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1 Introduction.

Following the studies of Milman and Schechman ([M-S1] [M-S2]) and of
[G-G-M] and [G], we investigate here the “large” Euclidean sections of cen-
trally symmetric convex bodies in R”, or equivalently, the Banach-Mazur
distance of subspaces with “big dimension” of a finite dimensional normed
space to an Euclidean space. We give first a general result about subspaces
of a normed spaces which possesses a system of vectors satisfying a (C, s)-
estimate (see the definition below), and apply these results to give sharp
estimates of the distance to £ of k-dimensional subspace of £y, for ¢ > 2.
We treat then the same problem for subspaces of some normed spaces of
operators from R™ to R", and in particular of Schatten classes, for ¢ > 2.
These results are obtained mainly by the use of Gaussian operators ([G]),
and so we obtain random subspaces.

Let E be a n-dimensional normed space. We say that a family uq,...,uyx of
vectors of E, with N < n, satisfies a (C, s)-estimate for C > 0 and s > 0, if
for all ()Y, € RN and allm =1,..., N, one has

L( m (t§)2)1/2 < ||;tiui|| < (;tg)m, (1)

1/s
ml/ i=1

where (¢£)N, denotes the decreasing rearrangement of the sequence (|t;|)Y ;.
By a result of Bourgain and Szarek [B-S], there exists a constant C' > 0
such that for any n, any n-dimensional normed space contains a sequence
uy,...,un, with N > 2, satisfying a (C, 2)-estimate. We shall be interested

here with s > 2. It is easy to see that for ¢ > 2, £} satisfies a (1,s)-

estimate, with 1 = % — %. It may be also observed that if we define s’ > 0 by
L=1- ln(ln)7 and if (uy,...,uy) satisfies a (C, s)-estimate, then it satisfies

also a (C/e, s')-estimate ; so one can restrict the study to the case when



s < In(n). Finally, we denote by d(E, F') the Banach-Mazur distance between
two normed spaces E and F'.

Let us recall the following estimates for the norm of Gaussian operators :
if E is a Banach space and (v;)}_, € E, we define a Gaussian operator
G, : 5 — E by

k N
Gy =>.> gij(w)e;Q@v; : &5 - E,
i=1 j=1

where (e1, ..., e;) denotes the canonical basis of £§ and g;; are pairwise inde-
pendent real Gaussian random variables for 1 <7 <k, 1 < j < N. We have
the following inequalities [G] :

N N
E| > gjvill — ax sup || D _tjul| < | i|nfl |G ()] (2)
7=t > ti=1 4= o=
1<j<N
and
N N
E sup [|G,(2)|] < E[D gjv;ll + ax sup || Dty (3)
|z|2=1 j=1 Z t? =1 j=L
1<j<N
with
D)
I'(3)

2 Euclidean sections of Banach spaces.

The main result of this part is

Theorem 1 Let E be a n-dimensional normed space, and forn > N > n/2,

let (u;))Y, € E satisfy a (C, s)-estimate for s > 2 and C > 0. Let q satisfy

1 1 1

s =2 g Then for some universal constants ¢;,d;, 1 <11 < 3, and for all

integers k, 1 < k < N, there ezists a k-dimensional subspace F* of E such
that

N 2
(i) 1k < (IS gyl then d(F*, ) <3,
j=1

- ) N 2 g E ok dy vk
(ZZ) If Z(IE“;'Q]/“J“) < k < cige °n, then d(F 7£2) < C\/anl/q'
do k1214

A < < Fk k <
(iti) If crge™®n <k < e, d(F*6) < 3 o o



(iv) If con <k < N, then d(F*,£5) < ds k'/5.

Moreover the spaces F*, 1 < k < N, can be chosen randomly with high

probability as subspaces of the linear span of (u;)N,.

Proof:
Let U = span {u,,...,uy} ; we define a Gaussian operator G, : £& — U by
kK N
Go =22 gij(w)e:® uj.
i=1 j=1

N
Observe that sup || )_#;u;]| <1. Applying (2) and (3), we get
Z;\;ltf’:l =t

N N
- B it @) 2 BN gyl —ae _sup 13ty
Zl2= j=1 Z t‘? =1 Js=1
1<j<N
N N
- I sup [|Gu(@)l| B gyuill +ax_ sup |3 tul]
|z|2=1 j=1 Z t? =1 j=1
1<j<N

We distinguish now between the different values of £, 1 <k < m :
N
j=1

E sup [Gu(a)] . .
e <\ 1+ —5— l——————] £ 3.
Eﬂ@ﬂ%@ﬂ‘<+ )/ )<

N N
B > g5u;ll B> g5u;]l
j=1 j=1

So, there exists wp such that dim(ImG,,,) = k and

sup |Gy (2)]|

|:l:|2:1
. <3.
il Gy @]

|
Let F* = Im Gy, ; then dim F* = k, d(F*,£5) < 3 and case (i) is proved (it
is the classical Dvoretzky’s theorem).
2. In the other cases, one has k > J(IE[| TN, gju;]|)? so that
E sup [|Gy(2)| < 3VE.

w|2:1



For 1 < m < N, in order to get a better lower bound for E inf ||G,(z)l|,

|z[2=1

we define a new norm ||y||m) on U. Forally e U, y = ijly]u], let

C &, .,
||y||( - || Zy]u]“ - 1/S(Z(yi )2)1/2.

i=1

It is clear from (1) that ||Gw(:v)|| > ||Gu()||gm) - By inequality (2) applied
to Gu : 45 — (U, ]| - l|(m)), We get

E inf |G,(z)| > E inf [|Gy(z)||m)
|z|2=1 |z[2=1

N N
> E| > giuillomy —ar  sup || D tugllm)
i=1 >, ti=1 =1

1<G<N
m

- slee(fr)”

> /e Cq/ln 1+ ,/

1/2
the last inequality following from classical estimates of IE(Z(gZ*)2) (see
i=1
for instance [Gl]).

- If k < cqge™n, we choose m = Ne™?. Since N > n/2, we get

IE sup ||G,
sw (6@

E inf [G.@)] = Can'™

and we conclude like in 1..

- If cge™n < k < cn, we choose m = k. We have then

IE sup |G, (x
w [G@I

<
E jof [Go(@)]] = O (1 +n/k)

and as before, we get (iii).

- If en < k < N, then by the definition of the (C, s)-estimate, one has
d(U, £Y) < N'/¢ ; thus every k-dimensional subspace F* of U satisfies

d(Fk,glg) < Nl/s < nl/s < (E)l/s . 0
C



Remark
Using inequality (1), it is easy to prove that

N
E[| Y gjusl| > ¢C /gn'/e.
j=1
Indeed, by (1), for all m € {1,..., N}, we have

N C m 9 1/2
Bl Y gl > (3 (0)?)
j=1

mts NS
> ¢ Cm'74/In(1 4+ =),
and we choose m = Ne™? (recall that N > n/2).

As a corollary, we get more precise estimates in the particular case of £ = £7.

Corollary 2 For some universal constant ¢;,d; > 0,1 <1 <3, foralln > 1,
and all integer k = 1,...,n, there exists a k-dimensional subspace F* of Ly
with ¢ > 2, such that

(i) If k < ¢, qn?9, then d(F*,05) < 3.

) . v
(ii) If c1 g1 < k < cage™n, then d(F*, 05) < W

_ - dy k11214
(ii1) If cage™In < k < c3n, then d(F",£45) < (£ 1/k)’
(iv) If esn < k < n, then d(F* £5) < ds kY2714,
Moreover, the spaces F* can be choosen randomly with high probability in 4.

Proof:

Let (e1,---,e,) be the canonical basis of £ ; then for all ¢, ...,%, and for all
m=1,...,n,
n g m m m 1/
(Chl)) " =1 ey 2 1Y ey = ( S)7)
i=1 i=1 i=1 i=1
1 $ *\2 12
Z 1_1 (Z(tz) ) )
m2 7 =1
using Holder’s inequality. Since g > 2, (ey, ..., e,) satisfies a (1, s)-estimate,
1 1 1
with — = 5 7 It is clear from the preceeding remark that
8 q

n
E|| > giejllg ~ ev/gn'/.

=1



Then we apply Theorem 1 to get random subspaces in the whole space £7.
O

Remarks :

1. As it is proved in [C-P], the result of Corollary 2 is optimal up to absolute
constant. We include here a short proof of this optimality :

Let T : £§ — £2 a linear operator such that for all z € £3,

|zl2 < |Tzly < dlzlo.
Now we write

1 = /S |zldoyi ()

< [ Taldon@) = [ (Sl T epl) o @
1

= IB(Serer)

Qg i=1

where G is a gaussian vector of RF. Since (G, T*(e;)) is N(O, |T*(ez~)|2) and
by Holder inequality, we get

B(S G @) < (SEET @) <l s 1)

i=1 ISZSH

where 7(g) is the moment of order ¢ of a gaussian N (0, 1)-variable. Moreover
|T*(e;)|2 < ||T*|| leily = d, so that we get a universal constant ¢ > 0 such
that,

Vk < cdnt'?/g.

2. A constructive proof of a single subspace of £ satisfying the desired
conclusion is given in [G-J2].
3. In fact by [L], the inequality d(F*, ££) < k/2-1/4 is always true.

3 The case of operator spaces

Let 7 be a 1-symmetric norm on R*. It is well known that for m > n, one
defines a norm || - ||, on the mn-dimensional vector space M,,x,(R) of all
[m x n)-matrices with real entries by setting

M|, = 7(s1(M),...,s,(M)) for all M € M4 (R)



where the s;(M), 1 < i < n, are the eigenvalues of v M*M. If for some g > 1
1
(@) = 7(@1, ., 2n) = (X |2l e = |2l

we get the so called Schatten class S,(m x n) with the norm

ITllg = [(s:(T))izslo-

Theorem 3 Let 7 be a 1-symmetric norm on R* and || - ||; the norm on
Muxn(R) associated to 7. Let d. be the Banach-Mazur distance between
(R, 7) and £5. Then for some universal constant ¢ > 0, and for every integer
k, 1 < k < nm, there exists a k-dimensional subspace F* of (Myxn(R), ||-||+)
such that
(i) If k < 1(E[|G]|;)?, then d(F*,£) <3
k
nm’

(it) If LIE||G||,)? < k < nm, then d(F*,£5) <1+ cd,

Proof: 1
Since 7 is a l-symmetric norm, we can assume that T lz]a < 7(z) < |zs.
T

Then for all T € M,,«,(R) one has
1
2 Tl < I Tll- = 7(s1(T), -, $a(T)) < [ T]]2 (4)

where ||T||2 = (tr(T*T))I/2 is the Hilbert-Schmidt norm. For 1 < p < m
and 1 < ¢ < m, let qu be the canonical basis of My, xn(R) (with entries

(Epg)ij = 6ip5q]) Let G, — (Muxn(R), || - ||+) be the Gaussian operator
defined by
k
= Z Z Jipg(w) €1 ® Epg.
I=1 1<p<m
1<g<n
where ey, . . . , e is the canonical basis of £§ and the g, 1 <1< k,1 <p <m,

1 < g < n, are pairwise independent normalized Gaussian variables. By
inequalities (2) and (3), we have

E sup |Gy (2)llr S E|Gl- + axsup{|[T[|- ; T € Mmxa(R), ||T]]s =1}

|z[2=1

and

E inf [|Go(o)ll- 2 B Gl — axsup{|I Tl ; T € Mmsn(R), [Tl =1}



where G is a matrix with pairwise independent normalized real Gaussian
entries in M, «,(R).

It is clear that sup{||T[|; ; T € Myuxa(R), ||T|2 =1} =1. We distinguish
now three cases.

1. If E ||G||» > 2ak, we have

. 1+ a/E ||G||~
IE sup ||G,(z T/IE inf ||Gy(2)||, < <3.

lz|2=1

2. fE|G|, < 2aq < @7 then by condition (4) and inequality (2) with

Gy i 08— (Mpxn(R), || - ||2), we get

, 1. 1
I inf [|Gu(2)ll- = 18 inf [|Gu(s)ll2 2 5 (BG]> - ar).

| T

It is well known that IE||G||, > —';Lm, so that

1
B inf [Gu(@)l > (5

- ak).

Since IE ||G||; < 2a; < n/2, we deduce that

3ay, 12d,.Vk
IE sup ||G,(x T/IE inf ||Gy(z)||, < < .
wh:plll @)l |w|2:1|| @)l Ty —

3. If q > */ZT”, we know from condition (4) that for all subspaces F* of
(Mpxn(R),7) with dim F* = k, one has d(F*, ¢%) < d,. This concludes the
proof of the theorem because a; ~ Vk. O

As a consequence of the preceeding theorem, we get

Corollary 4 Let g > 2 and let Sy(mxn) be the Schatten class. Assume that
for some fized r > 1, one has m = rn. Then for some universal constant
¢ > 0, and for every integer k, 1 < k < nm, there exists a k-dimensional
subspace F* of Sy(m X n) such that

k
FF iy <1 € Yk
d(F*,635) < +\/Fn -



Proof:
It is well known that for ¢ > In(n) the norm on S,;(m x n) is equivalent up
to universal constant to the norm on Sy (m X n) ; so we reduce to the case

n

when 2 < ¢ < In(n). We have 7(z) = (3 |z:|)"/? so that d, = n*"s. We
i=1

need to compute IE||G||, for a Gaussian matrix. It is well known that

Uy, — Gy < IE m.in SZ(G) <IE sup SZ(G) A
1<i<n 1<i<n

with -
I'(%3)

r'(3)

2

ak=\/§ S\/E,

(see [H-T] for the more general case of gaussian matrices with operator en-
tries). Then
nay, — a,) <EB|G|l, < 0V ay, + ay),

and we apply Theorem 3. O

Remark : Using the same idea as for £, we can prove the optimality of
this Corollary.
Let © : & — S,(m x n) an operator such that for all z € £%,

jzl2 < [|Ozlg < d 2o

Now we write

—_
Il

/.. aldos (=)
< [, leslldor ()

< nl/e /S 102]|wdoy 1 ().

If T; denotes the matrix O(e;) and G = (g1,...,gx) is a gaussian vector in

R, we have
1/q k

n
1< a—IE“ > 9T ]| oo-

i=1

But
k k
1> 9iTillo = sup sup > gi(Tiz, y).
i=1 |zl2=1, zER™ |y[o=1,yER™ j—1
Let hi,...,hm, h{,..., k!, be nm independent gaussian variables and define

the two gaussian process :

k m n
Xw,y = Z gi <TZIE7 y) and Yw,y = \/5 d (Z hZIEZ + Z h;yz) :
i=1

=1 i=1

9



By definition of T, one has

k k 1/2
I3 Tl < d (3 02)

i=1 i=1

If we choose o; = (Tiz,y), 1 < i <k, we get for all z € R™ and y € R”,

k ) 1/2
(SrranP) " < dlsbslyl
i=1

We conclude that for all z € R™ and y € R*, |z|], =1 and |y|2 =1,

|(Tz~rc, y—y) + (-2, T}y)|)?

m»

E|X,, — Xpy? =

.

IA
M?’”

Tz, y — ) + [(z — 2, T}y |?

MII

< (|y y|2+|:v—:v| ):E|E,y_nc’,y’|2-

Then by Slepian’s lemma, we obtain

IE sup sup X, <IE sup sup Y,
|w|2:1 |y|2:1 |(B|2:1 |y|2=1

and since IE sup sup Yy, = V2d(am + a,), we get a universal constant
|zl2=1 |y|2=1
¢ > 0 such that

Vk < cd(vr+1)n'/2+1/e,
/
If a subspace of S;(m x n) with dimension £ is at distance d < % n=t9 K
T n
then k£ < ck' and it proves the optimality of corollary 4.

4 Volume ratios with respect to quotients of
subspaces of L,

In this section we introduce volume ratios of random k—dimensional sub-
spaces F' of an n—dimensional normed space X with respect to the class of
all k—dimensional subspaces of quotients of £;, 2 < ¢ < oo. This volume
ratio yields among other things, in the case ¢ = 2, a lower bound for the
distance d(F, £§) for random subspaces F of X.

Let us consider the following concept of volume ratios introduced in [G-J1,
G-J2]. Given a n—dimensional Banach space X = (R",||.||) with unit ball

10



By, and a finite or infinite dimensional Banach space Z with unit ball B,
we define the volume ratios

vo < 1/n
vr(X,Z):= inf{(ﬁ) : T(Bgz) CBX},

vo < 1/n
vr (X, 5(Z)) :=inf{<ﬁ> : FFC Z,dim F = n, T(BF)CBX},

vr (X, Sp) == vr (X, S(4,)),

and
v SQE) = i w(X,SQ).
Q@ quotient of ¢,
As in [G-J2] the n-th volume number of an operator T': X — Y is defined
by

I(T(Bg)) )"
vn(T) = sup vol(T(Br)) ' ECX,T(E) CFCY,dimE=dimF =n
VO](BF)
We shall also need the definition of the p—nuclear norm of an operator
T : X — Y between two finite dimensional Banach spaces, which is defined
by
vp(T) = inf {[|An]|[lon|| [[By|[; T = ByonyAn, N > 1}

where Ay : X — £}, on : £]] — L] is a diagonal operator, By : £)) =Y.

Theorem 5 Let X = (R",||.||) be a n—dimensional normed space, {b;, b} }?*,
be a biorthogonal basis for X and J = 37 e; ® b; : R* — X. For all
u € O, define uy, : R¥ — R* by ug(e;) = ule;) for all 1 < j < k and A, by
Ay=Jouy: 5= X.

Then for some universal constant ¢ > 0 and for all 2 < q < oo the
k— dimensional random subspace F,, = A, (%) C X satisfies

vk
vk , n
(\/5+ i | e 16 (|1 TE[| Y gs bill

i=1

E, vr (Fy, SQ(4,)) >

where IE, denotes the expectation with respect to the Haar measure on O,,.

11



Proof:
For u € O, we define also B, : X — (% by B, = ufoJ ™! where u} : R* — R”
is the adjoint of ug. Clearly B, A, = ideg.

Claim: Let ¢’ be the conjugate of ¢, i.e.  + 5 =1, then

By (B X ) < o/ (Va+ 250 ) ma 5] 6

1< <n

To show this procceed as in the definition of the g—nuclear ideal norm
to factor By|x_ g = U72|eg,—>e’; I'J~" where I : L3 — £ = Y7 e; ®¢; is the

b ®e; : X — £. Then clearly

zlz

identity map on R", and J~! =

vy (Bulxe8) <IN etk s | = moasx (10511 n =42 g g, e ]
1<i<n

Let G =}, ; gij€: ® e; denote the Gaussian operator which maps £}, to
2% ; we have by [B-G]

IE,||ulm || < 2 E|G K"—>£k<—cn1/q +Vk
i len, e \/_ I I \/ﬁ( Va+ Vk)

hence
E.vy (Bulx ) < con'/2(ey/@+n""VE) max |15
and (5) is proved.
Now recall that if T : ¢ — X and rad (T / ||Z7"Z T(e;)||x dt,

then using the Marcus-Pisier inequality [B-G], [ P]

VAE, rad (4, : &5 — X) = VnE, /||Z7"] u(e) | dt

n

< B [ 133 00

]lzl

= C\/EIE“ ZgaZH
i=1

Denote by ey (T) the k—th entropy number of an operator 7 : Y — X, then
by [C-P] one has

E,vkoi(4y) < 4EVher(Ay) < 4By rad (A,) < %IEH > gibill

12



By [G-J2] Lemma 1.3, we have for any k = 1,2,..., 2 < ¢ < 00, and any
operator T from a Banach space Z to 4y

M < ¢ sup vr (F, SQ(£y)).

ve(T) ~ 7 rcz,dm(F)=k

Applying this to By|p,_,¢ we have

\/Evk(Bu|Fu) < covg (Bu) vr (Fu, SQ(4y)).

Since By Ay = idg, we have 1 = vy (A Au) = vr(Au)vr(Ag|F,)-
Hence we obtain

Vg (Bu)
vk

and taking the 3-rd root we get by Holder inequality

1 < couvp (Au) vr (Fm SQ(KQ))

l/q/ (Bu)

1 < cOIEuvk(Au)IEu( i< )IEu vr (Fy, SQ(£,)
< SE(SR, gibill 2 (/G + %) max; |6} By vr (Fy, SQ(£)).

This concludes the proof. O
Remarks :
1. It was proved in [G-J2] that

vr (X, SQ(4,)) < vr(X,S5(£,)) < con/p+ P vr(X,SQ(L,))

with S+ 5 = 1.

2. Estimates in the case ¢ = 2 and X = £} or X = Sy(m x n) with
2 < p < Inn which give optimal lower bound in expectation for random
k—dimensional subspaces of X (in correlation with part 2 and 3 of this pa-
per). (I have to write that and also for ¢ > 2 as Yoram said us by mail)
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