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Summary

The aim of this paper is to propose new Rosenthal-type inequalities for moments of order p larger
than 2 of the maximum of partial sums of stationary sequences including martingales and their gen-
eralizations. As in the recent results by Peligrad et al. (2007) and Rio (2009), the estimates of the
moments are expressed in terms of the norms of projections of partial sums. The proofs of the results
are essentially based on a new maximal inequality generalizing the Doob’s maximal inequality for
martingales and dyadic induction. Various applications are also provided.

1 Introduction

For independent random variables, the Rosenthal inequalities relate moments of order higher than 2
of partial sums of random variables to the variance of partial sums. One variant of this inequality
is the following (see Rosenthal (1970), p. 279): let (Xk)k be independent and centered real valued
random variables with finite moments of order p, p ≥ 2. Then for every positive integer n,

E
(

max
1≤j≤n

|Sj |p
)
�

n∑
k=1

E(|Xk|p) +
( n∑
k=1

E(X2
k)
)p/2

, (1)

where Sj =
∑j
k=1Xk. Unless otherwise specified, throughout the paper the notation an � bn means

that there exists a numerical constant Cp depending only on p (and not on the underlying random
variables and neither on n) such that an ≤ Cpbn, for all positive integers n.

Besides of being useful to compare the norms Lp and L2 of partial sums, these inequalities are
important tools for obtaining a variety of results, including tightness of the empirical process (see
the proof of Theorem 22.1 in Billingsley (1968)), convergence rates with respect to the strong law of
large numbers (see for instance Wittmann (1985)) or almost sure invariance principles (see Wu (2007)
and Gouëzel (2010) for recent results). Since the 70’s, there has been a great amount of works which
extended the inequality (1) to dependent sequences. See, for instance among many others: Peligrad
(1985) and Shao (1995) for the case of ρ-mixing sequences; Shao (1988), Peligrad (1989) and Utev
(1991) for the case of φ-mixing sequences; Peligrad and Gut (1999) and Utev and Peligrad (2003) for
interlaced mixing; Theorem 2.2 in Viennet (1997) for β-mixing processes; Theorem 6.3 in Rio (2000)
for the strongly mixing case; Dedecker (2001) and Rio (2009) for projective criteria.
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jective conditions.
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The main goal of the paper is to generalize the Rosenthal inequality from sequences of independent
variables to stationary dependent sequences including martingales, allowing then to consider examples
that are not necessarily dependent in the sense of the dependence structures mentioned above.

In order to present our results, let us first introduce some notations and definitions used all along
the paper.

Notation 1 Let (Ω,A,P) be a probability space and let T : Ω 7→ Ω be a bijective bi-measurable
transformation preserving the probability P. Let F0 be a σ-algebra of A satisfying F0 ⊆ T−1(F0). We
then define the nondecreasing filtration (Fi)i∈Z by Fi = T−i(F0) and the stationary sequence (Xi)i∈Z
by Xi = X0 ◦T i, where X0 is a real-valued random variable. The sequence will be called adapted to the
filtration (Fi)i∈Z if X0 is F0-measurable. The following notations will also be used: Ek(X) = E(X|Fk)
and the norm in Lp of X is denoted by ||X||p. Let Sn =

∑n
j=1Xj.

In the rest of this section the sequence (Xi)i∈Z is assumed to be stationary and adapted to (Fi)i∈Z
and the variables are in Lp.

If (Xk)k are stationary martingale differences, the martingale form of the inequality (1) is

|| max
1≤j≤n

|Sj | ||p � n1/p||X1||p +
∥∥ n∑
k=1

Ek−1(X2
k)
∥∥1/2
p/2

for any p ≥ 2, (2)

(see Burkholder (1973)). One of our goals is to replace the last term in this inequality with a new one
containing terms of the form ‖E0(S2

n)‖p/2. The reason for introducing this term comes from the fact
that for many stationary sequences ‖E0(S2

n)‖p/2 is closer to the variance of partial sums. In addition,
we are interested to point out a Rosenthal-type inequality for a larger class of stationary adapted
sequences that includes the martingale differences as a special case.

Two recent results by Peligrad and Utev (2005) and Wu and Zhao (2008) show that

|| max
1≤j≤n

|Sj | ||p � n1/p

(
||X1||p +

n∑
k=1

1

k1+1/p
||E0(Sk)||p

)
for any 1 ≤ p ≤ 2.

To find a suitable extension of this inequality for p > 2, the first step in our approach is to establish
the following maximal inequality that has interest in itself:

‖ max
1≤j≤n

|Sj | ‖p � n1/p

(
max
1≤j≤n

‖Sj‖p/n1/p +

n∑
k=1

1

k1+1/p
||E0(Sk)||p

)
for any p > 1. (3)

This inequality can be viewed as generalization of the well-known Doob’s maximal inequality for
martingales. For a more precise version than (3), with constants specified, see our inequality (7).

Then, we combine the inequality (3) with several inequalities for ‖Sn‖p that will further be estab-
lished in this paper.

As we shall see in Section 3.1, by a direct approach using dyadic induction combined with the
maximal inequality (3), we shall prove that, for any p > 2,

‖ max
1≤j≤n

|Sj | ‖p � n1/p

(
||X1||p +

n∑
k=1

1

k1+1/p
||E0(Sk)||p +

( n∑
k=1

1

k1+2δ/p
‖E0(S2

k)‖δp/2
)1/(2δ))

, (4)

where δ = min(1, 1/(p − 2)). For 2 < p ≤ 3 our inequality provides a maximal form for Theorem
3.1 in Rio (2009). When p ≥ 4, we shall see that the last term in the right hand side dominates the
second term, so that the second term can be omitted in this case. Inequality (4) shows that in order
to relate ‖max1≤j≤n |Sj |‖p to the vector (‖Sj‖2)1≤j≤n we have to control

∑n
k=1 k

−(p+1)/p||E0(Sk)||p
and

∑n
k=1 k

−(p+2δ)/p‖E0(S2
k)−E(S2

k)‖δp/2.
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In Section 3.3.1, we study the case of stationary martingale difference sequences showing that for
all even powers p ≥ 4, the inequality (4) holds with δ = 2/(p−2). This result is possible for stationary
martingale differences with the help of a special symmetrization for martingales initiated by Kwapień
and Woyczynski (1991). In addition, by using martingale approximation techniques, we obtain, for any
even integer p, another form of Rosenthal-type inequality than (4) for stationary adapted processes
(see the section 3.3.2), that gives, for instance, better results for functionals of linear processes with
independent innovations.

We also investigate the situation when the conditional expectation with respect to both the past
and the future of the process is used. For instance, when p ≥ 4 is an even integer, and the process is
reversible, then the inequality (4) holds (see Theorem 9 and Corollary 29) with δ = 1.

In Section 3.2 we show that our inequalities imply the Burkholder-type inequality as stated in
Theorem 1 of Peligrad, Utev and Wu (1997). For the sake of applications in Section 3.4 we express
the terms that appear in our Rosenthal inequalities in terms of individual summands.

Our paper is organized as follows. In Section 2, we prove a new maximal inequality allowing to
relate the moments of the maximum of partial sums of an adapted sequence, that is not necessarily
stationary, to the moments of its partial sums. The maximal inequality (3) combined with moment
estimates allows us to obtain the Rosenthal-type inequalities stated in Theorems 6 and 9 of Section 3.1.
Section 3.3 is devoted to Rosenthal-type inequalities for even powers for the special case of stationary
martingale differences and to an application to stationary processes via a martingale approximation
technique. In Section 4, we give other applications of the maximal inequalities stated in Section 2 and
provide examples for which we compute the quantities involved in the Rosenthal-type inequalities of
Section 3. One of the applications presented in this section is a Bernstein inequality for the maximum
of partial sums for strongly mixing sequences, that extends the inequality in Merlevède et al. (2009).
The applications are given to Arch models, to functions of linear processes and reversible Markov
chains. In Section 5, we apply the inequality (4) to estimate the random term of the Lp-integrated
risk of kernel estimators of the unknown marginal density of a stationary sequence that is assumed
to be β-mixing in the weak sense (see the definition 32). Some technical results are postponed to the
Appendix.

2 Maximal inequalities for adapted sequences

The next proposition is a generalization of the well-known Doob’s maximal inequality for martingales
to adapted sequences. It states that the moment of order p of the maximum of the partial sums of an
adapted process can be compared to the corresponding moment of the partial sum plus a correction
term which is zero for martingale differences sequences. The proof is based on convexity and chaining
arguments.

Proposition 2 Let p > 1 and q = p/(p−1). Let Yi, 1 ≤ i ≤ 2r be real random variables in Lp, where
r is a positive integer. Assume that the random variables are adapted to an increasing filtration (Fi)i.
Let Sr = Y1 + · · ·+ Yr. Then the following inequality holds:

‖ max
1≤i≤2r

|Si| ‖p ≤ q‖S2r‖p + q

r−1∑
l=0

( 2r−l−1∑
k=1

||E(S(k+1)2l − Sk2l |Fk2l)||pp
)1/p

. (5)

Corollary 3 In the stationary case, we get that for any integer r ≥ 1,

‖ max
1≤i≤2r

|Si| ‖p ≤ q‖S2r‖p + q2r/p
r−1∑
l=0

2−l/p||E(S2l |F0)||p .
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Remark 4 The inequality in Corollary 3 easily implies that

‖ max
1≤i≤n

|Si| ‖p ≤ 2q max
1≤m≤n

‖Sm‖p + (21/pq)n1/p
r−1∑
l=0

2−l/p||E(S2l |F0)||p , (6)

for any integer n ∈ [2r−1, 2r[, where r is a positive integer. Moreover, due to the subadditivity of the
sequence

(
||E(Sn|F0)||p

)
n≥1, according to Lemma 37, we also have that for any positive integer n,

‖ max
1≤i≤n

|Si| ‖p ≤ 2q max
1≤m≤n

‖Sm‖p + (q
22+2/p

21+1/p − 1
)n1/p

n∑
j=1

j−1−1/p||E(Sj |F0)||p . (7)

The inequalities (6) and (7) are true even if the variables are not centered.

For several applications involving exponential bounds we point out the following proposition.

Proposition 5 Let p > 1 and q = p/(p − 1). Let (Yi)i≥1, be real random variables in Lp. Assume
that the random variables are adapted to an increasing filtration (Fi)i. Let Sn = Y1 + · · · + Yn. Let
ϕ be a nondecreasing, non negative, convex and even function. Then for any positive real x, and any
positive integer r, the following inequality holds

P( max
1≤i≤2r

|Si| ≥ 2x) ≤ 1

ϕ(x)
E(ϕ(S2r )) + qpx−p

( r−1∑
l=0

( 2r−l−1∑
k=1

||E(S(k+1)2l − Sk2l |Fk2l)||pp
)1/p)p

. (8)

Assume in addition that there exists a positive real M such that supi ‖Yi‖∞ ≤ M . Then for any
positive real x, and any positive integer r, the following inequality holds

P( max
1≤i≤2r

|Si| ≥ 4x) ≤ 1

ϕ(x)
E(ϕ(S2r )) + qpx−p

( r−1∑
l=0

( 2r−l−1∑
k=1

||E(Sv+(k+1)2l − Sv+k2l |Fk2l)||pp
)1/p)p

,

(9)
with v = [x/M ] (where [ . ] denotes the integer part).

Proof of Propositions 2 and 5. Denote S∗2r = max1≤i≤2r |Si|. For any m ∈ [0, 2r − 1], we have
that

S2r−m = E(S2r |F2r−m)−E(S2r − S2r−m|F2r−m) .

So,
S∗2r ≤ max

0≤m≤2r−1
|E(S2r |F2r−m)|+ max

0≤m≤2r−1
|E(S2r − S2r−m|F2r−m)| . (10)

Since (E(S2r |Fk))k≥1 is a martingale, we shall use Doob’s maximal inequality to deal with the first
term in the right-hand side of (10). Hence, since ϕ is a nondecreasing, non negative, convex and even
function, we get that

P
(

max
0≤m≤2r−1

|E(S2r |F2r−m)| ≥ x
)
≤ 1

ϕ(x)
E(ϕ(S2r )) , (11)

and also that
‖ max
0≤m≤2r−1

|E(S2r |F2r−m)|‖p ≤ q‖S2r‖p . (12)
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Write now m in basis 2 as follows:

m =

r−1∑
i=0

bi(m)2i, where bi(m) = 0 or bi(m) = 1 .

Set ml =
∑r−1
i=l bi(m)2i and notice that for any p ≥ 1, we have

|E(S2r − S2r−m|F2r−m)|p ≤
( r−1∑
l=0

|E(S2r−ml+1
− S2r−ml |F2r−m)|

)p
.

Hence setting

αl =
( 2r−l−1∑

k=1

||E(S(k+1)2l − Sk2l |Fk2l)||pp
)1/p

and λl =
αl∑r−1
l=0 αl

,

we get by convexity

|E(S2r − S2r−m|F2r−m)|p ≤
r−1∑
l=0

λ1−pl |E(S2r−ml+1
− S2r−ml |F2r−m)|p

≤
r−1∑
l=0

λ1−pl |E(|E(S2r−ml+1
− S2r−ml |F2r−ml)|

∣∣F2r−m)|p .

Now ml 6= ml+1 only if bl(m) = 1, and in that case ml = km2l with km odd. It follows that

|E(S2r−ml+1
− S2r−ml |F2r−ml)| ≤ max

1≤k≤2r−l,k odd
|E(S2r−(k−1)2l − S2r−k2l |F2r−k2l)|

:= Ar,l .

Hence, using the fact that if |X| ≤ |Y | then E(|X||F) ≤ E(|Y ||F), we get that

‖ max
0≤m≤2r−1

|E(S2r − S2r−m|F2r−m)|‖pp ≤
r−1∑
l=0

λ1−pl E( max
0≤m≤2r−1

|E(Ar,l|F2r−m)|)p .

Notice that (E(Ar,l|Fk))k≥1 is a martingale and by Doob’s maximal inequality, we obtain

E( max
0≤m≤2r−1

E(Ar,l|F2r−m))p ≤ qp‖Ar,l‖pp ≤ qpα
p
l .

Using the definition of λl, it follows that

‖ max
0≤m≤2r−1

|E(S2r − S2r−m|F2r−m)|‖pp ≤ qp
( r−1∑
l=0

αl
)p

(13)

≤ qp
( r−1∑
l=0

( 2r−l−1∑
k=1

||E(S(k+1)2l − Sk2l |Fk2l)||pp
)1/p)p

.

Starting from (10) and using (11) and (13) combined with Markov’s inequality, Inequality (8) of
Proposition 5 follows. To end the proof of Proposition 2, we start from (10) and consider the bounds
(12) and (13).
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We turn now to the proof of Inequality (9). We start from (10) and we write that

S∗2r ≤ max
0≤m≤2r−1

|E(S2r |F2r−m)|+ max
0≤m≤2r−1

|E(S2r+v − S2r+v−m|F2r−m)|

+ max
0≤m≤2r−1

|E(S2r+v − S2r |F2r−m)|+ max
0≤m≤2r−1

|E(S2r+v−m − S2r−m|F2r−m)| .

By the fact that the variables are uniformly bounded by M , we then derive that

S∗2r ≤ max
0≤m≤2r−1

|E(S2r |F2r−m)|+ max
0≤m≤2r−1

|E(S2r+v − S2r+v−m|F2r−m)|+ 2vM .

Since vM ≤ x, it follows that

P(S∗2r ≥ 4x) ≤ P( max
0≤m≤2r−1

|E(S2r |F2r−m)| ≥ x) (14)

+P( max
0≤m≤2r−1

|E(S2r+v − S2r+v−m|F2r−m)| ≥ x) .

Using chaining arguments, convexity and the Doob’s maximal inequality, as above, we infer that for
any p > 1,

‖ max
0≤m≤2r−1

|E(S2r+v − S2r+v−m|F2r−m)| ‖pp (15)

≤ qp
( r−1∑
l=0

( 2r−l−1∑
k=1

||E(Sv+(k+1)2l − Sv+k2l |Fk2l)||pp
)1/p)p

.

Starting from (14) and using (11) and (15) combined with Markov’s inequality, Inequality (9) of
Proposition 5 follows. �

3 Moment inequalities for the maximum of partial sums under
projective conditions

3.1 Rosenthal-type inequalities for stationary processes

Using a direct approach that combines the maximal inequality (7) and the Lemma 36, we obtain the
following Rosenthal inequality for the maximum of the partial sums of a stationary process for all
powers p > 2.

Theorem 6 Let p > 2 be a real number and let (Xi)i∈Z be an adapted stationary sequence in the
sense of Notation 1. Then, for any positive integer n, the following inequality holds:

E
(

max
1≤j≤n

|Sj |p
)
� nE(|X1|)p + cn

(
n∑
k=1

1

k1+1/p
||E0(Sk)||p

)p
+ n

(
n∑
k=1

1

k1+2δ/p
‖E0(S2

k)‖δp/2

)p/(2δ)
,

where δ = min(1, 1/(p − 2)) and c = 1. When p ≥ 4 we can take c = 0 by enlarging the constant
involved.

Comment 7 1. Notice that for 2 < p ≤ 3 the inequality holds with δ = 1 and therefore it provides a
maximal form for Theorem 3.1 in Rio (2009).
2. It is interesting to indicate the monotonicity of the right-hand side of the inequality in δ. To be
more precise, for any 0 < δ ≤ γ ≤ 1, the following inequality holds:( n∑

k=1

k−1−2γ/p‖E0(S2
k)‖γp/2

)1/γ
≤ 2(1+γ)(γ−δ)/(δγ)

( n∑
k=1

k−1−2δ/p‖E0(S2
k)‖δp/2

)1/δ
.
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To see this, we notice the subadditivity property ‖E0(S2
i+j)‖p/2 ≤ 2‖E0(S2

i )‖p/2 + 2‖E0(S2
j )‖p/2 and

apply then the item 3 of Lemma 37 with C = 2.

3. On the other hand, for any 0 < δ < 1 and any γ > 1/δ − 1, by Hölder’s inequality, there exists a
positive constant C depending on p, γ and δ, such that( n∑

k=1

k−1−2δ/p‖E0(S2
k)‖δp/2

)p/(2δ)
≤ C

( n∑
k=1

k−1−2/p(log k)γ ‖E0(S2
k)‖p/2

)p/2
. (16)

4. As a matter of fact we shall prove first the inequality from Theorem 6 in a slightly different form
which is equivalent up to multiplicative constants: for any positive integer r and any integer n such
that 2r−1 ≤ n < 2r, (δ and c as above)

E
(

max
1≤j≤n

|Sj |p
)
� nE(|X1|)p+cn

( r−1∑
k=0

2−k/p‖E0(S2k)‖p
)p

+n
( r−1∑
k=0

2−2kδ/p‖E0(S2
2k)‖δp/2

)p/(2δ)
. (17)

5. In the traditional Rosenthal inequality for martingales, the lower bound and the upper one have the
same order of magnitude (we refer to the paper by Hitczenko (1990) for results on the best constants).
In general the upper bound obtained in Theorem 6 cannot be a lower bound for E(|Sn|p) (up to some
constants) without any additional assumptions. Indeed, if Xk = Z0 ◦ T k−1 − Z0 ◦ T k where Z0 is
F0-measurable and in Lp, then E(|Sn|p) ≤ 2p‖Z0‖pp, whereas the upper bound given in Theorem 6 is
of order n. However, we notice that Theorem 6 is sharp in some sense. Indeed, a simple lower bound
for ‖Sn‖p can be obtained via the inequality: ‖E0(S2

n)‖p/2 ≤ ‖Sn‖2p. Hence for p > 2, if ‖E0(S2
n)‖p/2

is of order nγ with γ > 2/p, then the lower bound, ‖E0(S2
n)‖p/2p/2 and the term in the right hand side of

the inequality of Theorem 6 have the same order of magnitude (to see this, we also use the fact that
‖E0(Sn)‖2p ≤ ‖E0(S2

n)‖p/2).

With applications to Markov processes in mind, by conditioning with respect to both the future
and the past of the process, our next result gives an alternative inequality than the one given in
Theorem 6 when p is an even integer. For this case, the power δ appearing in Theorem 6 is always
equal to one. Before stating the result, we first introduce the following notation to define the additional
nonincreasing filtration that we consider.

Notation 8 Let F̄0 be a σ-algebra of A satisfying T−1(F̄0) ⊆ F̄0. We then define the nonincreasing
filtration (F̄i)i∈Z by F̄i = T−i(F̄0). In what follows, we use the notation Ēk(Y ) = E(Y |F̄k).

Theorem 9 Let p ≥ 4 be an even integer and let X0 be a real valued random variable such that
‖X0‖p < ∞ and measurable with respect to F0 and to F̄0. We construct the stationary sequence
(Xi)i∈Z as in Notation 1. Then for any integer n,

E
(

max
1≤j≤n

|Sj |p
)
� nE(|X1|p) + n

( n∑
k=1

1

k1+1/p

(
‖E0(Sk)‖p + ‖Ēk+1(Sk)‖p

))p
+ n

( n∑
k=1

1

k1+2/p

(
‖E0(S2

k)‖p/2 + ‖Ēk+1(S2
k)‖p/2

))p/2
.

As a corollary to the proof of Theorem 9 we obtain:
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Theorem 10 Let p ≥ 4 be a real number and let X0 be a real valued random variables such that
‖X0‖p < ∞ and measurable with respect to F0 and to F̄0. We construct the stationary sequence
(Xi)i∈Z as in Notation 1. Then for any integer n,

E
(

max
1≤j≤n

|Sj |p
)
� nE(|X1|p) + n

( n∑
k=1

1

k1+1/p

(
‖E0(S2

k)‖1/2p/2 + ‖Ēk+1(S2
k)‖1/2p/2

))p
.

This theorem is also valid for 2 < p < 4. In this range however, according to Item 2 of Comment
7, Theorem 6 gives better bounds.

Proof of Theorem 6. The proof of this theorem is based on dyadic induction and involves several
steps. With the notation an = ||Sn||p we shall establish a recurrence formula: for any positive integer
r,

ap2n ≤ 2apn + 2c1a
p−1
n ‖E0(Sn)‖p + 2c2a

p−2δ
n ‖E0(S2

n)‖δp/2 . (18)

where c1 and c2 are positive constants depending only on p. Before proving it, let us show that (18)
implies our result.

Lemma 11 Assume that for some 0 < δ ≤ 1 the recurrence formula (18) holds. Then the inequalities
(17) and (4) hold with the same δ.

Let us prove the lemma. From inequality (18), by recurrence on the first term, we obtain for any
positive integer r,

ap2r ≤ 2r
(
ap20 + c1

r−1∑
k=0

2−kap−1
2k
‖E0(S2k)‖p + c2

r−1∑
k=0

2−kap−2δ
2k
‖E0(S2

2k)‖δp/2
)
. (19)

We shall establish first the inequality (17). Due to the maximal inequality (6), it suffices to prove
that the inequality is satisfied for max1≤j≤n E(|Sj |p) instead of E

(
max1≤j≤n |Sj |p

)
.

The proof is divided in several steps. The goal is to establish that for any positive integer r and
any integer n such that 2r−1 ≤ n < 2r,

max
1≤j≤n

E
(
|Sj |p

)
� nE(|X1|)p + cn

( r−1∑
k=0

2−k/p‖E0(S2k)‖p
)p

+ n
( r−1∑
k=0

2−2kδ/p‖E0(S2
2k)‖δp/2

)p/2δ
. (20)

With the notation Br = max
0≤k≤r

(ap
2k
/2k), starting from (19), we get

Br ≤ ap20 + c1B
1−1/p
r

r−1∑
k=0

2−k/p‖E0(S2k)‖p + c2B
1−2δ/p
r

r−1∑
k=0

2−2kδ/p ‖E0(S2
2k)‖δp/2 .

Therefore, taking into account that either Br ≤ 3ap20 or B
1/p
r ≤ 3c1

∑r−1
k=0 2−k/p‖E0(S2k)‖p or B

2δ/p
r ≤

3c2
∑r−1
k=0 2−2kδ/p ‖E0(S2

2k)‖δp/2, we derive that

ap2r ≤ 2r
(

3ap20 +
(

3c1

r−1∑
k=0

2−k/p‖E0(S2k)‖p
)p

+
(

3c2

r−1∑
k=0

2−2kδ/p ‖E0(S2
2k)‖δp/2

)p/2δ)
. (21)

Let now 2r−1 ≤ n < 2r and write its binary expansion:

n =

r−1∑
k=0

2kbk where br−1 = 1 and bk ∈ {0, 1} for k = 0, . . . , r − 2 . (22)
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Notice that

Sn =

r−1∑
k=0

bkT2k where T2k =

nk∑
i=nk−1+1

Xi, nk =

k∑
j=0

bj2
j and n−1 = 0 .

Hence, by stationarity,

‖Sn‖p ≤
r−1∑
k=0

bk‖T2k‖p ≤
r−1∑
k=0

bk‖S2k‖p .

Then, by using (21) and the fact that
∑r−1
k=0 bk2k/p ≤ 2r/p/(1−2−1/p), we derive the inequality (20) for

E(|Sn|p) and also for max1≤j≤n E
(
|Sj |p

)
. The inequality (17) follows now by the maximal inequality

(6).
We indicate now how to derive from (17) the inequality stated in Theorem 6. Notice that, by

stationarity, for any integers i and j,

‖E0(Si+j)‖p ≤ ‖E0(Si)‖p + ‖E0(Sj)‖p ,

and also that for any 0 < δ ≤ 1,

‖E0(S2
i+j)‖δp/2 ≤ 2δ‖E0(S2

i )‖δp/2 + 2δ‖E0(S2
j )‖δp/2 .

Using Item 1 of Lemma 37, it follows that

r−1∑
k=0

2−k/p‖E0(S2k)‖p �
n∑
k=1

k−1−1/p ‖E0(Sk)‖p ,

and
r−1∑
k=0

2−2kδ/p‖E0(S2
2k)‖δp/2 �

n∑
k=1

k−1−2δ/p‖E0(S2
k)‖δp/2 . (23)

The results follows by the above considerations via the inequality (17). �

End of the proof of Theorem 6. It remains to establish the recurrence formula (18). We divide
the proof in three cases according to the values of p. Denote S̄n = Xn+1 + · · ·+X2n.

The case 2 < p ≤ 3 was discussed in Rio (2009). We give here a shorter alternative proof. We
apply inequality (85) of Lemma 36 with x = Sn and y = S̄n. Then, by taking the expectation and
using stationarity and properties of conditional expectation, we obtain

E(|S2n|)p ≤ 2E(|Sn|)p + pE(|Sn|p−1sign(Sn)En(S̄n)) + C2
pE(|Sn|p−2En(S̄2

n)) ,

where C2
p = p(p− 1)/2. This inequality combined with Hölder’s inequality gives

ap2n ≤ 2apn + pap−1n ‖E0(Sn)‖p + C2
pa
p(1−2/p)
n ‖E0(S2

n)‖p/2

and therefore (18) holds with δ = 1, c1 = 2−1p, and c2 = 2−1C2
p .

Assume now that p ∈]3, 4[. Using the inequality (86) of Lemma 36 with x = Sn and y = S̄n, taking
the expectation, and using Lemma 34, we get by stationarity that for any positive integer r,

ap2n ≤ 2apn + pap−1n ‖E0(Sn)‖p + C2
pa
p(1−2/p)
n ‖E0(S2

n)‖p/2 + 2p(p− 2)−1ap−2/(p−2)n ||E0(S2
n)||1/(p−2)p/2 .

Since ‖E0(S2
n)‖p/2 ≤ a

2(p−3)/(p−2)
n ‖E0(S2

n)‖1/(p−2)p/2 , it follows that

ap2n ≤ 2apn + pap−1n ‖E0(Sn)‖p + 4pap−2/(p−2)n ||E0(S2
n)||1/(p−2)p/2 .
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It follows that (18) holds with δ = 1/(p− 2), c1 = 2−1p, and c2 = 2p.
It remains to prove the inequality (4) for p ≥ 4. Using the inequality (87) of Lemma 36 with

x = Sn and y = S̄n, and taking the expectation, we get by stationarity that

ap2n ≤ 2apn + 4pE
(
|Sn|p−1|S̄n|+ |S̄n|p−1|Sn|

)
.

Using Lemma 34 together with stationarity, it follows that

E(|Sn||S̄n|p−1) ≤ ap−2/(p−2)n ||E0(S2
n)||1/(p−2)p/2 ,

and that
E( |Sn|p−1|S̄n|) ≤ ap−1n ||E0(S2

n)||1/2p/2 ≤ a
p−2/(p−2)
n ||E0(S2

n)||1/(p−2)p/2 .

From these estimates we deduce

ap2n ≤ 2apn + 2(4p)ap−2/(p−2)n ‖E0(S2
n)‖1/(p−2)p/2 ,

and then (18) holds with δ = 1/(p − 2), c1 = 0, and c2 = 4p. Therefore, in this case (20) holds with
c = 0. Then by the maximal inequality (6), the inequality (17) holds with c = 1. We show now that,
in this case, the second term in the inequality can be bounded up to a multiplicative constant by the
third term. By Jensen’s inequality and since in this case δ < 1/2, we have

r−1∑
k=0

2−k/p||E0(S2k)||p ≤
( r−1∑
k=0

2−(2k/p)(1/2)||E0(S2
2k)||1/2p/2

)2
≤
( r−1∑
k=0

2−(2k/p)δ‖E0(S2
2k)‖δp/2

)1/δ
. (24)

We then finish the proof by using (23). �

Proof of Theorem 9. Denote S̄n = Xn+1 + · · ·+X2n. Starting from the inequality (88) of Lemma
36 applied with x = Sn and y = S̄n and using the notation an = ||Sn||p, by stationarity, we get that

ap2n ≤ 2apn + p
(
E(Sp−1n S̄n) + E(SnS̄

p−1
n )

)
+ 2p

(
E(Sp−2n S̄2

n) + E(S̄p−2n S2
n)
)
. (25)

By using Hölder’s inequality and recurrence, we then derive that for any positive integer r,

ap2r ≤ 2rap20 + 2−1p

r−1∑
k=0

2r−kap−1
2k

(
‖E0(S2k)‖p + ‖Ē2k+1(S2k)‖p

)
+ 2p−1

r−1∑
k=0

2r−kap−2
2k

(
‖E0(S2

2k)‖p/2 + ‖Ē2k+1(S2
2k)‖p/2

)
.

By using the arguments of the proof of Lemma 11, we get for 2r−1 ≤ n < 2r,

E
(

max
1≤j≤n

|Sj |p
)
� nE(|X1|p) + n

( r−1∑
k=1

2−k/p
(
‖E0(S2k)‖p + ‖Ēk+1(S2k)‖p

))p
+ n

( n∑
k=1

2−2k/p
(
‖E0(S2

2k)‖p/2 + ‖Ēk+1(S2
2k)‖p/2

))p/2
.

Noticing in addition that, by stationarity, for any integer i and j

‖E0(Si+j)‖p ≤ ‖E0(Si)‖p + ‖E0(Sj)‖p , ‖Ēi+j+1(Si+j)‖p ≤ ‖Ēi+1(Si)‖p + ‖Ēj+1(Sj)‖p ,
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‖Ēi+j+1(S2
i+j)‖p/2 ≤ 2‖Ēi+1(S2

i )‖p/2 + 2‖Ēj+1(S2
j )‖p/2 , (26)

and that
‖E0(S2

i+j)‖p/2 ≤ 2‖E0(S2
i )‖p/2 + 2‖E0(S2

j )‖p/2 . (27)

We obtain the desired result by using Lemma 37. �

Proof of Theorem 10. To prove this theorem we apply the inequality (87) of Lemma 36 with
x = Sn and y = S̄n, where S̄n = Xn+1 + · · ·+X2n. With the notation an = ||Sn||p, we then have by
stationarity that

ap2n ≤ 2apn + 4p
(
E(|Sn|p−1|S̄n|) + E(|Sn||S̄n|p−1)

)
.

By conditioning and then applying Jensen’s inequality followed by Hölder’s inequality we obtain

ap2n ≤ 2apn + 4p
(
E(|Sn|p−1E1/2

n (S̄2
n)) + E(|S̄n|p−1Ē1/2

n+1(S2
n))
)

≤ 2apn + 4p ap−1n

(
‖E0(S2

n)‖1/2p/2 + ‖Ēn+1(S2
n)‖1/2p/2

)
.

By recurrence, we then derive that for any positive integer r,

ap2r ≤ 2r
(
ap0 + 22p−1

r−1∑
k=0

2−kap−1
2k

(
‖E0(S2

2k)‖1/2p/2 + ‖Ē2k+1(S2
2k)‖1/2p/2

))
.

The proof is completed by the arguments developed in the proof of Lemma 11 and by using Lemma
37 via the inequalities (26) and (27) . �

3.2 Relation with the Burkholder-type Inequality.

Next lemma shows how to compare ‖E0(S2
n)‖p/2 with quantities involving only ‖E0(Sn)‖p.

Lemma 12 Let p ≥ 2 be a real number and let (Xn) be an adapted stationary sequence in the sense
of Notation 1. Then, for any positive integer n,

‖E0(S2
n)‖p/2 � n‖E0(X2

1 )‖p/2 + n

 n∑
j=1

‖E0(Sj)‖p
j3/2

2

. (28)

As a consequence of the above lemma, we get that for any 0 < δ ≤ 1 and any real p > 2,

n

 n∑
j=1

‖E0(S2
j )‖δp/2

j1+2δ/p

p/(2δ)

� np/2‖E0(X2
1 )‖p/2p/2 + np/2

 n∑
j=1

‖E0(Sj)‖p
j3/2

p

.

Theorem 6 then implies the following Burkholder-type inequality that was established by Peligrad,
Utev and Wu (2007, Theorem 1):

Corollary 13 Let p > 2 be a real number and let (Xn) be an adapted stationary sequence in the sense
of Notation 1. Then, for any integer n,

E
(

max
1≤j≤n

|Sj |p
)
� np/2E(|X1|p) + np/2

( n∑
j=1

‖E0(Sj)‖p
j3/2

)p
.
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Proof of Lemma 12. We shall first prove that for any positive integer k,

‖E0(S2
2k)‖p/2 ≤ 2k+1‖E0(X2

1 )‖p/2 + 2k+2

k−1∑
j=0

‖E0(S2j )‖p
2j/2

2

. (29)

By using the notation S̄n = Xn+1 + · · · + Xn and the fact that S2
2n = S2

n + S̄2
n + 2SnS̄n, we get, by

stationarity, that
‖E0(S2

2n)‖p/2 ≤ 2‖E0(S2
n)‖p/2 + 2‖E0

(
SnEn(S̄n)

)
‖p/2 .

Now, Cauchy-Schwarz inequality applied twice, gives

‖E0

(
SnEn(S̄n)

)
‖p/2 ≤ ‖E

1/2
0 (S2

n)E
1/2
0 (E2

n(S̄n))‖p/2 ≤ ‖E0(S2
n)‖1/2p/2‖E0(Sn)‖p .

Hence, setting bn = ‖E0(S2
n)‖p/2, it follows that

b2n ≤ 2bn + 2b1/2n ‖E0(Sn)‖p .

By recurrence, this gives that

b2k ≤ 2kb0 +

k−1∑
j=0

2k−jb
1/2
2j ‖E0(S2j )‖p .

With the notation Bk = max0≤j≤k 2−jb2j , we derive that

Bk ≤ 2 max
(
b0, B

1/2
k

k−1∑
j=0

2−j/2‖E0(S2j )‖p
)
,

implying that

2−kb2k ≤ Bk ≤ 2b0 + 22
( k−1∑
j=0

2−j/2‖E0(S2j )‖p
)2
.

This ends the proof of the inequality (29).
We turn now to the proof of (28). Let r be the positive integer such that 2r−1 ≤ n < 2r. Starting

with the binary expansion (22), and using Minkowski’s inequality twice, first with respect to the
conditional expectation, and second with respect to the norm in Lp, we get by stationarity that

‖E0(S2
n)‖p/2 ≤

( r−1∑
k=0

bk‖(E0(S2
2k))1/2‖p

)2
≤
( r−1∑
k=0

‖E0(S2
2k)‖1/2p/2

)2
.

Using then the inequality (29), we derive that

‖E0(S2
n)‖p/2 � n‖E0(X2

1 )‖p/2 + n

r−1∑
j=0

‖E0(S2j )‖p
2j/2

2

. (30)

Since (‖E0(Sn)‖p)n≥1 is subadditive, using Item 1 of Lemma 37, Inequality (28) follows from (30). �
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3.3 Rosenthal inequalities for martingales and the case of even powers.

3.3.1 The martingale case

For any real p > 2, Theorem 6 applied to stationary martingale differences gives the following inequal-
ity:

E
(

max
1≤j≤n

|Sj |p
)
� nE(|X1|p) + n

( n∑
k=1

1

k1+2δ/p
‖E0(S2

k)‖δp/2
)p/(2δ)

,

where δ = min(1, 1/(p− 2)).
Since for stationary martingale differences we have E(S2

n) = nE(X2
1 ), we can express the inequality

in the following form useful for applications:

E
(

max
1≤j≤n

|Sj |p
)
� np/2(E(X2

1 ))p/2 + nE(|X1|p) + n
( n∑
k=1

1

k1+2δ/p
‖E0(S2

k)−E(S2
k)‖δp/2

)p/(2δ)
. (31)

As we shall see in the next result, for a stationary sequence (di)i∈Z of martingale differences in Lp with
p ≥ 4 an even integer, this inequality can be sharpened since it holds with δ = 2/(p−2) (see Comment
7). As a consequence, we recover, in case p = 4, the inequality (1.6) stated in Rio (2009) that was
obtained for variables in Lq with q = p/2, by using the classical Burkholder’s inequality combined
with Theorem 3 in Wu and Zhao (2008). Notice that the inequality (1.6) stated in Rio (2009) cannot
be generalized for p > 4 since Theorem 3 in Wu and Zhao (2008) is only valid for variables in Lq with
1 < q ≤ 2.

Theorem 14 Let p ≥ 4 be an even integer and let d0 be a real random variable in Lp, measurable
with respect to F0 and such that E(d0|F−1) = 0. Let di = d0 ◦ T i and Sn =

∑n
i=1 di. Then for any

integer n,

E
(

max
1≤j≤n

|Sj |p
)
� n E(|d1|p) + n

( n∑
k=1

1

k1+4/p(p−2) ‖E0(S2
k)‖2/(p−2)p/2

)p(p−2)/4
.

The technique that makes this result possible is a special symmetrization for martingales initiated
by Kwapień and Woyczynski (1991).

Proposition 15 Assume that (ek)k are stationary martingale differences adapted to an increasing
filtration (Fk)k that are conditionally symmetric (the distribution of ek given Fk−1 is equal to the
distribution of −ek given Fk−1). Assume, in addition, that the ek’s are conditionally independent
given a sigma algebra G and such that the law of ek given G is the same as the law of ek given Fk−1.
Let Sn =

∑n
i=1 ei. Then for any even integer p ≥ 4 and any integer n ≥ 1,

E
(

max
1≤j≤n

|Sj |p
)
� n E(|e1|p) + n

( n∑
k=1

1

k1+4/p(p−2) ‖E0(S2
k)‖2/(p−2)p/2

)p(p−2)/4
. (32)

Proof of Proposition 15. Due to the Doob’s maximal inequality, we have that ‖max1≤j≤n |Sj |‖p ≤
q‖Sn‖p where q = p(p − 1)−1. Then, it suffices to show that the inequality (32) holds for E(|Sn|p).
We shall base this proof again on dyadic induction. Denote S̄n = en+1 + ...+ e2n and an = ‖Sn‖p.

We start from the inequality (25). Since the sequence of martingale differences (ek) is conditionally
symmetric and conditionally independent given a master sigma algebra G, we have E(Sp−1n S̄n) +
E(SnS̄

p−1
n ) = 0 and therefore

ap2n ≤ 2apn + 2p
(
E(Sp−2n S̄2

n) + E(S̄p−2n S2
n)
)
.
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Using Lemma 34, we have that

E(Sp−2n S̄2
n) ≤ ap−2n ‖E0(S2

n)‖p/2 and E(S2
nS̄

p−2
n ) ≤ ap−4/(p−2)n ‖E0(S2

n)‖2/(p−2)p/2 .

Therefore, by combining all these bounds, we obtain for every even integer p ≥ 4,

ap2n ≤ 2apn + 2p
(
ap−2n ‖E0(S2

n)‖p/2 + ap−4/(p−2)n ‖E0(S2
n)‖2/(p−2)p/2

)
≤ 2apn + 2p+1ap−4/(p−2)n ‖E0(S2

n)‖2/(p−2)p/2 .

We end the proof by using Lemma 11. �
Proof of Theorem 14.

We consider our martingale differences sequence (dk)k and we construct two decoupled tangent
versions (ek)k and (ẽk)k to (dk)k that are G−conditionally independent between them (here G =
σ({di}) ). This means that these two sequences are martingale differences with the additional property
that the conditional distribution of dk given Fk−1 is equal to the distribution of ek given Fk−1 and
also to the distribution of ẽk given Fk−1 (see Definition 6.1.4 in de la Peña and Giné (1999) for
the definition of a decoupled tangent sequence, and their Proposition 6.1.5. for the crucial fact that
decoupled sequences always exist. We refer also to their Remark 6.1.6, for the construction of (ek)k
and (ẽk)k). Therefore, for any even integer p,

E
( n∑
i=1

di

)p
= E

( n∑
i=1

(di −E(ei|G)
)p
≤ E

( n∑
i=1

(di − ei)
)p
.

Now we use Corollary 6.6.8. in de la Peña and Giné (1999) (see also Zinn (1985)). Since (ei − ẽi)i is
a decoupled tangent sequence of (di − ei)i, it follows that

E
( n∑
i=1

di

)p
� E

( n∑
i=1

(ei − ẽi)
)p
.

Notice that the distribution of ei− ẽi is conditionally symmetric given G. Therefore, using the Doob’s
maximal inequality and applying Proposition 15, we obtain that for every even integer p ≥ 4 and any
integer n,

E
(

max
1≤k≤n

( k∑
i=1

di
)p)� E

( n∑
i=1

(ei − ẽi)
)p

(33)

� n E(|e1 − ẽ1|p) + n
( n∑
k=1

1

k1+4/p(p−2)

∥∥∥E0

(( k∑
i=1

(ei − ẽi)
)2)∥∥∥2/(p−2)

p/2

)p(p−2)/4
.

Notice now that
∑k
i=1 E(e2i |Fi−1) =

∑k
i=1 E(d2i |Fi−1) since both quantities are obtained using only

the conditional distributions of the di’s and ei’s respectively, and these two sequences are tangent.
Tangency also implies that di and ei have the same distributions. Hence ‖d1‖p = ‖e1‖p. For the

same reasons, we also have
∑k
i=1 E(ẽ2i |Fi−1) =

∑k
i=1 E(d2i |Fi−1) and ‖d1‖p = ‖ẽ1‖p. Therefore,

‖e1 − ẽ1‖p ≤ 2‖d1‖p and∥∥∥E0

(( k∑
i=1

(ei − ẽi)
)2)∥∥∥

p/2
≤ 2
∥∥∥E0

( k∑
i=1

E(e2i |Fi−1)
)∥∥∥

p/2
+ 2
∥∥∥E0

( k∑
i=1

E(ẽ2i |Fi−1)
)∥∥∥

p/2

= 4
∥∥∥E0

( k∑
i=1

E(d2i |Fi−1)
)∥∥∥

p/2
= 4
∥∥∥ k∑
i=1

E0(d2i )
∥∥∥
p/2

.

Theorem 14 follows by introducing these bounds in the inequality (33). �
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3.3.2 Application to stationary processes via martingale approximation

Theorem 14 together with the martingale approximation provide an alternative Rosenthal-type in-
equality involving the projection operator, very useful for analyzing linear processes.

Next lemma is a slight reformulation of the martingale approximation result that can be found
in the paper by Wu and Woodroofe (Theorem 1, 2004). See also Zhao and Woodroofe (2008) and
Gordin and Peligrad (2011).

Lemma 16 Let p ≥ 1 and let (Xn) be an adapted stationary sequence in the sense of Notation 1.
Then there is a triangular array of row-wise stationary martingale differences satisfying

Dn
0 =

1

n

n∑
i=1

(E1(Si)−E0(Si)) ; Dn
k = Dn

0 ◦ T k (34)

such that for any 1 ≤ k ≤ n we have

Sk = Mn
k +Rnk where Mn

k =

k∑
i=1

Dn
i (35)

and

max
1≤k≤n

‖Rnk‖p ≤ 2‖X0‖p +
3

n

n∑
i=1

‖E0(Si)‖p .

We state now the Rosenthal-type inequality that we shall establish with the help of the approxi-
mation result above.

Theorem 17 Let p ≥ 4 be an even integer and let (Xi)i∈Z be as in Theorem 6. Then the following
inequality is valid: for any integer n,

E
(

max
1≤j≤n

|Sj |p
)
� n‖X0‖pp + n1−p

( n∑
i=1

‖E0(Si)‖p
)p

+ n
( n∑
k=1

1

k1+4/p(p−2) ‖E0(S2
k)‖2/(p−2)p/2

)p(p−2)/4
.

Remark 18 Theorems 6 and 17 are in general not comparable. Indeed, for p ≥ 4, Theorem 6 applies
with δ = 1/(p − 2) so the last term of the inequality stated in Theorem 17 can be bounded by the
last term in the inequality from Theorem 6 (see Item 2 of Comment 7). However the second term in
Theorem 17 gives additional contribution.

Proof of Theorem 17. We bound first max1≤k≤n E(|Sk|p). By the martingale approximation of
Lemma 16 combined with Theorem 14, we get that

max
1≤k≤n

E(|Sk|p)� max
1≤k≤n

E(|Mn
k |p) + max

1≤k≤n
E(|Rnk |p)� n E(|Dn

0 |p) + ‖X0‖pp

+
( 1

n

n∑
i=1

‖E0(Si)‖p
)p

+ n
( n∑
k=1

1

k1+4/p(p−2) ‖E0((Mn
k )2)‖2/(p−2)p/2

)p(p−2)/4
.

It remains to analyze the first and the last term. By (35) applied with k = 1, we notice that
Dn

1 = X1 −Rn1 and by the triangle inequality,

||Dn
0 ||pp ≤ (||X0||p + ||Rn1 ||p)p � ||X0||pp +

1

np

( n∑
i=1

‖E0(Si)‖p
)p
.
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For analyzing the last term, we use the fact that

E0((Mn
k )2) ≤ 2E0(S2

k) + 2E0((Rnk )2) .

By using Lemma 16 it follows that

‖E0((Mn
k )2)‖p/2 � ‖E0(S2

k)‖p/2 + ‖X0‖2p + n−2
( n∑
i=1

‖E0(Si)‖p
)2
,

and overall

max
1≤k≤n

E(|Sk|p) ≤ n‖X0‖pp + n1−p
( n∑
i=1

‖E0(Si)‖p
)p

+

n
( n∑
k=1

1

k1+4/p(p−2) ‖E0(S2
k)‖2/(p−2)p/2

)p(p−2)/4
.

We apply now the inequality (7) that has as effect the addition of a forth term, namely:

n
(∑n

k=1 k
−1−1/p‖E0(Sk)‖p

)p
. However we can express our inequality without including this term

because it can be bounded, up to a multiplicative constant, by n1−p
(∑n

i=1 ‖E0(Si)‖p
)p
. Indeed,

notice that it is enough to show that for a certain universal constant C,

max
1≤i≤n

‖E0(Si)‖p ≤
C

n

n∑
i=1

‖E0(Si)‖p .

To prove it, we first notice that

max
1≤i≤n

‖E0(Si)‖p ≤ max
1≤i≤[n/2]

‖E0(Si)‖p + max
[n/2]<i≤n

‖E0(Si)‖p

and that for any i ∈ {1, · · · , [n/2]},

‖E0(Si)‖p ≤ ‖E0(Si+[n/2])‖p + ‖E0(Si+[n/2] − Si)‖p .

Therefore, by the properties of conditional expectation and stationarity, it follows that

max
1≤i≤n

‖E0(Si)‖p ≤ ‖E0(S[n/2])‖p + 2 max
[n/2]<i≤n

‖E0(Si)‖p .

To complete the proof, it remains to apply the inequality (92) to the subadditive sequence (‖E0(Si)‖p)i≥1.
�

3.4 Rosenthal inequality in terms of individual summands.

For the sake of applications in this section we indicate how to estimate the terms that appear in our
Rosenthal inequalities in terms of individual summands and formulate some specific inequalities. By
substracting E(S2

k) and applying the triangle inequality we can reformulate all the inequalities in
terms of the quantities E(S2

k), ||E0(Sk)||p and ‖E0(S2
k) − E(S2

k)‖p/2. Next lemma proposes a simple
way to estimate these quantities in terms of coefficients in the spirit of Gordin (1969).

Lemma 19 Under the stationary setting assumptions in Notation 1, we have the following estimates:

E(S2
k) ≤ 2k

k−1∑
j=0

|E(X0Xj)| , (36)
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||E0(Sk)||p ≤
n∑
`=1

||E0(X`)||p , (37)

and

‖E0(S2
k)−E(S2

k)‖p/2 ≤ 2

k∑
i=1

k−i∑
j=0

‖E0(XiXi+j)−E(XiXi+j)‖p/2 (38)

≤ 2

k∑
i=1

k−i∑
j=0

sup
`≥0
‖E0(XiXi+`)−E(XiXi+`)‖p/2 ∧ (2‖X0E0(Xj)‖p/2)

≤ 4

k∑
j=1

j‖X0E0(Xj)‖p/2 + 2

k∑
i=1

i sup
j≥i
‖E0(XiXj)−E(XiXj)‖p/2 .

Mixing coefficients are useful to continue the estimates from Lemma 19. We refer to the books by
Bradley (2007, Theorem 4.13 via Remark 4.7, VI), Rio (2000, Theorem 2.5 and Appendix, Section
C) and Dedecker et al. (2007, Remark 2.5 and Ch 3) for various estimates of the coefficients involved
in Lemma 19 and examples. We shall also provide applications and explicit computations of the
quantities involved.

We formulate the following proposition:

Proposition 20 Let p > 2 be a real number and let (Xi)i∈Z be a stationary sequence of real-valued
random variables in Lp adapted to an increasing filtration (Fi). For any j ≥ 1, let

λ(j) = max
(
‖X0E0(Xj)‖p/2, sup

i≥j
‖E0(XiXj)−E(XiXj)‖p/2

)
. (39)

Then for every positive integer n,

|| max
1≤j≤n

|Sj | ||p � n1/2
( n−1∑

k=0

|E(X0Xk)|
)1/2

+ n1/p||X1||p

+cn1/p
n∑
k=1

1

k1/p
||E0(Xk)||p + n1/p

( n∑
k=1

1

k(2/p)−1
(log k)γλ(k)

)1/2
.

where γ can be taken γ = 0 for 2 < p ≤ 3 and γ > p− 3 for p > 3; c = 1 for 2 < p < 4 and c = 0 for
p ≥ 4. The constant that is implicitly involved in the notation � depends on p and γ but it does not
depend on n and on the Xi’s.

Proof of Proposition 20. The proof of this proposition is basically a combination of Theorem 6
and Lemma 19. By the triangle inequality

||E0(S2
k)||p/2 ≤ ‖E0(S2

k)−E(S2
k)‖p/2 + E0(S2

k) .

By (36), for any p > 2 and any δ > 0, we easily obtain(
n∑
k=1

1

k1+2δ/p
(E(S2

k))δ

)1/(2δ)

� n1/2−1/p
( n−1∑
j=0

|E(X0Xj)|
)1/2

.

Then, we use inequality (37) and changing the order of summation

n∑
k=1

1

k1+1/p
||E0(Sk)||p �

n∑
k=1

1

k1/p
||E0(Xk)||p .
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Now for the situation 0 < δ < 1, by Hölder’s inequality,(
n∑
k=1

1

k1+2δ/p
‖E0(S2

k)−E(S2
k)‖δp/2

)p/(2δ)
�

(
n∑
k=1

(log k)γ

k1+2/p
‖E0(S2

k)−E(S2
k)‖p/2

)p/2
.

where γ > 1/δ − 1. We continue the proof by using (38) and get

n∑
k=1

(log k)γ

k1+2/p
‖E0(S2

k)−E(S2
k)‖p/2 �

n∑
k=1

(log k)γ

k(2/p)−1
λ(k) .

Proposition 20 follows by using Theorem 6 combined with all the above upper bounds. �

We give now a consequence of Theorem 6 that will be used in one of our applications. The proof
is omitted since it is in the spirit of the proof of Proposition 20; namely, we use Lemma 19 combined

with Hölder’s inequality, and the fact that ||E0(Sk)||p ≤ ||E0(S2
k)−E(S2

k)||1/2p/2 +
(
E(S2

k)
)1/2

.

Proposition 21 Let p > 2 be a real number and let (Xi)i∈Z be a stationary sequence of real-valued
random variables in Lp adapted to an increasing filtration (Fi). Let (λ(j))j≥1 be defined by (39). For
every positive integer n, the following inequality holds: for any ε > 0,

E
(

max
1≤j≤n

|Sj |p
)
� np/2

( n−1∑
k=0

|E(X0Xk)|
)p/2

+ nE(|X1|p) + n

n∑
k=1

kp−2+ελp/2(k) .

The constant that is implicitly involved in the notation � depends on p and ε but it does not depend
on n.

4 Applications and examples

As we have seen, Propositions 2 and 5 give a direct approach to compare the moments of order p of the
maximum of the partial sums to the moments of order p of the partial sum. We start this section by
presenting two additional applications of these propositions to the convergence of maximum of partial
sums and to the maximal Bernstein inequality for dependent structures. In the last three examples,
we apply our results on the Rosenthal-type inequalities to different classes of processes. In all the
examples given in Sections 4.3, 4.4 and 4.5, we show that, for real numbers p larger than 2, the order
of magnitude of ‖max1≤k≤n |Sk|‖p is essentially given by the order of magnitude of ‖Sn‖2 (or by a
bound of it).

4.1 Convergence of the maximum of partial sums in Lp.

Corollary 22 Let p > 1 and let (Xi)i∈Z be a strictly stationary sequence of centered real-valued
random variables in Lp adapted to an increasing and stationary filtration (Fi)i∈Z. Assume that

lim
n→∞

n−1/p‖Sn‖p = 0 . (40)

Assume in addition that ∑
n≥1

‖E(Sn|F0)‖p
n1+1/p

<∞ . (41)

Then
lim
n→∞

n−1/p‖ max
1≤k≤n

|Sk| ‖p = 0 . (42)

18



Remark 23 This corollary is particularly useful for studying the asymptotic behavior of a partial sum
via a martingale approximation. Assume there exists a strictly stationary sequence (di)i∈Z of martin-
gale differences with respect to (Fi)i∈Z that are in Lp, such that limn→∞ n−1/p‖Sn −

∑n
i=1 di‖p = 0 .

Then, if the condition (41) holds for the sequence (Xi)i∈Z, by a construction in Woodroofe and Zhao
(2008) and by the uniqueness of the martingale approximation, the sequence (Xi − di)i∈Z is still a

strictly stationary sequence and by our theorem limn→∞ n−1/p‖max1≤k≤n |Sk −
∑k
i=1 di|‖p = 0. As a

matter of fact, for p = 2, our corollary leads to the functional form of the central limit theorem for
{n−1/2S[nt], t ∈ [0, 1]} (see also Theorem 1.1 in Peligrad and Utev, 2005).

Proof of Corollary 22.
Let m be an integer and k = kn,m = [n/m] (where [x] denotes the integer part of x).
The initial step of the proof is to divide the variables in blocks of size m and to make the sums in

each block. Let

Xi,m =

im∑
j=(i−1)m+1

Xj , i ≥ 1.

Notice first that

‖ sup
t∈[0,1]

∣∣ [nt]∑
j=1

Xj −
[kt]∑
i=1

Xi,m

∣∣‖p ≤ ‖ sup
t∈[0,1]

∣∣ [nt]∑
i=[kt]m+1

Xi

∣∣‖p ≤ m‖ max
1≤i≤n

Xi‖p .

Since for every ε > 0,

E( max
1≤i≤n

|Xi|p) ≤ εp +

n∑
i=1

E
(
|Xi|p1{|Xi|>ε}

)
,

and since ‖Xi‖p <∞ for all i, we derive that limn→∞ ‖max1≤i≤nXi‖p/n1/p = 0. Hence, in order to
prove (42) it remains to show that

lim
m→∞

lim sup
n→∞

n−1/p‖ sup
t∈[0,1]

∣∣ [kt]∑
i=1

Xi,m

∣∣‖p = 0 . (43)

Applying Proposition 2 to the variables (Xi,m)1≤i≤k which are adapted with respect to Fim, and
taking into account Remark 4, we get that

‖ sup
t∈[0,1]

∣∣ [kt]∑
i=1

Xi,m

∣∣‖p � max
1≤j≤k

‖
jm∑
`=1

X`‖p + k1/p
k∑
j=1

||E(Sjm|F0)||p
j1+1/p

,

where for the last term we used the fact that for any positive integer u, ‖E
(∑(u+1)m2`

j=um2`+1
Xj |Fum2`

)
‖p =

‖E
(∑m2`

j=1 Xj |F0

)
‖p. Condition (40) implies that

max
1≤j≤k

‖
jm∑
`=1

X`‖p = o((km)1/p) = o(n1/p) .

Now, by the subadditivity of the sequence
(
||E(Sn|F0)||p

)
n≥1 and applying Lemma 37 we have

n−1/pk1/p
k∑
j=1

||E(Sjm|F0)||p
j1+1/p

�
m∑
`=1

||E(S`|F0)||p
(`+m)1+1/p

+
∑
j≥m

||E(Sj |F0)||p
j1+1/p

. (44)
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Hence, by (41) and by using the dominated convergence theorem for discrete measures applied to the
first term in the right-hand side of (44), we get that

lim
m→∞

lim sup
n→∞

n−1/pk1/p
k∑
j=1

||E(Sjm|F0)||p
j1+1/p

= 0 ,

which ends the proof of the corollary. �

4.2 Maximal exponential inequalities for strong mixing sequences.

Let us first recall the definition of strongly mixing sequences, introduced by Rosenblatt (1956): For
any two σ algebras A and B, we define the α-mixing coefficient by

α(A,B) = sup
A∈A,B∈B

|P(A ∩B)−P(A)P(B)| .

Let (Xk, k ≥ 1) be a sequence of real-valued random variables defined on (Ω,A,P). This sequence
will be called strongly mixing if

α(n) := sup
k≥1

α (Fk,Gk+n)→ 0 as n→∞ , (45)

where Fj := σ(Xi, i ≤ j) and Gj := σ(Xi, i ≥ j) for j ≥ 1.
In 2009, Merlevède, Peligrad and Rio have proved (see their Theorem 2) that for a strongly mixing

sequence of centered random variables satisfying supi≥1 ‖Xi‖∞ ≤M and for a certain c > 0

α(n) ≤ exp(−cn) , (46)

the following Bernstein-type inequality is valid: there is a constant C depending only on c such that
for all n ≥ 2,

P(|Sn| ≥ x) ≤ exp
(
− Cx2

v2n+M2 + xM(log n)2
)
, (47)

where
v2 = sup

i>0

(
Var(Xi) + 2

∑
j>i

|Cov(Xi, Xj)|
)
. (48)

Proving the maximal version of the inequality (47) cannot be handled directly neither using Theorem
2.2 in Móricz, Serfling and Stout (1982) nor using Theorem 1 in Kevei and Mason (2011) since the
right-hand side of (47) does not satisfy the assumptions of these papers. However, an application of
Proposition 5 leads to the maximal version of Theorem 2 in Merlevède, Peligrad and Rio (2009).

Corollary 24 Let (Xj)j≥1 be a sequence of centered real-valued random variables. Suppose that there
exists a positive M such that supi≥1 ‖Xi‖∞ ≤ M and that the strongly mixing coefficients (α(n))n≥1
of the sequence satisfy (46). Then there exist constants C = C(c) and K = K(M, c) such that for all
integer n ≥ 2 and all real x > K log n,

P( max
1≤k≤n

|Sk| ≥ x) ≤ exp
(
− Cx2

v2n+M2 + xM(log n)2
)
. (49)

Proof of Corollary 24. We first apply Inequality (9) of Proposition 5 with p = 2 and ϕ(x) = et|x|

where t is a positive integer. According to Theorem 2 in Merlevède, Peligrad and Rio (2009), there
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exist positive constants C1 and C2 depending only on c such that for all n ≥ 2 and any positive t such
that t < 1

C1M(logn)2 , the following inequality holds:

log E
(

exp(tSn)
)
≤ C2t

2(nv2 +M2)

1− C1tM(log n)2
.

Then an optimization on t gives that there is a constant C3 depending only on c such that for all
n ≥ 2 and any positive real x,

P( max
1≤k≤n

|Sk| ≥ 4x) ≤ exp
(
− C3x

2

v2n+M2 + xM(log n)2
)

+4x−2
( r−1∑
l=0

( 2r−l−1∑
k=1

||E(Sv+(k+1)2l − Sv+k2l |Fk2l)||22
)1/2)2

, (50)

where r is the positive integer satisfying 2r−1 < n ≤ 2r and v = [x/M ].
It remains to bound up the second term in the right-hand side of the above inequality. Notice

first that for any centered variable Z such that ‖Z‖∞ ≤ B, Ibragimov’s covariance inequality (see
Theorem 1.11 in Bradley, 2007) gives

‖E(Z|F)‖22 = Cov(E(Z|F), Z) ≤ 4B2α(F , σ(Z)) .

Therefore, applying this last estimate with Z = Sv+(k+1)2l − Sv+k2l and F = Fk2l , we get that

||E(Sv+(k+1)2l − Sv+k2l |Fk2l)||22 ≤ 4M222lα(v) .

implying that

( r−1∑
l=0

( 2r−l−1∑
k=1

||E(Sv+(k+1)2l − Sv+k2l |Fk2l)||22
)1/2)2

≤ 4M222r(
√

2 + 1)2α(v) .

Since 22r ≤ 4n2 and [x/M ] ≥ x/(2M), for x ≥ 2M , by using (46), we get that, for any x ≥ 2M ,

( r−1∑
l=0

( 2r−l−1∑
k=1

||E(Sv+(k+1)2l − Sv+k2l |Fk2l)||22
)1/2)2

≤ 3(25)M2n2 exp(−cx/(2M)) . (51)

Starting from (50) and using (51), we then derive that for any x ≥ 2M max(1, 4c−1 log n),

P(S∗2r ≥ 4x) ≤ exp
(
− C3x

2

v2n+M2 + xM(log n)2

)
+ 96 exp

(
− xc

4M

)
,

proving the inequality (49). �

4.3 Application to Arch models.

Theorem 6 applies to the case where (Xi)i∈Z has an ARCH(∞) structure as described by Giraitis et
al. (2000), that is

Xn = σnηn, with σ2
n = c+

∞∑
j=1

cjX
2
n−j , (52)

21



where (ηn)n∈Z is a sequence of i.i.d. centered random variables such that E(η20) = 1, and where c ≥ 0,
cj ≥ 0, and

∑
j≥1 cj < 1. Notice that (Xi)i∈Z is a stationary sequence of martingale differences

adapted to the filtration (Fi) where Fi = σ(ηk, k ≤ i).
Let p > 2 and assume that ‖η0‖p <∞. Notice first that

‖E(X2
j |F0)−E(X2

0 )‖p/2 = ‖E(σ2
j |F0)−E(σ2

j )‖p/2 . (53)

In addition, since E(η20) = 1 and
∑
j≥1 cj < 1, the unique stationary solution to (52) is given by

Giraitis et al. (2000):

σ2
n = c+ c

∞∑
`=1

∞∑
j1,...,j`=1

cj1 . . . cj`η
2
n−j1 . . . η

2
n−(j1+···+j`) . (54)

Starting from (53) and using (54), one can prove that

‖E(X2
j |F0)−E(X2

0 )‖p/2 ≤ 2c‖η0‖2p
∞∑
`=1

`κ`−1
∞∑

i=[j/`]

ci ,

where κ = ‖η0‖2p
∑
j≥1 cj (see Section 6.6 in Dedecker and Merlevède (2011) for more detailed com-

putations). Therefore, if

‖η0‖2p
∑
j≥1

cj < 1 , (55)

for any p > 2 and δ ∈]0, 1] we obtain

n∑
k=1

1

k1+2δ/p
||E0(S2

k)−E(S2
k)||δp/2 ≤ cp,δ,X

n∑
k=1

1

k1+2δ/p

( n∑
j=1

∞∑
i=j

ci
)δ
,

where cp,δ,X is a positive constant depending depending only on p, δ, c, κ and ‖η0‖p. Applying
Theorem 6 for the martingale case, we then get the following corollary:

Corollary 25 Let X = (Xi)i∈Z be defined by (52) and Sn =
∑n
i=1Xi. Let p > 2 and assume that

(55) is satisfied.
(1) If we assume that

∑
j≥n cj = O(n−b) for b > 1− 2/p then, for any integer n,

E
(

max
1≤j≤n

|Sj |p
)
�
(
nE(X2

0 )
)p/2

+ n(E(|X0|p) + bp,X) ,

where bp,X is a positive constant depending on p and on the underlying sequence X, but not depending
on n.
(2) If we assume

∑
j≥n cj = O(n−b) for b > 0 then

lim sup
n→∞

n−1/2‖ max
1≤k≤n

|Sk| ‖p ≤ ap
(
E(X2

0 )
)1/2

<∞ ,

where ap is a constant depending only on p.

4.4 Application to functions of linear processes.

Let (ai)i∈Z be a sequence of real numbers in `2 and (εi)i∈Z be a sequence of i.i.d. random variables
in L2. Define

Xk = h
(∑
i∈Z

aiεk−i

)
−E

(
h
(∑
i∈Z

aiεk−i

))
. (56)
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Denote by wh(.,M) the modulus of continuity of the function h on the interval [−M,M ], that is

wh(t,M) = sup{|h(x)− h(y)|, |x− y| ≤ t, |x| ≤M, |y| ≤M} .

We shall establish the following result:

Corollary 26 Let X = (Xk)k∈Z be defined by (56). Assume that h is γ-Hölder on any compact
set, with wh(t,M) ≤ CtγMα, for some C > 0, γ ∈]0, 1] and α ≥ 0. Let p > 2 and assume that
E(|ε0|2∨(α+γ)p) <∞.
1) If p is an even integer and for λ > p/2− 2 if p > 4 and λ = 0 if p = 4,∑

i≥1

i1−2/p(log i)λ
(∑
j≥i

a2j

)γ/2
<∞ , (57)

then, for any integer n,

E
(

max
1≤j≤n

|Sj |p
)
�
(
E(S2

n)
)p/2

+ n(E(|X0|p) + bp,X) ,

where bp,X is a positive constant depending on p and on the underlying sequence X, but not depending
on n.
2) If for some η > 1 (∑

j≥i

a2j
)γ/2 � i−η , (58)

then
lim sup
n→∞

n−1/2‖ max
1≤k≤n

|Sk| ‖p ≤ ap
(∑
k∈Z

E(X0Xk)
)1/2

<∞ ,

where ap is a constant depending only on p.

Remark 27 The proof of the first item of the above result is based on Theorem 17. Our proof reveals
that an application of Theorem 6 would involve a more restrictive condition on λ, namely λ > p− 3.

As a preliminary step in the proof of Corollary 26 we state the following proposition, which is a
direct consequence of the proof of Proposition 4.2 and of Theorem 4.2 in Dedecker, Merlevède and
Rio (2009), page 988.

Proposition 28 Let (Xi)i∈Z be as in Corollary 26 and p ≥ 2. Let (ε′i)i∈Z be an independent copy of
(εi)i∈Z and denote V0 =

∑
i≥0 aiε−i and

M1,i = |V0| ∨
∣∣∣ ∑
0≤j<i

ajε−j +
∑
j≥i≥0

ajε
′
−j

∣∣∣ and w̃h(i) =
∥∥wh(∣∣∑

k≥i

akε−k
∣∣,M1,i

)∥∥
p
.

Then for any i, j ≥ 0,
||E0(Xi)||p ≤ 2w̃h(i) ,

and
‖E0(XiXj+i)−E(XiXj+i)‖p/2 ≤ 2||X0||p min

(
w̃h(i) + w̃h(i+ j), w̃h(j − [j/2])

)
.

Moreover, if wh(t,M) and ε0 are as in Corollary 26, then for all i ≥ 0

w̃h(i) ≤ K(
∑
j≥i

a2i )
γ/2 ,

where K is a constant depending on p, C, α, γ, ‖ε0‖2∨(α+γ)p and on
∑
j≥0 a

2
j .
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Proof of Corollary 26. Notice first that by Proposition 28 and the relation (58) we get∑
k≥1

||E0(Xk)||p <∞ . (59)

For any even integer p ≥ 4, applying Theorem 17 we obtain, via the relation (59) and the triangular
inequality, that

E
(

max
1≤j≤n

|Sj |p
)
� n (1 + E(|X0|p)) + n

( n∑
k=1

1

k1+4/p(p−2) (E(S2
k))2/(p−2)

)p(p−2)/4
+ n

( n∑
k=1

1

k1+4/p(p−2) ||E0(S2
k)−E(S2

k) ||2/(p−2)p/2 )
)p(p−2)/4

.

Notice now that the relation (59) implies the so called coboundary decomposition (see Theorem 5.4
in Hall and Heyde, 1980); namely, there is a constant Kp,X such that for all n ≥ 1

Sn = Mn +Rn with ||Rn||p ≤ 2
∑
k≥1

||E0(Xk)||p = Kp,X ,

where Mn is a martingale in Lp with stationary differences. It easily follows that for all 1 ≤ k ≤ n,

E(S2
k)

k
≤ 4

E(S2
n)

n
+ 2

E(R2
k)

k
+ 4

E(R2
n)

n
≤ 4

E(S2
n)

n
+ 6

Kp,X

k
.

So,

n
( n∑
k=1

1

k1+4/p(p−2) (E(S2
k))2/(p−2)

)p(p−2)/4
� (E(S2

n))p/2 +Kp,X n .

Therefore, the first part of the corollary follows if we prove that (57) implies that∑
k≥1

1

k1+4/p(p−2) ||E0(S2
k)−E(S2

k) ||2/(p−2)p/2 <∞ . (60)

Notice now that by Hölder’s inequality (when p > 4) and (38), in order to prove (60), it suffices to
prove that for λ > p/2− 2 if p > 4 and λ = 0 if p = 4,

∑
k≥1

(log k)λ

k1+2/p

k∑
i=1

k−i∑
j=0

‖E0(XiXj+i)−E(XiXj+i)‖p/2 <∞ .

The first part of Corollary 26 is then a consequence of Proposition 28. The second part follows in the
same way by using Theorem 6, simple computations and the fact that under (59), limn→∞ n−1E(Sn)2 =∑
k∈Z E(X0Xk). �

4.5 Application to a stationary reversible Markov chain.

First we want to mention that all our results can be formulated in the Markov chain setting. We
assume that (ζn)n∈Z denotes a stationary Markov chain defined on a probability space (Ω,A,P) with
values in a measurable space (E, E). The marginal distribution and the transition kernel are denoted
by π(A) = P(ζ0 ∈ A) and Q(ζ0, A) = P(ζ1 ∈ A| ζ0). In addition Q denotes the operator acting via
(Qf)(ζ) =

∫
E
f(s)Q(ζ, ds). Next, let f be a function on E such that

∫
E
|f |pdπ <∞ and

∫
E
fdπ = 0.
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Denote by Fk the σ–field generated by ζi with i ≤ k, Xi = f(ζi), and Sn(f) =
n∑
i=1

Xi. Notice that

any stationary sequence (Yk)k∈Z can be viewed as a function of a Markov process ζk = (Yi; i ≤ k), for
the function g(ζk) = Yk.

The Markov chain is called reversible if Q = Q∗, where Q∗ is the adjoint operator of Q. In this
setting, an application of Theorem 9 gives the following estimate:

Corollary 29 Let (ζn) be a reversible Markov chain. For any even integer p ≥ 4 and any positive
integer n,

E
(

max
1≤k≤n

|Sk(f)|p
)
� nE(|f(ζ1)|p) + n

( n∑
k=1

1

k1+1/p
‖E0(Sk(f))‖p

)p
+n
( n∑
k=1

1

k1+2/p
‖E0(S2

k(f))−E(S2
k(f))‖p/2

)p/2
+ n

( n∑
k=1

1

k1+2/p
E(S2

k(f))
)p/2

.

Moreover using Theorem 10 we obtain:

Corollary 30 Let (ζn) be a reversible Markov chain. For any real number p > 4 and any positive
integer n,

E
(

max
1≤k≤n

|Sk(f)|p
)
� nE(|f(ζ1)|p)

+n
( n∑
k=1

1

k1+1/p
‖E0(S2

k(f))−E(S2
k(f))‖1/2p/2

)p
+ n

( n∑
k=1

1

k1+1/p
||Sk(f)||2

)p
.

This corollary is also valid for any real 2 < p ≤ 4. For this range however, according to the
comment 7, Theorem 6 (respectively Corollary 29) gives a better bound for p ∈]2, 4[ (respectively for
p = 4).

For a particular example let E = [−1, 1] and let υ be a symmetric atomless law on E. The
transition probabilities are defined by

Q(x,A) = (1− |x|)δx(A) + |x|υ(A) ,

where δx denotes the Dirac measure. Assume that θ =
∫
E
|x|−1υ(dx) < ∞. Then there is a unique

invariant measure
π(dx) = θ−1|x|−1υ (dx)

and the stationary Markov chain (ζi)i is reversible and positively recurrent.
Assume the following assumption on the measure υ: there exists a positive constant c such that

for any x ∈ [0, 1],
dυ

dx
(x) ≤ cxp/2−1(log(1 + 1/x))−λ for some λ > 0 . (61)

As an application of Corollary 30 we shall establish:

Corollary 31 Let p > 2 be a real number and let f(−x) = −f(x) for any x ∈ E. Assume that
|f(x)| ≤ C|x|1/2 for any x in E and a positive constant C.
(1) Assume in addition that (61) is satisfied for λ > p. Then for any integer n,

E
(

max
1≤k≤n

|Sk(f)|p
)
� np/2

(∫ 1

0

f2(x)x−2υ(dx)
)p/2

+ n(E(|f(ζ0)|p) + bp,λ,c,C) , (62)
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where bp,λ,c,C is a positive constant depending on p, λ, c and C.
(2) Assume now (61) is relaxed to

dυ

dx
(x) ≤ cxa for some a > 0 .

Then

lim sup
n→∞

n−1/2‖ max
1≤k≤n

|Sk(f)| ‖p ≤ ap
(∫ 1

0

f2(x)x−2υ(dx)
)1/2

.

where ap is a constant depending only on p.

Notice that this example of reversible Markov chain has been considered by Rio (2009, Section
4) under a slightly more stringent condition on the measure than (61). Corollary 31 then extends
Proposition 4.1 (b) in Rio (2009) to all real numbers p > 2.

Proof of Corollary 31.
To get this result we shall apply Corollary 30. We start by noticing that f being an odd function

we have
E(f(ζk)|ζ0) = (1− |ζ0|)kf(ζ0) a.s. (63)

Therefore, for any j ≥ 0,

E(X0Xj) = E(f(ζ0)E(f(ζj)|ζ0)) = θ−1
∫
E

f2(x)(1− |x|)j |x|−1υ(dx) .

Then, by the inequality (36),

E(S2
k(f)) ≤ 2kθ−1

(∫ 1

0

f2(x)x−1υ(dx) + 2

k−1∑
j=1

∫ 1

0

f2(x)(1− x)jx−1υ(dx)
)

(64)

≤ 2kθ−1
(∫ 1

0

f2(x)x−1υ(dx) + 2

∫ 1

0

f2(x)x−2υ(dx)
)
.

Next, we give an upper bound of the quantity ‖E0(S2
n(f))−E(S2

n(f))‖p/2. By using the fact that for

any positive k, πQk = π we have

‖E0(S2
n(f))−E(S2

n(f))‖p/2 ≤
n∑
k=1

(∫
E

∣∣∣(δxQk − π)
(
f2 + 2f

n−k∑
k=1

Qkf
)∣∣∣p/2π(dx)

)2/p
(see also the inequality (4.12) in Rio (2009)). Now, by using the relation (63), one can prove that for
any x ∈ E, (

f2 + 2f

n∑
k=1

Qkf
)

(x) = f2(x)
(
1 + 2(1− (1− |x|)n)(|x|−1 − 1)

)
,

(see the computations in Rio (2009) leading to his relation (4.13)). Then, since |f(x)| ≤ C|x|1/2, it
follows that

sup
x∈E

∣∣f2(x) + 2f(x)

n∑
k=1

Qkf(x)
∣∣ ≤ 2C2 .

Therefore, for any p > 2,

‖E0(S2
n(f))−E(S2

n(f))‖p/2 ≤ 4C2
n∑
k=1

(∫
E

‖Qk(x, ·)− π(·)‖π(dx)
)2/p

, (65)
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where ‖µ(·)‖ denotes the total variation of the signed measure µ (see also the inequality (4.15) in Rio
(2009)). We estimate next the coefficients of absolute regularity βn as defined in (66). Let a = p/2−1.
We shall prove now that under (61), there exists a positive constant K depending on a, c, and λ, such
that

2βn :=

∫
E

‖Qn(x, ·)− π(·)‖π(dx) ≤ Kn−a(log n)−λ . (66)

Notice first that by Lemma 2, page 75, in Doukhan, Massart and Rio (1994), we have that

βn ≤ 3

∫
E

(1− |x|)[n/2]π(dx) . (67)

Let k ≥ 2 be an integer. Clearly, for any α ∈]0, 1[,∫ 1

0

(1− x)kπ(dx) ≤ c
∫ k−α

0

(1− x)kxa−1(log(1 + 1/x))−λdx+ c

∫ 1

k−α
(1− x)kxa−1(log(1 + 1/x))−λdx .

(68)
Notice now that∫ k−α

0

(1− x)kxa−1(log(1 + 1/x))−λdx ≤ (α log k)−λ
∫ 1

0

(1− x)kxa−1dx .

Hence, by the properties of the Beta and Gamma functions,

lim
k→∞

ka(log k)λ
∫ k−α

0

(1− x)kxa−1(log(1 + 1/x))−λdx ≤ α−λaΓ(a) . (69)

On the other hand, we have that∫ 1

k−α
(1− x)kxa−1(log(1 + 1/x))−λdx ≤ (log 2)−λ(1− k−α)k

∫ 1

0

xa−1dx ,

and then, since α < 1, we easily obtain

lim
k→∞

ka(log k)λ
∫ 1

k−α
(1− x)kxa−1(log(1 + 1/x))−λdx = 0 . (70)

Starting from (67) and taking into account (68), (69) and (70), (66) follows. Then, by using the
inequality (65) combined with (66), we derive that

‖E0(S2
n(f))−E(S2

n(f))‖p/2 ≤ C2Kp,c,λn
2/p(log n)−2λ/p ,

where Kp,c,λ is a positive constant depending on p, c and λ. Therefore, for any δ ∈]0, 1], there exists
a positive constant bp,λ,c,C depending on p, λ, c and C, such that

n∑
k=1

1

k1+1/p
‖E0(S2

k(f))−E(S2
k(f))‖1/2p/2 ≤ bp,λ,c,C for λ > p . (71)

Considering the estimates (64) and (71), the first part of Corollary 31 follows from an application of
Corollary 30 (taking also into account the comment after its statement for 2 < p ≤ 4). To get the
second part, we also apply Corollary 30 but with the upper bound βn = O(n−a) instead of (66). �
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5 Application to density estimation

In this section, we estimate the Lp-integrated risk for p ≥ 4, for the kernel estimator of the unknown
marginal density f of a stationary sequence (Yi)i≥0.

Applying our theorem 6, we shall show that if the coefficients of dependence ((β2,Y (k))k≥1 (see the
definition 32 below) of the sequence (Yi)i∈Z satisfy β2,Y (k) = O(n−a) for a > p − 1, then the bound
of the Lp-norm of the random term of the risk is of the same order of magnitude as the optimal one
obtained in Bretagnolle and Huber (1979) in the independence setting (see their corollary 2), provided
that the density is bounded and the kernel K satisfies the assumption Ap below.

Assumption Ap. K is a BV (bounded variation) function such that∫
R

|K(u)|du <∞ and

∫
R

|K(u)|pdu <∞ .

Definition 32 Let (Yi)i∈Z be a stationary sequence of real valued random variables, and let F0 =
σ(Yi, i ≤ 0). For any positive i and j, define the random variables

b(F0, i, j) = sup
(s,t)∈R2

|P(Yi ≤ t, Yj ≤ s|F0)−P(Yi ≤ t, Yj ≤ s)| .

Define now the coefficient
β2,Y (k) = sup

i≥j≥k
E(b(F0, i, j)) .

Proposition 33 Let p ≥ 4 and K be any real function satisfying assumption Ap. Let (Yi)i≥0 be a
stationary sequence with unknown marginal density f such that ‖f‖∞ <∞. Define

Xk,n(x) = K(h−1n (x− Yk)) and fn(x) =
1

nhn

n∑
k=1

Xk,n(x) ,

where (hn)n≥1 is a sequence of positive real numbers.
(1) Assume that there exists a positive constant c such that for some η > 0 and all n ≥ 1,

β2,Y (n) ≤ cn−(p−1+η) . (72)

Then there exist positive constants C1 and C2 depending on p, η and c such that for any positive
integer n,

E

∫
R

|fn(x)−E(fn(x))|pdx ≤ C1(nhn)−p/2||dK||p/2||f ||p/2−1∞

(∫
R

|K(u)|du
)p/2

(73)

+C2(nhn)1−p
(∫

R

|K(u)|pdu+ ||dK||
∫
R

|K(u)|p−1du+ ||dK||2
∫
R

|K(u)|p−2du
)
,

where ||dK|| is the total variation norm of the measure dK.
2) Assume now in addition that nhn →∞. Then we also have the following asymptotic result:

lim sup
n→∞

(nhn)−p/2E

∫
R

|fn(x)−E(fn(x))|pdx ≤ ap,c,η||dK||p/2||f ||p/2−1∞

(∫
R

|K(u)|du
)p/2

,

where where ap,c,η is a constant depending only on p, c and η.
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The bound obtained in Proposition 33 can be also compared to the one obtained in Theorem 3.3
in Viennet (1997) under the assumption that the strong β-mixing coefficients in the sense of Rozanov
and Volkonskii (1959) of the sequence (Yi)i∈Z, denoted by β∞(k), satisfy:

∑
k≥1 k

p−2β∞(k) <∞. Our
condition is then comparable to the one imposed by Viennet (1997) but less restrictive in the sense
that many processes are such that the sequence β2,Y (n) tends to zero as n→∞ which is not the case
for β∞(n) (see the examples given in Dedecker and Prieur (2007)). Notice also that, for p = 2, the
inequality (73) is proven in Dedecker and Prieur (2005, Proposition 3) under the summability of the
weak β-dependence coefficients. In addition, when p = 3, under the condition

∑
k≥1 kβ2,Y (k) < ∞,

it can be proven that the inequality (73) still holds by applying the Rosenthal-type inequality in
Dedecker (2001) (see also Proposition 3 in Dedecker and Prieur (2007) for a version of the Dedecker’s
inequality in case of stationary sequences), however his inequality does not lead to (73) when p > 3.

When the random variables Yi are a function of an i.i.d. sequence, namely, Yi = g(..., εi−1, εi)
where g is a measurable function and (εn, n ∈ Z) are i.i.d. random variables, Wu, Huang and
Huang (Theorem 1, 2010) obtained an upper bound of similar order as in (73) (for p > 1) under
conditions imposed to the so called ”predictive dependent measures”. When in addition the variable
ε0 has a density with bounded derivatives up to order 2, the method is especially effective for short
memory linear processes with independent innovations (see Section 4.1 in Wu, Huang and Huang
(2010)). Our Proposition 33 complements the above cited results since the coefficients β2,Y (n) can
be estimated without assuming that ε0 has a density. For instance, we obtain the upper bound (73)
for Yi =

∑
k≥0 2−k−1εi−k and the εk’s are i.i.d. Bernoulli random variables with parameter 1/2 (see

Section 6.1 of Dedecker and Prieur (2007) for computations of β2,Y (n)). In addition, our Proposition
33 applies even for situations when the variables Yi are not assumed to be a function of an i.i.d.
sequence. We refer for instance to Dedecker and Prieur (2009, Theorem 3.1) who gave an upper
bound of the coefficients β2,Y (n) of the Markov chain associated to an intermittent map.

If we assume now that f has a derivative of order s, where s ≥ 1 is an integer and that the following
bound holds for the bias term:∫

R

|f(x)−E(fn(x))|pdx ≤Mhspn ‖f (s)‖pp , (74)

where M is a constant depending on the kernel K, then the choice of (nhn)p/2hspn = O(1) leads to the
following estimate:

E

∫
R

|fn(x)− f(x)|pdx = O(n−sp/(2s+1)) . (75)

We mention that (74) holds for any Parzen Kernel of order s (see Section 4 in Bretagnolle and Huber
(1979)). We also mention that if we only assume that

∑
k≥1 k

p−2β2,Y (k) < ∞ instead of (72) in

Proposition 33 then the inequality (73) is valid with (nhn)1−pnε (for any ε > 0) replacing (nhn)1−p

in the second term of the right-hand side. In this situation, the bound (74) combined with a choice
of hn of order n−1/(1+2s) still leads to the estimate (75).

Proof of Proposition 33.
Setting Xi,n(x) = K((x− Yi)/hn)−E(K((x− Yi)/hn)), we have that

E

∫
R

|fn(x)−E(fn(x))|pdx ≤ (nhn)−p
∫
R

E
∣∣∣ n∑
i=1

Xi,n(x)
∣∣∣pdx . (76)

Starting from (76) and applying Proposition 21 to the stationary sequence (Xi,n(x))i∈Z, Proposition
33 follows provided we establish the following bounds (in what follows C is a positive constant which
may vary from line to line and that may depend on p, c and η but not on n):∫

R

E|X1,n(x)|pdx ≤ 2p+1hn

∫
R

|K(u)|pdu , (77)
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∫
R

( n−1∑
j=0

|E(X0,n(x)Xj,n(x))|
)p/2

dx ≤ Chp/2n ||dK||p/2||f ||(p/2)−1∞

(∫
R

|K(u)|du
)p/2

, (78)

and that for ε > 0 small enough,

n∑
j=1

jp−2+ε
∫
R

‖X0,n(x)E0(Xj,n(x))‖p/2p/2dx ≤ Chn||dK||
∫
R

|K(u)|p−1du , (79)

and

n∑
j=1

jp−2+ε sup
i≥j

∫
R

‖E0(Xi,n(x)Xj,n(x))−E(Xi,n(x)Xj,n(x))‖p/2p/2dx (80)

≤ Chn||dK||2
∫
R

|K(u)|p−2du .

In what follows, we shall prove these bounds. Notice first that∫
R

E|X1,n(x)|pdx ≤ 2p+1

∫
R

∫
R

|K((x− y)h−1n )|pf(y)dxdy ,

proving (77) by the change of variables u = (x−y)h−1n . To prove (78), we first apply Item 1 of Lemma
35 implying that

n−1∑
j=0

|E(X0,n(x)Xj,n(x))| ≤ ||dK||E
(
b̃(F0, n) |K((x− Y0)/hn)|

)
,

where b̃(F0, n) =
∑n−1
j=0 b(F0, j, j). An application of Hölder’s inequality as done in Viennet (1997) at

the bottom of page 474, then gives∫
R

( n−1∑
j=0

|E(X0,n(x)Xj,n(x))|
)p/2

dx ≤ hp/2n ‖f‖p/2−1∞ E
(
b̃(F0, n))p/2

(∫
R

|K(u)|du
)p/2

.

This proves (78) since E
(
b̃(F0, n))p/2 ≤ C

∑n
k=1 k

p−2β2,Y (k) and
∑n
k=1 k

p−2β2,Y (k) = O(1) by con-
dition (72).
We turn now to the proof of (79). With this aim we notice that

‖X0,n(x)E0(Xj,n(x))‖p/2p/2 = E(Z0(x)E0(Xj,n(x))) = E(Z0(x)Xj,n(x)) ,

where Z0(x) = |X0,n|p/2|E0(Xj,n(x))|p/2−1sign
(
E0(Xj,n(x))

)
. Then, by using Item 1 of Lemma 35,

we derive that

‖X0,n(x)E0(Xj,n(x))‖p/2p/2 = Cov
(
Z0(x),K((x− Yj)/hn)

)
≤ ||dK||E

(
b(F0, j, j) |Z0(x)|

)
. (81)

Notice now that by using the elementary inequality: xαy1−α ≤ x+y valid for α ∈ [0, 1] and nonnegative

x and y, we get that |Z0(x)| ≤
(
|X0,n(x)|+|E0(Xj,n(x))|

)p−1
. Therefore, some computations involving

Jensen’s inequality lead to ∫
R

|Z0(x)|dx ≤ 4phn

∫
R

|K(u)|p−1du , (82)
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where ||dK|| is the total variation norm of the measure dK. Starting from (81), we end the proof of
(79) by taking into account (82) and the fact that

n∑
j=1

jp−2+εE(b(F0, j, j)) ≤
n∑
j=1

jp−2+εβ2,Y (j)

is convergent by condition (72) for any ε < η.
It remains to prove (80). We first write that

‖E0(Xi,n(x)Xj,n(x))−E(Xi,n(x)Xj,n(x))‖p/2p/2 = E((Z ′0)(0)(x)Xi,n(x)Xj,n(x)) ,

where the notation X(0) stands for X(0) = X −E(X) and

Z ′0(x) = |E0(Bi,j(x))|p/2−1sign
(
E0(Bi,j(x))

)
,

with Bi,j(x) = Xi,n(x)Xj,n(x) − E(Xi,n(x)Xj,n(x)). Since the variables Xi,n(x) and Xj,n(x) are
centered, an application of Item 2 of Lemma 35 then gives

‖E0(Xi,n(x)Xj,n(x))−E(Xi,n(x)Xj,n(x))‖p/2p/2

≤ ||dK||2 E
(
|Z0(x)|(b(F0, i, i) + b(F0, j, j) + b(F0, i, j))

)
.

Notice now that since p/2− 1 ≥ 1, we can easily get∫
R

|Z ′0(x)|dx ≤ cphn
∫
R

|K(u)|p−2du ,

where cp is a positive constant depending on p. In addition

n∑
j=1

jp−2+ε sup
i≥j

E(b(F0, i, i) + b(F0, j, j) + b(F0, i, j)) ≤ 3

n∑
j=1

jp−2+εβ2,Y (j) ,

which is convergent by condition (72) for any ε < η. Then (80) holds and so does the proposition. �

6 Appendix

This section is devoted to some technical lemmas. Next lemma gives estimates for terms of the type
E(Xu

0X
p−u
1 ) .

Lemma 34 Let p and u be real numbers such that 0 ≤ u ≤ p − 2. Let X0 and X1 be two positive
identically distributed random variables. With the notation ap = E(Xp

0 ), E0(X1) = E(X1|X0) the
following estimates hold

E(Xu
0X

p−u
1 ) ≤ ap−2u/(p−2)||E0(X2

1 )||u/(p−2)p/2 , (83)

and
E(Xp−1

0 X1) ≤ ap−1||E0(X2
1 )||1/2p/2 . (84)

Proof of Lemma 34. The inequality (83) is trivial for u = 0. To prove it for u = p − 2, it suffices
to write that E(Xp−2

0 X2
1 ) = E(Xp−2

0 E0(X2
1 )), and then to use Hölder’s inequality.
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We prove now the inequality (83) for 0 < u < p− 2. Select x = (p/2− 1)/u = (p− 2)/2u. Notice
that 2x > 1 and p−u− 1/x > 0 since u < p− 2. Then, since the variables are identically distributed,

E(Xu
0X

p−u
1 ) = E(Xu

0X
1/x
1 X

p−u−1/x
1 ) ≤ ||Xu

0X
1/x
1 ||2x||Xp−u−1/x

1 ||2x/(2x−1)
≤
(
E(Xp−2

0 X2
1 )
)u/(p−2)

(ap)1−u/(p−2) .

Now, again by Hölder’s inequality applied with x = p/(p− 2) and 1− 1/x = 2/p,

E(Xp−2
0 X2

1 ) = E(Xp−2
0 E0(X2

1 )) ≤
(
E(Xp

0 )
)(p−2)/p(

E(E0(X2
1 ))p/2

)2/p
= a(p−2)||E0(X2

1 )||p/2 .

Overall

E(Xu
0X

p−u
1 ) ≤ au||E0(X2

1 )||u/(p−2)p/2 (ap)1−u/(p−2)

= ap−2u/(p−2)||E0(X2
1 )||u/(p−2)p/2 ,

ending the proof of the inequality (83).
To prove the inequality (84), we use Hölder’s inequality which entails that

E( Xp−1
0 X1) ≤ E( Xp−1

0 E
1/2
0 (X2

1 )) ≤ ap−1||E0(X2
1 )||1/2p/2 .

�
Next lemma gives covariance-type inequalities in terms of beta coefficients as defined in Definition

32.

Lemma 35 Let Z be a F0-measurable real valued random variable and let h and g be two BV functions
(denote by ||dh|| (resp. ||dg||) the total variation norm of the measure dh (resp. dg)). Denote
Z(0) = Z − E(Z), h(0)(Yi) = h(Yi) − E(h(Yi)) and g(0)(Yj) = g(Yj) − E(g(Yj)). Define the random
variables b(F0, i, j) as in Definition 32. Then

1.
∣∣E(Z(0)h(0)(Yi)

)∣∣ =
∣∣Cov(Z, h(Yi))

∣∣ ≤ ||dh||E(|Z|b(F0, i, i)
)
.

2.
∣∣E(Z(0)h(0)(Yi)g

(0)(Yj)
)∣∣ ≤ ||dh|| ||dg||E(|Z|(b(F0, i, i) + b(F0, j, j) + b(F0, i, j)

)
.

Proof of Lemma 35. Item 1 has been proven by Dedecker and Prieur (2005) (see Item 2 of their
Proposition 1). Item 2 needs a proof. We first notice that

h(0)(X)g(0)(Y ) =

∫∫
(1X≤t − FX(t))(1Y≤s − FY (s))dh(t)dg(s) .

Therefore

E
(
Z(0)h(0)(Yi)g

(0)(Yj)
)

= E
(
Z

∫∫ (
1
(0)
Yi≤t1

(0)
Yj≤s −E

(
1
(0)
Yi≤t1

(0)
Yj≤s

))
dh(t)dg(s)

)
= E

(
Z

∫∫
E
(
1
(0)
Yi≤t1

(0)
Yj≤s −E

(
1
(0)
Yi≤t1

(0)
Yj≤s

)
|F0

)
dh(t)dg(s)

)
,

which proves Item 2 by noticing that

|E
(
1
(0)
Yi≤t1

(0)
Yj≤s −E

(
1
(0)
Yi≤t1

(0)
Yj≤s

)
|F0

)
| ≤ b(F0, i, i) + b(F0, j, j) + b(F0, i, j) .

�

Next lemma gives inequalities for |x+ y|p for different ranges of p, where p ≥ 2 is a real number.
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Lemma 36 1. Let x and y be two real numbers and 2 ≤ p ≤ 3. Then

|x+ y|p ≤ |x|p + |y|p + p|x|p−1sign(x)y +
p(p− 1)

2
|x|p−2y2 . (85)

2. Let x and y be two real numbers and 3 < p ≤ 4. Then

|x+ y|p ≤ |x|p + |y|p + p|x|p−1sign(x)y +
p(p− 1)

2
|x|p−2y2 +

2p

(p− 2)
|x||y|p−1 . (86)

3. Let x and y be two positive real numbers and p ≥ 1 any real number. Then

(x+ y)p ≤ xp + yp + 4p(xp−1y + xyp−1) . (87)

4. Let x and y be two real numbers and p an even positive integer. Then

(x+ y)p ≤ xp + yp + p(xp−1y + xyp−1) + 2p(x2yp−2 + xp−2y2) . (88)

Proof of Lemma 36. The inequality (85) was established in Rio (2007, Relation (3.3)) by using
Taylor expansion with integral rest for evaluating the difference |x+y|p−|x|p. To prove the inequality
(86), we also use the Taylor integral formula of order 2 that gives

|x+ y|p − |x|p = p|x|p−1sign(x)y + C2
p |x|p−2y2 + 2C2

py
2

∫ 1

0

(1− t)(|x+ ty|p−2 − |x|p−2)dt , (89)

where C2
p = p(p− 1)/2. Notice now that, for 3 < p ≤ 4,

|x+ ty|p−2 ≤ x2 + 2|x||ty|+ y2

(|x|+ |ty|)4−p
≤ |x|p−2 + 2|x||ty|p−3 + |ty|p−2 .

Hence

2C2
py

2

∫ 1

0

(1− t)(|x+ ty|p−2 − |x|p−2)dt

≤ 2C2
p |y|p

∫ 1

0

(1− t)tp−2dt+ 4C2
p |x||y|p−1

∫ 1

0

(1− t)tp−3dt

= 2|y|pC2
p

Γ(p− 1)

Γ(p+ 1)
+ 4|x||y|p−1C2

p

Γ(p− 2)

Γ(p)
= |y|p +

2p

(p− 2)
|x||y|p−1 .

Starting from (89) and using (??), the inequality (86) follows.
The inequality (87) was observed by Shao (1995, page 957). We shall establish now (88). We start

by noticing that for any a, b two positive real numbers and 2 ≤ k ≤ p− 2 we have

ap−kbk ≤ max(ap(b/a)p−2, ap(b/a)2) ≤ a2bp−2 + ap−2b2 . (90)

Now for p an even positive integer and x and y two real numbers, the Newton binomial formula gives

(x+ y)p = xp + yp + p(xp−1y + xyp−1) +

p−2∑
k=2

Ckpx
p−kyk

≤ xp + yp + p(xp−1y + xyp−1) +

p−2∑
k=2

Ckp |x|p−k|y|k .

Whence, by (90) and the fact that
∑p
k=0 C

k
p = 2p, the inequality (88) follows. �
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Lemma 37 Let (Vi)i≥0 be a sequence of non negative numbers such that V0 = 0 and for all i, j ≥ 0,

Vi+j ≤ C(Vi + Vj) , (91)

where C ≥ 1 is a constant not depending on i and j. Then

1. For any integer r ≥ 1, any integer n satisfying 2r−1 ≤ n < 2r and any real q ≥ 0

r−1∑
i=0

1

2iq
V2i ≤ C2q+2(2q+1 − 1)−1

n∑
k=1

Vk
k1+q

.

2. For any positive integers k and m and any real q > 0,

k∑
j=1

1

jq
Vjm ≤ 2q+1Cq−1mq−1

m∑
`=1

1

(`+m)q
V` + 2Cq−1mq−1

km∑
`=m+1

1

`q
V` .

3. Let 0 < δ ≤ γ ≤ 1. Then for any real q ≥ 0,(
n∑
k=1

1

k1+qγ
V γk

)1/γ

≤ 21/δ−1/γC(γ−δ)/δ

(
n∑
k=1

1

k1+qδ
V δk

)1/δ

.

Remark 38 If (Vi)i≥0 satisfies (91) with C = 1, then the sequence is said to be subadditive.

Proof of Lemma 37.
The condition (91) implies that for any integer k and any integer 0 ≤ j ≤ k,

Vk ≤ C(Vj + Vk−j) and then that (k + 1)Vk ≤ 2C

k∑
j=1

Vj . (92)

Therefore for 2r−1 ≤ n < 2r,

r−1∑
i=0

1

2iq
V2i ≤ 2C

2r−1∑
j=1

Vj
∑
i:2i≥j

1

2i(q+1)
,

proving Item 1. To prove Item 2, using again (92), it suffices to notice that

k∑
j=1

1

jq
Vjm ≤ 2C

k∑
j=1

1

(1 + jm)jq

jm∑
`=1

V`

≤ 2Cm−1(2m)q
k∑
j=1

j−q−1
m∑
`=1

1

(`+m)q
V` + 2Cq−1mq−1

km∑
`=m+1

1

`q
V` .

To prove Item 3, we first notice that (91) entails that

V γi+j ≤ C
γ(V γi + V γj ) and then that (k + 1)V γk ≤ 2Cγ

k∑
j=1

V γj .
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Then for any real q ≥ 0,

k−q(γ−δ)V γ−δk ≤ 21−δ/γCγ−δ
( k∑
j=1

j−(1+qγ)V γj

)1−δ/γ
. (93)

Writing that k−(1+qγ)V γk = (k−(1+qδ)V δk )(k−q(γ−δ)V γ−δk ) and using (93), the following inequality holds

n∑
k=1

1

k1+qγ
V γk ≤ 21−δ/γCγ−δ

( n∑
k=1

k−(1+qδ)V δk

)( n∑
j=1

j−(1+qγ)V γj

)1−δ/γ
,

proving Item 3. �
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