (4.26) of Proposition 4.2 and the condition (5.2) are not easy to compare. However,
if either m has finite mass or X0 is bounded, then (4.26) is equivalent to

1
X

k=1

↵1,X(k) < 1 (5.3)

and (5.2) is equivalent to
1
X

k=1

r

↵1,X(k)
k

< 1 . (5.4)

Hence, in that case, the condition (4.26) is weaker than the condition (5.2), and is in fact equiv-
alent to the minimal condition to get the central limit theorem for partial sums of stationary
↵-dependent sequences of bounded random variables.

We shall now focus on the the case where m = � is the Lebesgue measure on R. In that case,
the condition (5.2) is equivalent to

1
X

k=0

1p
k + 1

Z 1

0

p

min{↵1,X(k), H(t)} dt . (5.5)

and the condition (4.26) is equivalent to (3.1). We shall see that the condition (3.1) is always
weaker than the condition (5.5). The first step is to express (3.1) and (5.5) in terms of the quantile
function of X0, as done in [12] for the invariance principle of stationary ↵-mixing sequences. More
precisely, we shall compare the three following conditions:

Z 1

0

↵�1(u)Q2(u)du < 1 , (5.6)

Z 1

0

↵�1(u)Q(u)
q

R u

0
↵�1(x) dx

du < 1 , (5.7)

Z 1

0

p

↵�1(u)Q(u)p
u

du < 1 , (5.8)

where for simplicity we denote by ↵�1 the function ↵�1
1,X defined in (3.21). The condition (5.6)

has been introduced by Doukhan, Massart and Rio [12], but in that paper the function ↵�1 is
defined with the ↵-mixing coe�cients of Rosenblatt [25]. These authors showed that (5.6) implies
the functional central limit theorem for the Donsker line

8

<

:

1p
n

[nt]
X

k=1

�

Xk � E(Xk)), t 2 [0, 1]

9

=

;

,

and that it is optimal in a precise sense. The optimality of this condition has been further
discussed in a paper by Bradley [5]. The fact that, for ergodic sequences, this functional central
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limit theorem remains true with the much weaker coe�cients ↵1,X(k) is a consequence of a result
by Dedecker and Rio [11].

Concerning these three quantile conditions, our first result is Proposition 5.1 below.

Proposition 5.1. The following equivalences hold

1. The condition (5.6) is equivalent to

Z 1

0

t

 1
X

k=0

min{↵1,X(k), H(t)}
!

dt < 1 . (5.9)

2. The condition (5.7) is equivalent to (3.1).

3. The condition (5.8) is equivalent to (5.5).

The hierarchy of these quantile conditions is given in Proposition 5.2 below.

Proposition 5.2. The following implications hold: (5.8) ) (5.7) ) (5.6).

Remark 5.1. At this point, it should be noticed that these three conditions are in fact very
close. Indeed, by a simple application of Cauchy-Schwarz inequality, for any b > 1/2,

(5.6) )
Z 1

0

p

↵�1(u)Q(u)p
u|1 + ln(u)|b

du < 1

and the condition on right hand is a slight reinforcement of (5.8).

Proof of Proposition 5.1. Assume that
P

k�0 ↵1,X(k) < 1. Then the function S defined on

R+ by

S(t) =
1
X

k=0

min{↵1,X(k), H(t)} (5.10)

is finite and non-increasing.

Proof of Item 1. By a simple change of variables, we see that the condition (5.9) is equivalent to
Z 1

0

S
⇣p

t
⌘

dt < 1 .

Since

S(t) =
1
X

k=0

Z 1

0

1umin{↵1,X(k),H(t)} du =

Z H(t)

0

↵�1(u)du , (5.11)

it follows that
Z 1

0

S
⇣p

t
⌘

dt =

Z 1

0

✓

Z 1

0

↵�1(u)1uH(
p
t) du

◆

dt

=

Z 1

0

↵�1(u)

✓

Z 1

0

1tQ2(u) dt

◆

du

=

Z 1

0

↵�1(u)Q2(u) du ,

which concludes the proof of Item 1.

Proof of Item 2. Starting from (5.11), it follows that

Z 1

0

v

u

u

t

1
X

k=0

min{↵1,X(k), H(t)} dt =

Z 1

0

s

Z H(t)

0

↵�1(u) du dt . (5.12)

Let

G↵(x) =

s

Z x

0

↵�1(u) du .

30



From (5.12), we infer that

Z 1

0

v

u

u

t

1
X

k=0

min{↵1,X(k), H(t)} dt =

Z 1

0

Z 1

0

1vG↵(H(t)) dv dt

=

Z 1

0

Z 1

0

1

tQ(G�1
↵ (v)) dt dv

=

Z 1

0

Q �G�1
↵ (v) dv .

Making the change of variables u = G�1
↵ (v), the result follows.

Proof of Item 3. Note first that

Z 1

0

p

min{↵1,X(k), H(t)} dt =

Z 1

0

✓

Z 1

0

1u2↵1,X(k)1u2H(t) du

◆

dt (5.13)

=

Z 1

0

Q(u2)1u2↵1,X(k) du . (5.14)

Now u2  ↵1,X(k) if and only if k  ↵�1(u2). Hence, there exists two positive constants A and
B such that

A
p

↵�1(u2) 
1
X

k=1

1p
k
1u2↵1,X(k)  B

p

↵�1(u2) .

Finally

1
X

k=1

1p
k

Z 1

0

p

min{↵1,X(k), H(t)} dt < 1 i↵ 
Z 1

0

p

↵�1(u2)Q(u2)du < 1 .

Making the change of variables v = u2, the result follows.

Proof of Proposition 5.2. Since the function ↵�1 is non-increasing, one has
Z u

0

↵�1(x) dx � u↵�1(u) ,

which proves that (5.8) implies (5.7).
It remains to prove that (5.7) implies (5.6). By Proposition 5.1, it is equivalent to prove

that (3.1) implies (5.9). If (3.1) holds, then the function S defined on R+ by (5.10) is finite and
non-increasing. Hence, using again (3.1),

t
p

S(t)  2

Z t

t/2

p

S(s) ds  C , with C = 2

Z 1

0

p

S(s) ds .

Consequently tS(t)  C
p

S(t), proving that (3.1) implies (5.9).

5.1 Su�cient conditions

In this subsection, we give some simple conditions on ↵1,X(k) and H under which (5.7) (and hence
(3.1)) is satisfied.

Proposition 5.3. The following conditions imply (5.7):

1.

E(|X0|p) < 1 for some p > 2, and
X

k>0

(↵1,X(k))
p�2

2(p�1)

k
p�2

2(p�1)

< 1 .
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2.

H(t) = O(t�p) for some p > 2, and
X

k>0

(↵1,X(k))
p�2
2p

p
k

< 1 .

3.

Z 1

0

�

H(t)
�

a�1
2a dt < 1 and ↵1,X(k) = O

⇣ 1
ka

⌘

for some a > 1.

4.

Z 1

0

✓

ln

✓

1 +
1

H(t)

◆◆� (a�1)
2

dt < 1 and ↵1,X(k) = O
⇣ 1
k(ln(k))a

⌘

for some a > 1.

5.

Z 1

0

q

H(t)
�

� ln(H(t))
�

� dt < 1 and ↵1,X(k) = O(ak) for some a < 1.

Proof of Proposition 5.3.

Proof of Item 1. Since (5.8) implies (5.7), it su�ces to prove that Item 1 implies (5.8). Applying
Cauchy Schwarz, we obtain that

Z 1

0

p

↵�1(u)Q(u)p
u

du 
✓

Z 1

0

Q(u)pdu

◆

1
p

 

Z 1

0

✓

↵�1(u)
u

◆

p
2(p�1)

du

!

p�1
p

.

Since E(|X0|p) < 1, the first integral on right hand is finite. It remains to prove that

Z 1

0

✓

↵�1(u)
u

◆

p
2(p�1)

du < 1 .

By definition of ↵�1, this is equivalent to

X

k>0

k
p

2(p�1)

Z ↵1,X(k)

↵1,X(k+1)

u
� p

2(p�1) du < 1 .

The last condition means exactly that

X

k>0

k
p

2(p�1)

⇣

(↵1,X(k))
p�2

2(p�1) � (↵1,X(k + 1))
p�2

2(p�1)

⌘

< 1 ,

which is equivalent to the condition of Item 1.
Proof of Item 2. Again, it su�ces to prove that Item 2 implies (5.8). Now, the condition

H(t) = O(t�p) is equivalent to Q(u) = O(u�1/p). Hence, the condition (5.8) holds as soon as

Z 1

0

p

↵�1(u)

u
1
p+ 1

2

du < 1 .

By definition of ↵�1, the last condition means exactly that

X

k>0

p
k
⇣

(↵1,X(k))
p�2
2p � (↵1,X(k + 1))

p�2
2p

⌘

< 1 ,

which is equivalent to the condition of Item 2.
Proofs of Item 3, 4 and 5. For the proof of these points, we start from condition (3.1) which

is equivalent to (5.7). Since we can control the behavior of ↵1,X(k), we can give upper bounds for
the function S defined by (5.10).

If ↵1,X(k) = O
�

1
ka

�

for some a > 1, then S(t) = O
⇣

(H(t))
a�1
a

⌘

.
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If ↵1,X(k) = O
⇣

1
k(ln(k))a

⌘

for some a > 1, then

S(t) = O

0

@

✓

ln

✓

1 +
1

H(t)

◆◆� (a�1)
2

1

A .

If ↵1,X(k) = O(ak) for some a < 1, then S(t) = O (H(t) |ln(H(t))|).
Item 3, 4 and 5 follow from these upper bounds and condition (3.1).
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