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It is well known that  an operator u acting between two Banach spaces X,  Y is compact if 

and only if dual operator u* is compact.  For any such u : X --~ Y and for every e > 0, denote 

by N(u ,  ~) the minimal cardinality of an e-net, in the metric of Y, of the image u(Bx) of the 

unit ball Bx of X.  Since now the compactness of an operator may be quantified via its metric 

entropy log N(u ,  e), one may ask for a quantitative version of the result recalled above, i.e., for 

a comparison of the metric entropies of u and its dual u*. 

It is a conjecture, promoted by B. Carl and A. Pietsch, that  the two metric entropies are 

equivalent in the sense that  there exist universal constants a, b > 0 so that  

a -1 l o g N ( u * , b - l e )  _< l o g N ( u , ¢ )  _< a logN(u* ,  be) 

holds for any compact  operator u and for any ~ > 0. We will refer to it as "the duality 

conjecture" or the "the duality problem". 

Let us observe that  for operators acting between Hilbert spaces the metric entropies of 

u and u* are ezactAy the same; this can be seen by considering polar decompositions. Other  

special cases are settled in [Car], [GKS], [KMT] and [P-TI. Also, a form of the duality problem 

- for operators with fixed rank - was considered in [K-M] (see also [Pi4], Chap. 7). However, 

in the general setting, the problem of equivalence of the metric entropies is still wide open; 

even in the form requiring one of the constants a or b (but not both)  to be equal to 1. 

Let us rephrase the problem in terms of the so-called entropy number~, defined for an 

operator u by 

e~(u) -= inf {e > 0 :  N(u ,~)  < 2~} .  
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The  result  recalled at  the  beginning jus t  asserts tha t  the  two sequences (e~(u)) and (ek(u*)) 

tend to 0 simultaneously.  The  dual i ty  problem asks (roughly) whether  

I t  seems reasonable  to  conjecture tha t  (ek(u)) and (ek(u*)) should have at  least  similar asymp-  

tot ic  behavior ,  for example  in the  sense tha t ,  for any symmetr ic  (i.e., invar iant  under  permu-  

ta t ions)  no rm I[" II on the  space of sequences, 

II<e (u))lt cIl<e ( *))tl 

holds for any  compact  opera to r  u wi th  C independent  of u. This  is the  quest ion we s tudy  in 

this  paper .  Our  main  results  (Theorems 1 ~ 3) show tha t  the  answer is aff i rmative if one of 

the  spaces is uniformly convez or even B-convez (see below for definitions); a var iant  of the 

s ta tement  is also valid for some quasinorms such as the  Lorentz gp, ,-"norms" for all p, r > 0. 

Moreover,  if one addi t ional ly  assumes tha t  the sequences (ek(u)) and (ek(u*)) decrease in a 

"regular" manner  (see Theorem 1 for a precise formulat ion) ,  the s t ronger  form of equivalence 

from the dua l i ty  conjecture follows (with a = 1). If one of the  spaces was a Hi lber t  space, all 

this was done in IT-3]. 

We would like to point  out  tha t  the  problem s ta ted  above is essential ly equivalent to the 

following one. 

Do there exist constants a, ~ > 0 such that whenever z~ , . . . ,  ZN are points in the unit ball 

of l ~  which are, say, 1~4-separated (i.e., IIx~ - x~ll _> 1/4 i f  i # j) ,  then there  exist f l , . . .  , fM, 

M > N ~, in the unit bM1 o f ~  satisfying, for i # j ,  maxk< N [ (fi - f j ,  xk} [ > ~? 

Recall  tha t ,  for p 6 [1,2], a Banach space X is said to be of type p iff there  is a constant  

C such tha t  

Z Z 
l <i<_'m l<{<m 

holds for any  finite sequence (~i) C X.  The  best  constant  C tha t  works above - the  type p 

constant of X - is denoted  Tp(X). If X is de te rmined  by  its uni t  ball  K C ~ = ,  we will wri te  

Tp(K) = Tp(X). X is said to  be  B-convex if  it  is of t ype  p for some p > 1 ( this  is equivalent 

to the  so-called K-convexity, see [Pi3]). 

The  dua l i ty  p rob lem (in any of the  versions above) may  be reduced to  a finite dimensional  

one, wi th  u a one-to-one opera tor .  In this se t t ing we may  consider u to  be  the  formal  ident i ty  

and  the p rob lem can be res ta ted  in the  following geometric language.  For  K - a compact  
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symmetric convex body in ~ '~,  denote by II " I l K  its Minkowski functional (i.e., the norm on 

~ fo rwhich  g is the unit ball). We will identify g with the normed space (J~'~, ll" ILK). Let 

K ° be the polar body  of K with respect to the canonical Euclidean structure so that  we may 

identify II" IIgo with the dual norm of I1" fig. 

For two symmetric convex bodies U, V C ~ n ,  denote by N(U, V) the maximal cardinality 

of a set { x l , . . . , ~ N }  C U, which is 1-separated in H" Nv (we may say: V-separated), i.e., 

z j  - zk 6 V for j ~ k. This packing number N(U,V) turns out to be more convenient for our 

purposes than the more commonly used in this context covering number 

N ' ( V , V ) ~ m i n { N : 3 { x l , . . . , ~ N }  C V ,  U C  U ( x j + V ) } ,  

used implicitly above to define N(u, ~) = N' (u(Bx), By). It should be noted here that  N(. ,  .) 

and N ' ( . ,  .) are very closely related; one always has 

N'(~, V) < ~V(U, V) < N'(U, V/2) 

and so, for our purposes, one does not need to distinguish between them. In particular, all facts 

about  packing numbers can be restated for covering numbers after inserting proper numerical 

factors (and vice versa). We will frequently use the relations 

~v(u, w) < N(U, V)N(Y, W),  N(U, V) = ~(V, 2U n V),  

N(U,W + 2V) ~ N(U,V + K)N(K,W) , 

which can be easily checked. 

We begin by studying the duality of entropies in the more restrictive context of uniformly 

convex spaces. In this case we are able to obtain nicer "pointwise" relations between the 

entropy numbers ek(u) and ek(u*), even though the results on comparison of their asymptotic 

behavior are identical in the uniformly convex and B-convex setting. 

Recall that  the modulus of (uniform) convexity of a Banach space X is defined by 

~ x ( e )  = i n f { 1  - I 1 ~  + yH/2  ." ll~ll = Ilyll = 1 ,  J[~ - yJJ = ~} 

for e • [0, 2]. When the space X is defined by its unit ball K in /R  '~, we will write ~x( ' )  = ~g( ' ) .  

The space X is said to be uniformly convex iff ~x(¢) > 0 for all e > 0 (X is then necessarily 

B-convex; see [L-T] for more information on this concept). 

We are now ready to state our first two results. 



53 

T h e o r e m  1. Let X be a uniform/y convex (or just superreflexive) Banach space. Let u : X 

Y (resp. u : Y ~ X )  be a compact operator. Then 

(i) For everym E $V and p E [1,c~) 

G -1 ek ( , ; )  p _< ek(~)PJ _< co es.(~*) p 
0 < k < m  / 0 m - - O < k < m  z 

where Co depends only on X .  Moreover, the same holds with the £p-norm replaced by any 

symmetric norm. 

(ii) /f, for some k, 

ek(=)_< Ae~(~)  , e~(=*) < A e ~ ( ~ * ) ,  

then 

c~-1¢~(= *) ___ e~(~) < c le~(=*) ,  

where C1 depends only on X and A. 

Theorem 1 is derived from the following technical fact. 

P r o p o s i t i o n  2. Let B C ~ n ,  K C ~'* be compact, convex centrally symmetric bodies, 

B °, K°-the polar bodies. Let ¢ > O. 

(i) I l K  is uniformly convex with modulus of convexity 6g, then, for every 0 > s, 

N ( B ,  eK)  < N ( B ,  OK)N (K °, 2-40gK(e/O)B °) . 

(ii) I f  B is unfform/y convex with modu/us of  convexity 6B, then, for every 8 > s, 

N ( B ,  5eK) < N ( B ,  OK)N (K °, 2-3 e6B(e/O)B°) . 

In particular, /'or the/'ormad identity operator u : B --~ K and k E ~ ,  

(i') e2k(u) <_ Cek(u)(q-1)/qe~(u*)l/q i f  SK(r) >_ crq . 

(ii') e2k(,~) <_ C¢k(,~)~/~+~e~(,~*) ~/~+~) ir@(~') >_ c~'q , 

where C depends on c > 0 and q 6 [2, c¢). 
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R e m a r k s .  (1) if, for some c > 0 and q • [2,00), one has 6x( r )  > c'rq and 6x . (v )  > c'rq 

for all ~" > 0, then, in the statement of Theorem 1, the phrase "depends only on X"  may be 

read "depends only on c and q". On the other hand, by [Pill, every uniformly convex (or 

superreflexive) Banach space can be renormed to have this property. 

(2) The assertion (i) of Theorem 1 remains true also of the lp-"norms",  p • (0,1) and for 

all Lorentz £p,~-"norms", the constants depending additionally on p, r as p, r ---* 0. This follows, 

e.g., from the fact that  the assertions (i'),(ii') of Proposit ion 2 imply similar statements with 

ek(') replaced by ek(.) p. 

P r o o f  o f  T h e o r e m  1 (Assuming Proposit ion 2). By Remark (1) above, we may assume 

that  X is uniformly convex and uniformly smooth with 6x ( r )  > crq, ~x*(r)  > c~'q for some 

c > 0 and q • [2, oo). Clearly it is enough to settle the case of u : Y --~ X with u one-to-one 

and X,Y-finl te  dimensional. Then the parts (i'),(ii') of Proposit ion 2 apply and so we have, 

for some C =-- C(q, c), 

e2k(u) < Cek(u)(q-1) l%k(u*)  l lq , e2~(u*) < Ce~(u*)q lq+%k(u) l l (q+l )  • 

Then (ii) follows immediately. 

that  

while, for every k, 

Hence 

To prove, e.g., the second inequality in (i) for p = 1 observe 

0 < k < m  O<k<m/2 

< 1/q 

= 

< + 4 a - I v % k ( = * ) .  

y ~  e k ( u ) < l / 2  ~_, e~(u)+4q- lC q ~ ek(u*) 
0 < k < m  O<k<rrt/2 O<k<m/2 

whence the required inequality immediately follows with, e.g., Co = 2 2 q - l c  q. The variant 

involving a symmetric norm now follows formally from the result of Hardy-Litt lewood-Polya; 

see, e.g., [L-T], Prop. 2.a.5. [] 

For the proof of Proposit ion 2 we need two simple lemmas. 

L e m m a  A.  Let U C IR'* be uniformly convex with modulus of convexity ~(.). For  x 6 /R '~, 

let z* denote the supporting functionM to U at z (i.e., I1~*1[~o -- 1, z*(z)  = Ilzll~) and 
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¢(x)  = llxll~, x*. Let 0 < ,  _< 1. ~ x , y  e U with II • - Yllv --- ~, then 

max{I  (¢(x) - ¢ ( y ) , z ) I ,  I (¢(z)  - ¢(y) ,  v)I} -> g ( ~ ) / s .  

P r o o f :  First consider the case when  Ilvll~ -< Ilzll~ = 1. If z E U with I1~11~ = 1 and 

IIv - zll~ >_ *, we  get f rom the definition of  ~(.) that  

<y*,(v + ~) /2 )  _< ll(y + z)/211u _< 1 - ,~(,) 

and so (y*,z) < 1 - 2 6 ( e ) .  Since, by a simple variational argument,  m a x {  (y*,z) : I lzllv -< 

1 , Ily - zll~ ___ ~} must be achieved when Ilzll~ = 1, it follows that  (y*,z) < 1 - 26(~). 

Consequently (still under the assumption ll~tl~ -- 1) 

( ¢ ( z ) -  ¢(y),z> = (z* -tlyll~,y*,z> = 1 - I iy l l~  (y*,z> 

_ 1 - Ilyll~ (1 - 2 6 ( e ) )  > 2g(~)  , 

(note that  • < 1 implies $(~) _< 1/2). Since (by [Fig], Corollary 11) 6(~)/~ 2 < 166( r ) / r  2 

whenever ~ > ~- > 0, the assertion follows by homogeneity (and symmetry) ,  m 

L e m m a  B.  Let B C 1R '~, K C 1R "~ be as in Proposition 2. Then  every x C B can be written 

in the form z = z ~ + z"  with z '  E K ,  z"  E B and f E K °, where f sat/sf/es Ilfl[~o -< 1 and 

f ( z " )  = Ilx"ll~, i.e., $ is a supporting functional to B at z",  whenever z"  # O. 

P r o o f :  Fix z E B. If  • E K ,  the assertion is trivial. If x 6 K ,  choose z '  C K such that  

I I ~ -  a:'[I B = minl t~--YIlm = S (<  1). Then the interiors of K and z + ~ B  are disjoint 
~rK 

and so we may separate them with a functional f ,  which we choose to normalize so that  

IlfllB* = 1 and f ( z )  > 0 ( then necessarily f ( z )  _< 1). It then follows that  f(~SB) = [-6,  6], hence 

f ( z + ~ B )  = [ f ( z ) - 6 , f ( z ) + g ]  a n d s o f ( g )  = [ - ( f ( z ) - g ) , f ( z ) - g ] ,  i.e., IIfIIKO = / ( z ) - ,  < 1. 

On  the other hand, since z '  E K ~ (z + gB) ,  we have f ( z ' )  = f ( z )  - 6. Consequently, setting 

z"  - z - z '  we get f ( z " )  = ~ = IIz"llm as required. Note tha t  the argument  yields in fact 

IlfllK° + II~"lls < 1. ° 

P r o o f  o f  P r o p o s i t i o n  2. (i) We clearly have 

N ( B ,  e K )  < N ( B , 2 B  M O K ) N ( 2 B  M O K , , K )  = N ( B ,  O K ) N ( 2 B  M O K , , K )  . 

Let { x l , . . . ,  zN} be a maximal set in 2B M OK such that  z i - ~k ¢~ e K  for j # k. We now use 

Lemma A to define, for j -- 1 , . . . ,  N,  f j  = ¢ ( z i / 0  ) (E g * )  such that,  for j # k, 

6 K ( e / e ) / 8  ~ m a x { I  (f~ - f k , ~ k ) h  I ( f~  - f k , x j ) I }  ~ 2 / e l l l j  - fkl IB* • 
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S o  

N(2B A OK, ,K)  << N(K°,2-4ObK(e/O)B °) , 

which proves (i). 

(ii) We have, for ~? > 0, 

( .)  N (B ,  5eK) < N(B ,  yB + 2eK)N(~IB, , K )  = N(B ,  ~B + 2eK)N(B ,  e / yK)  . 

Let { x l , . . . ,  XN}, N = N(B,  yB + 2eK),  be a maximal set in B such that  z j -  xk ~ yB + 2eK" 

= i + x j  for j # k. Apply Lemma B with K replaced by eK  to obtain decompositions xj  xj 

with z j  E eK,  z j  E B and functionals f j  E B ° N e-XK °, f j (z~)  = I1~11~ for j = 1 , . .  , N  
t Now, for j # k, z j  - zk  = ( z '  - z~,) + (z': - z~ )  and, since z~ - z~ C 2 , K ,  we must have 

3 3 

][x~ -- z~i[n > ~. Consequently, we may apply Lemma A with U = B and e = ~? to get a map 

¢ :  B --* B ° such that  []¢(x~') - ¢(xg)[]so _> ~B(y)/8 for j # k while [[¢(x~')[]KO _< e-1 for all 
@@ j .  Finally, considering the set {e¢(z l  ) . . . .  , e¢ (x~)}  C g ° we deduce that  

N(K°,e6B(~) /8  B °) > N = N(B,~?B + 2 ~ K ) .  

To conclude the argument,  set ~/= e /0  and combine the above inequality with (*). 

(i') We will show how (i) implies (i'). Fix k E /N and set ~ = e2k(u), 0 = ek(u). This 

means that ,  roughly N ( B ,  eK) = 22k and N(B,  OK) = 2 k (the exact s tatements would involve 

arbi t rary d < e, 0 * > 0, inequa~ties rather than equMities and the covering numbers rather 

than  packing numbers).  Combined with (i), this shows that  N ( K  °, 2-40~bK(e/O)B °) > 2 k or 

ek(u*) > 2-40~K(e/0)  > 2--4cO(e/O) q. Solving for • and substituting e = e2k(u) and 0 = ei(u) 

we get (i'). 

The  proof  of  (ii') follows exactly the same pattern.  Q 

We now state the results we obtain with B-convexity hypothesis. 

T h e o r e m  3. Let X be a B-convex Banach space (i.e., X is of type p for some p > 1). Let 

u: X --* Y (rep. u: Y --* X )  be a compac~ operator. Then the assertions (i), (ii) of Theorem 

1 hold; one only needs to replace "for some k" in (ii) by "for all k". Similarly, the Remarks 

following the s ta tement  o f  Theorem 1 carry over, the role of c and q from the t~rst of them 

played now by p and Tp(X). 

Theorem 3 will follow, very much in the same way as Theorem 1 follows from Proposition 

2, from the following. 
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P r o p o s i t i o n  4. Let B , K  C ~ '~  and • > 0 be as in Proposition 2. Let p E (1,2] and 

q = p / (p  - 1). Then, for every 0 > e, 

N ( B ,  e K )  < N ( B ,  O K ) [ N ( K  °, e /8B°) ]"  

w i t h ,  < ( 2 ' T , ( B ) e / e )  q (or ~ < (2'T, , (Z)e/~)q) .  

R e m a r k .  The special case 0 = 2e of Proposition 4 carries the same strength as the full 

statement; one can recover the latter one by iteration obtaining, in fact, bet ter  estimates on s 

like, e.g., s < (27Tp(.)) q (1 + log(0/e)) .  See also the Remark following the proof of Theorem 6. 

P r o o f  o f  T h e o r e m  3. (ii) We argue first as in the proof of part  (i') of Theorem 1. Set e = 

e2sk(U), 0 = esk(U),  w h e r e  s = [ ( 2 ° A T p ( X ) ) q ] .  Proposit ion 4 them implies that  ek(u*) > el8 

and so 

ek(~) < (4,) ~°~ %~.~(~) < 8(4,) ~°~ Aek(~*), 

as needed; the other inequality is proved in the same way. 

From the proof of part  (i) we need a simple 

L e m m a  C.  Let g , /L*  : (0, oo) ~ [0,oo) be nonincreasing functions with bounded support 

such that, for some s >_ 1 and ali z >_ O, 

(*) ~,(z) < ~ (2~)  + s~,*(z) . 

Let e (resp. e*) be the "inverse" detYned by 

Then, for any  m E J~rg, 

e(y) = inf { r :  L ( r )  < y} . 

Z c(k)<2~ ~ ~*(k). 
l < k _ m  O<k<rrt-1 

Proof:  We have, by (*), 

/0 /= /0= /; /0= oo JL(z)dx < g ( 2 z ) d z  + s 1L*(z)dz = 1/2 L ( z ) d z  + s /L*(z)dx 

and so 

provided the first of the integrals is finite. Now fix m E zW and observe that  

i /0= e(~) _< e(yldy = (~(~) ^ m)d~ _< ~ e(k) 
l<k<m O<k<m--I 
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(resp. •*,e*). Since it is clear that  the condition (*) still holds if we replace L , • *  by 

A m, L* A m, we may as well assume that  /L,/L* are bounded by m. Combining this 

observation with the last two estimates we get the assertion, u 

We are now ready to prove the part  (i) of the Theorem. As in the proof of the corresponding 

part  of Theorem 1, it is enough to show that ,  for any m 6 / N ,  

E Co E 
O<;~<m o<k<m 

But this follows immediately from Lemma C applied with re(x) -- l o g N ( u , z ) ,  /L*(x) - 

l ogN(8u* , z )  and s = (27Tv(X))~; the fact that  the hypothesis (*) of Lemma C is satisfied is 

then just a restatement of Proposit ion 4 applied with 6 = 2¢. u 

For the proof of Proposit ion 4 we need another lemma, which is due to B. Maurey (see 

[Pi2]). We include the proof for completeness. 

L e m m a  D.  Let Y be a Banach space which is o f  type p t'or some p > 1, D C Y and z 6 conv D. 

Se* q = p / (p  - 1). Then, for any m 6 1N, there exist z x , . . . ,  xm E D such that 

x -  1 / m  E z j  < Tp(Y)rn - U q . d i a m D .  
l<_j<_m 

ConsequenC;ly, if  U = cony{z1 , . . . ,  zN)  C B r ,  then 

N(U, 4Tp(Y)m- / By) < N ' ( U ,  2T (r)m- / BQ < N . 

P r o o f i  Since x E convD,  there exist Y l , . . . , Y N  E D and positive scalars h , . . . , t N ,  

t j  = 1, such that  ~ = ~ ~jyj. Let Z be a D-valued random variable which takes 
I<_j<_N I<_j<N 
the value yj with probability tj.  Then E Z  : x, where E stands for the expected value. Let 

Z1, Z 2 , . . . ,  Zm,  Z~, Z'2,. . .  , Z '  m be a sequence of independent copies of Z. Then, 

l_<j_<m l_<j_<-~ 

: IEAverag%~ =+1 E e j ( Z j  - Z} < T n ( Y ) m  1 / ' .  d i a m D  , 
l_<j_<,~ 

where we used consecutively the facts that ,  for all j ,  E (Z~  - x) = O; that  the (Zj - Z~r)'s are 

symmetric and independent,  and the definition of type p. Comparing the first and the last 

terms shows that ,  for z l , - - . ,  z,~ chosen "at  random" (possibly with repetitions) from among 
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Yl , . . . ,YM, the first assertion of the Lemma holds. The estimate on the coveting numbers 

(hence packing numbers) follows now from the fact that ,  in the situation as in the second 

part  of the Lemma, there are < N m such choices as we have then of course {Y l , . . . , YM}  C 

{ z l , . . . , z N } .  = 

P r o o f  o f  P r o p o s i t i o n  4. The  arguments  are similar to those used to prove Proposit ion 2. 

First consider the case when we control the type p constant  of K.  We have 

(*) N ( B ,  eK) < N ( B ,  2B N OK)N(2B A OK, ¢K) = N ( B ,  OK)N ((20 -1 B) n K, ¢/OK) . 

We now claim that ,  for 8 C (0,1] and s = [(2°Tp(K)/6)q], we have 

(**) N ( B  N K, SK) < [N(K°,8/4B°)]  " . 

From this the assertion readily follows: just combine (**) - applied with 8 = e/O and B 

replaced by 20-1B - with (*). 

To prove (**), let { z l , . . . , Z N }  be a maximal set in B f3 K such that  z j  - z~ ¢~ 8K 

for j # k. Choose m so that  4Tp(Y)m -1/q < 5/2. It now follows from Lemma D that  if 

D = { ~ 1 , . . . , ~ N }  satis~es IDI < N 1/~, then, for some j < N ,  ( convD)  n (z j  + 8/2K)  = 0. 

Thus one can construct,  by induction, a subset {Yl , . . . ,  YM} of { z l , . . . ,  zN} with M > N 1/'~ 

such that ,  for all k < M,  

* * *)  ( c o n y { y / :  j < k}) n (Yk + 8/2K)  = O . 

Now produce, by a separation argument,  f l , . . . ,  fM E K ° such that ,  for each j < k < M,  

(lk,Yk) > (lk,Yj) + 5 /2 .  

This is possible by ( .  • . ) .  Divide the interval [ -1  + ~/2,1] into [8/5 ] subintervals of length 

< 5/4. Then for at  least one of them, say I ,  the set {k : (fk, Yk) E I}  = c, is of cardinality 

> 5/8 • N.  For all j,  k E o with j < k we have then 

(fj  - fk,Yj> > 5 / 4 ,  

i.e., the set {fj}je~ C K ° is 8/4B°-separated.  In other words, we did show tha t  

N ( B  n K, 6K) < [8/8N(K °, 6/4B°)]  "~ 



60 

This is nearly (**); one just needs to get rid of the factor 8/6. But it is evident that  

N ( K  °, 6/4B °) > 4/6 if K ° q~ 6 /4B  ° ((**) is trivially satisfied otherwise) and so we can 

drop that  factor if we appropriately increase the exponent. 

We now sketch the argument in the case when we control the type p constant of B. As 

in the proof of part  (ii) of Proposition 2, the problem reduces to showing that,  for ¢ > 0 and 

(0,11, 
N ( B ,  riB + ¢K)  < [N(K °, e/4B°)]"  

Again let {zl,  . . . .  Zg}, N ---- N ( B ,  ~IB-k-eK), be a maximal set in B such that z j - z k  q~ ~IB+eK 

for j ~ g .  Let m E /N be such that  4Tp(X)m  -Uq < ~//4. As before, if D C { x l , . . . , z N }  

satisfies IDI < N 1/m, then, for some j _< N,  

(convD) 71 (zk + ¢ / 2 K  + 71/4B ) = 0 .  

Indeed, otherwise we would get, for all k < N, zk E (convD) R (zk + ¢ / 2 K  + ~l/4B) (and so 

z j -  z~ q~ rt /2B for j ~ k) while, by Lemma D, N(conv D, ~//4B) < tDl m < N - a contradiction. 

This leads to a subset {ya , . . . ,  YM} of { Z l , . . . ,  xN} with M > N ~/m such that,  for all k < M,  

(conv{yj : j < k )) f'l (yk + e / 2 K  + TI/4B ) = [~ , 

to functionals .t:1,..., f,,, E K ° N 2e/~lB ° verifying, for j < k < M, 

and finally to the estimate 

N ( B , ~ B  + ~ g )  < [8 / r lN(g° ,~ /4B°)]  "~ , 

from which we derive the required inequality in the same manner as in the first part of the 

proof, u 

We conclude by presenting two results which can be obtained, by methods similar to the 

proofs of the Theorems above, without any assumptions on the spaces involved. 

T h e o r e m  5. Let u : X ~ Y be a compact operator. Then, for any 8 > e > 0, 

log N(u ,  e) < log N(u ,  O) + [¢(0/e) log N(u*,  ¢(0/~) -1 e] 2 , 

where ¢( . )  is a polynomial function. Consequently, for any p, r > 1 and m e ~V we have the 

inequality between the Lorentz "norms": 

-< II,,,,., 
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where C is a un/versM constant (resp. depending on p, r ~ p ,  r E (0,1)). 

P roo f :  (Sketch). The argument from the proof of Proposition 4 shows that  it is enough to 

prove that if B, K are as in Proposition 2 and 0 > ~ > 0, then 

l ogN(B  M K, eK) < {¢(1/e)N(K °, k~(1/e)-lB°)] 2 • 

To this end, we need to examine the proofs of Propostion 4 and Lemma D. Indeed, all needed 

in order to show that,  for some m E /N ,  

log N(g°,$/4B ") > (3m) - I  l o g g ( B  M g,5g)  

was that, for any z l , . . .  ,x,~ C B M K,  

Averag%¢ = ~1 E ¢jXj K ~ 6/2m . 
l<_j<,~ 

On the other hand, if this is not the case, then, by [Elt] (or [Paj] in the complex case), there 

exists a E {1, . . .  ,m}, lal > cm, such that,  for any scalars ( t j ) jea ,  

tea 

where c and/3 depend (polynomially) on 8. This yields > 2 e'~ functionals in K °, which are 

2flB°-separated, i.e., 

log N ( K  °, 2fiB °) > cm. 

Now an analysis of max~ rain {(3m) -x logN(B M K, BE), cm} leads to the assertion. 

To derive the part involving the Lorentz norms from the first part,  we argue as in the 

proof of Theorem 3 to obtain, for m E ~ ,  

g g ( logN(u ,¢ )  A rn)d¢ <_ Co (logN(Cu*,e) A ml/2)2d¢, 

which is equivalent to 

O < h < m  O < h < m  

(we note here that  the latter quantity is of the same order as ~ hek(u*)). Consequently, 
o<k<_ml/2 

for any  symmetr ic  n o r m  It" II on  s e q u e n c e ,  

which in the context of the Lorentz norms reduces to the required inequality, n 
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T h e o r e m  6. Let u : X -+ Y be a norm one operator with rank u <_ n. Then, [or any e E (0,1), 

log N(u,  e) <_ C log(n/e)  log N (u*, C -1 e / l og (n / e ) )  . 

where C is a universal constant. 

P r o o f :  (Sketch). Let A = Cx log(n/e) ,  The choice of C~ will be indicated by what follows. 

Our  objective is to  exhibit, for sufficiently large M,  a set {xx, . . . .  XM} C u (Bx)  such that ,  for 

k<_M, 

(,) (conv{$j  : j < k))  0 (xk + ¢ /ABy)  = 0 ; 

then the argument  from the proof of Theorem 3 will show that  

log N(u*, e/2A) > M / 3 .  

Suppose that ,  for some M,  this is not possible. Introduce an auxiliary Euclidean norm [. IE on 

the range of u such that  ]]. ]IY <- ]" ]E <_ nl/211" ]]Y. Let D,  ]D I = g ( u , e )  be an eBy-separa ted  

subset of u(Bx) .  Then diamE D < n 1/2. By our assumption, there exists D '  C D, IDOl < M 

such that ,  for any • E D, d i s t y ( x , c o n v D ' )  < e/A. Applying Lemma D with, say m = 100, 

we see that  c o n v D '  can be covered with M 1°° Euclidean balls of radius diamE D/5 <_ nl/2/5. 

Consequently, there is a set D1 C c onvD ' ,  ID~] > N ( u , e ) / M  1°°, diamED1 < n~/2/5 such 

that ,  for any z E D1, there exists z '  E D with ]Ix - x ' l ly < C- le / l ogn .  Since, a ]ortiori, 

{ z i , . . . , X M }  verifying (*) cannot be found inside D1, we can repeat this procedure with D1 

in place of D and so on. If it was possible to perform, say, s > A/100 iterations, we would 

be left with a set D,, IDol > N ( u , s ) / M  1°°~ > N ( u , e ) / M  A, still e/2By-separated, such 

that  d i a m y D ,  <_ d iamEDo < d i a m E D x / 5  ~ < e/4. This is only possible if ]D,] = 1, i.e., 

M A >_ N(u ,e ) ,  which gives the needed lower estimate on M.  o 

R e m a r k .  In the s ta tement  of Theorem 6 the "norm one + rank n" hypothesis can be 

dropped if we replace tog(n/e)  by log (72(u)/e),  where 72(') denotes the norm of factorization 

through the Hilbert space. In fact, it is enough to consider just the "norm of factorization 

through a B-convex space". This can be used to unify somewhat the proofs of the two parts 

of Proposi t ion 4; notice tha t  for u - the formal identity 2B N 0K - - ~  e K  - such "norm" is 8/e  

(resp. ~7-1 for B ~ ~B + eK).  
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