
Julien Barral - Projet SOSSO2 - INRIA Rocquencourt, B.P. 105 - 78153 Le
Chesnay Cedex, France (e-mail: Julien.Barral@inria.fr)
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Threshold and Hausdorff spectrum of
discontinuous measures

Abstract

Let χ be a finite Borel measure on [0, 1]d. Consider the Lq-spectrum
of χ: τχ(q) = lim infn→∞−n−1 logb

P
Q∈Gn, χ(Q) 6=0 χ(Q)q, where Gn is

the set of b-adic cubes of generation n. Let qτ = inf{q : τχ(q) = 0}
and Hτ = τ ′χ(q−τ ). When χ is a mono-dimensional continuous measure
of information dimension D, (qτ , Hτ ) = (1, D). When χ is purely dis-
continuous, its information dimension is D = 0, but the non-trivial pair
(qτ , Hτ ) may contain relevant information on the distribution of χ. The
connection between (qτ , Hτ ) and the large deviations spectrum of χ is
studied in a companion paper. This paper shows that when a discontinu-
ous measure χ possesses self-similarity properties, the pair (qτ , Hτ ) may
store the main multifractal properties of χ, in particular the Hausdorff
spectrum. This is observed thanks to a threshold performed on χ.

1 Introduction and statements of results

In a companion paper [5], we introduced new information parameters associ-
ated with any positive Borel measure χ on [0, 1]d. Let us recall their definitions.
Let b ≥ 2 be an integer and let Gn be the partition of [0, 1]d into b-adic boxes∏d

i=1[b
−nki, b

−n(ki+1)) with (k1, ..., kd) ∈ {0, 1, ..., bn−1}d. The Lq-spectrum
of χ is the mapping defined for any q ∈ R by

τχ(q) = lim inf
n→∞

− 1
n

logb sn(q) where sn(q) =
∑

Q∈Gn, χ(Q) 6=0

χ(Q)q. (1)
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It is easy to see that the restriction to R+ of τχ does not depend on b. Two
parameters are naturally associated with the measure χ:

qτ (χ) = inf{q ∈ R : τχ(q) = 0} and Hτ (χ) = τ ′χ(qτ (χ)−). (2)

The motivation of the introduction of these parameters was the following:
For purely discontinuous measures, the classical measure dimensions vanish
[25, 11, 16, 18, 7]. Nevertheless, these measures may have very interesting
multifractal spectra [15, 1, 9, 14, 6, 24, 2, 4], and there is a need for other rele-
vant parameters. The study of the pair (qτ (χ),Hτ (χ)) and their relationships
with the so-called large deviations spectrum are achieved in [5] and recalled
below in Section 2. As we wished, these parameters are very pertinent for
purely discontinuous measures χ, i.e. measures constituted only by positive
Dirac masses of the form

χ =
∑
k≥1

mk δxk
, (3)

with m̃ = (mk)k≥1 ∈ (R+)N∗ ,
∑

k mk < ∞ and x̃ = (xk)k≥1 ∈ ([0, 1]d)N∗ such
that the xk’s are pairwise distinct.

This paper aims at showing that for certain classes of purely discontinuous
measures denoted ν in the following, these parameters not only store infor-
mation about the large deviations spectrum of ν, but also they store essential
information about the multifractal Hausdorff spectrum of ν. To achieve this,
we apply a threshold procedure to such measures ν by keeping only the Dirac
masses naturally associated with the information parameters introduced in [5].
We prove that the obtained measure, denoted νeε, has the same multifractal
behavior as ν itself. Since the threshold procedure puts to zero the largest
part of the Dirac masses of ν, it is thus very interesting to understand why
the multifractal properties of ν are essentially the same as those of νeε.

From now on we shall work in the one-dimensional context. Extensions
to higher dimensions are immediate, though more technical. Let us recall the
definition of the Hausdorff spectrum of any measure χ. First, for x ∈ Supp(χ)
(the support of χ), the pointwise Hölder exponent of χ at x is defined by

hχ(x) = lim inf
r→0+

log χ(B(x, r))
log r

, (4)

Then, for every h ≥ 0 one defines the level sets of the pointwise Hölder expo-
nent of χ and the multifractal Hausdorff spectrum of χ as

Eχ
h = {x ∈ Supp(χ) : hχ(x) = h} and dχ : h ≥ 0 7→ dim Eχ

h (5)

where dim stands for the Hausdorff dimension. This spectrum is used to
describe the geometric properties of measures at small scales. Recall that if
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g is a function from R to R ∪ {−∞}, its Legendre transform is the mapping
g∗ : h 7→ infq∈R(hq − g(q)) ∈ R ∪ {−∞}. For every h ≥ 0, one always has
dχ(h) ≤ τ∗χ(h) [8], and the multifractal formalism holds at h if dχ(h) = τ∗χ(h).

The measures ν we consider are introduced in [2]. Their construction’s
scheme is as follows: Let µ be a Borel probability measure on [0, 1] and let

ν =
∑
j≥1

∑
0≤k≤bj−1: k 6≡0 mod b

νj,kδkb−j , with νj,k =
1
j2

µ([kb−j , (k+1)b−j)). (6)

The jump points are located at the b-adic points, and an heterogeneity in the
Dirac masses distribution is created by the measure µ. It turns out that this
class of measures has a fruitful structure [4, 2].

Theorem 1.1 Let µ be a Gibbs measure as defined in Section 3.2. The mea-
sure ν (6) obeys the multifractal formalism at every h > 0 such that τ∗ν (h) > 0,
as well as at 0. More precisely, one has Hτ (ν) = Hτ (µ) and

τν(q) =

{
τµ(q) if τν(q) < 0,

0 otherwise,
and dν(h) =

{
h if 0 ≤ h ≤ Hτ (ν),
dµ(h) otherwise.

Let us explicit the thresholding procedure applied on ν. Let ε̃ = (εj)j≥0

be a non-increasing positive sequence converging to 0. Consider ν (6) and let

νeε =
∑
j≥1

∑
0≤k≤bj−1: k 6≡0 mod b

tj,k νj,k δkb−j (7)

with ∀ j ≥ 1, ∀ k, tj,k = 1[Hτ (ν)−εj ,Hτ (ν)+εj ]

( log νj,k

log b−j

)
. (8)

Heuristically, the measure νeε contains only the Dirac masses νj,kδkb−j such
that νj,k ∼ b−jHτ (ν). A more complete explanation of such a formula comes
from the companion paper [5], and is detailed in Section 2.

We obtain the following remarkable result which illustrates the amount of
information potentially stored in the pair (qτ (ν),Hτ (ν)).

Theorem 1.2 Let µ be a Gibbs measure as in Section 3.2. Consider νeε (7).
There exists a non-increasing positive sequence ε̃ converging to 0 such that

dν eε(h) = dν(h) for every h > 0 such that τ∗ν (h) > 0. Moreover νeε obeys the
multifractal formalism at every h > 0 such that τ∗ν (h) > 0, and at 0, and the
Lq-spectra of ν and νeε coincide (τν = τν eε).

Actually, a slightly more general result will be proved (Theorem 2.2).
Theorem 1.2 shows the role played by the information parameters qτ (ν) and

Hτ (ν) for discontinuous measures having a nice structure close to statistical
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self-similarity. There is no doubt on the fact that Theorem 1.2 can be extended
to other nice families of measures, such as the inverse of Gibbs measures on
cookie-cutters [21] and the self-similar sums of Dirac masses introduced in
[24]. These measures will be studied in a forthcoming paper. However it
seems difficult to get similar results for measures without any structure.

It will be justified in next section that at each scale j, approximately
bjHτ (ν) Dirac masses among bj are kept after threshold. Since one generally
has Hτ (ν) < 1 if µ is non trivial, the threshold we realize is very severe. The
situation Hτ (ν) = 1 corresponds for instance to the choice µ = ` (the Lebesgue
measure). It is the typical example of an homogeneous sum of Dirac masses
ν`, for which there exists a positive sequence ε̃ going to 0 at ∞ such that
νeε

` = ν`.

2 Detailed exposition of the result

2.1 More on the information parameters

The connection between (qτ (χ),Hτ (χ)) and the more usual Hausdorff, packing
or entropy dimensions of χ is the following: When qτ (χ) = 1 and Hτ (χ) =
τ ′χ(1) exists, Hτ (χ) defines without ambiguity the dimension of the measure
χ [25, 16, 18, 11, 7].

The pair (qτ (χ),Hτ (χ)) is also connected to the large deviations spectrum
fχ of χ. This spectrum describes the statistical distribution of χ at small
scales in the following sense. This spectrum fχ of χ is defined as

h ≥ 0 7→ fχ(h) = lim
ε→0+

lim sup
n→∞

1
n

logb #Sχ
n (h, ε),

where for ε > 0, h ≥ 0 and n ∈ N,

Sχ
n (h, ε) =

{
Q ∈ Gn : b−n(h+ε) ≤ χ(Q) ≤ b−n(h−ε)

}
(9)

Very classical considerations [12, 8, 22, 17, 5] show that ∀h ≥ 0, one always
has dχ(h) ≤ fχ(h) ≤ τ∗χ(h). Hence when the multifractal formalism holds at
h, one also has dχ(h) = fχ(h).

As a consequence of the fact that fχ(α) = τ∗χ(α) for all α of the form τ ′(q−)
(see [23]), one always has Hτ (χ) = max{h ≥ 0 : fχ(h) = qτ (χ)h} if qτ (χ) > 0.
For a discontinuous measure χ =

∑
k≥1 mk δxk

on [0, 1]d, the relationships
between the large deviations spectrum fχ restricted to [0,Hτ (χ)] and the pair
(qτ (χ),Hτ (χ)) were investigated in [5]. Under a weak assumption on the
distribution of the masses, it is shown that there exists a real number Hg(χ) ∈
(0,Hτ (χ)] depending on (m̃, x̃) such that fχ(h) = qτ (χ)h over [0,Hg(χ)]. In
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addition, Hg(χ) is equal to Hτ (χ) if qτ (χ) ∈ (0, 1), but it may differ from
Hτ (χ) if qτ (χ) = 1. We do not go into much details on Hg(χ) (this was the
purpose of [5]). This linear increasing part in the large deviations spectrum
is conform to the observations made on special classes of homogeneous and
heterogeneous sums of Dirac masses studied in the last fifteen years [1, 15, 9,
23, 2, 4]. Moreover, the elements of these classes of measures, to which belong
the measures (6) and (11), verify that Hg(χ) = Hτ (χ) even when qτ (χ) = 1.
This is always assumed hereafter.

The starting point of the threshold operation performed in this article is pro-
vided by two important remarks made in [5] (Proposition 3.3, [5]):

• For every n ≥ 1, most of the cubes in Sχ
n (Hτ (χ), ε) contain a point

xk such that b−n(Hτ (χ)+ε) ≤ mk ≤ b−n(Hτ (χ)−ε) (recall that Sχ
n (Hτ (χ), ε) is

the set of b-adic cubes Q of generation n such that b−n(Hτ (χ)+ε) ≤ χ(Q) ≤
b−n(Hτ (χ)−ε)). Hence, the χ-mass of these cubes is approximately due to the
presence of a single Dirac mass.

• The b-adic cubes which contain such a point xk are responsible for the
linear shape of fχ on [0,Hτ (χ)].

Consequently, a certain amount of information is contained in the set of
pairs (xk,mk) defined for any ε > 0 by

P(Hτ (χ), ε) =

{
(mk, xk) :

{
∃n ≥ 1, ∃ Q ∈ Gn, Q ∈ Sχ

n (Hτ (χ), ε), xk ∈ Q

and b−n(Hτ (χ)+ε) ≤ mk ≤ b−n(Hτ (χ)−ε)

}
.

A natural way to study this set of pairs (xk,mk) is to consider the measure

χε =
∑
k≥1

1P(Hτ (χ),ε)((mk, xk))mk δxk
. (10)

This measure shall be viewed as a thresholded version of the initial measure χ
(3). It can be deduced from [5] that the measure has the same large deviations
spectrum as χ over [0,Hτ (χ)].

This raises the following question: Do the measures χε still contain enough
Dirac masses to have the same Hausdorff spectrum as χ? This is the question
investigated hereafter.

2.2 The measures νγ,σ and a more general result

Let µ be a Borel probability measure on [0, 1], γ ≥ 0 and σ ≥ 1, and

νγ,σ =
∑
j≥1

∑
0≤k≤bj−1
k 6≡0 mod b

νj,k δkb−j , with νj,k =
b−jγ

j2
µ([kb−j , (k + 1)b−j))σ. (11)
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The condition k 6≡ 0 mod b in the definition of νγ,σ (6) is not required in [2].
This is unessential, since the two measures (with or without the condition) are
equivalent, and thus have the same multifractal nature.

Theorem 2.1 [2] Let µ be a Gibbs measure as in Section 3.2, γ ≥ 0 and σ ≥
1. The measure νγ,σ given by formula (11) obeys the multifractal formalism
at every h > 0 such that τ∗νγ,σ

(h) > 0, as well as at 0. Moreover, one has

τνγ,σ
(q) =

{
γq + τµ(σq) if τνγ,σ

(q) < 0,

0 otherwise.

These measures νγ,σ are generalized versions of the measures ν considered by
Theorem 1.2 (indeed, ν0,1 is the measure ν of the introduction). Main Theorem
2.2 deals with νγ,σ, and is thus more general and implies Theorem 1.2.

For j ≥ 1 and k ∈ [0, . . . , bj − 1], one sets Ij,k = [kb−j , (k + 1)b−j).
The measure νγ,σ is of the form (3) if one takes for the points xk the b-
adic numbers lb−j with l 6≡ 0 mod b and for the corresponding mk the mass
mj,l = νj,l. It is then easily seen that there exists a universal constant K such
that mj,l ≤ νγ,σ(Ij,l) ≤ Kmj,l. Consequently, in this case, requiring that Ij,l ∈
Sνγ,σ

j (Hτ , ε) is equivalent to requiring that b−j(Hτ+ε) ≤ mj,l ≤ b−j(Hτ−ε).
We apply the threshold procedure (7-8) to the class of measures νγ,σ defined

by (11). This procedure is finer than (10). Recall that, if ε̃ = (εj)j≥0 be a
positive sequence converging to 0, then we set

νeε
γ,σ =

∑
j≥1

∑
0≤k≤bj−1: k 6≡0 mod b

tj,k νj,k δkb−j (12)

with tj,k = 1[Hτ (νγ,σ)−εj ,Hτ (νγ,σ)+εj ]

(
log νj,k

log b−j

)
defined as in (8) (νγ,σ is used

instead of simply ν).

Theorem 2.2 Let µ be a Gibbs measure as in Section 3.2, γ ≥ 0 and σ ≥ 1.
Consider νeε

γ,σ defined by (12).
There exists a non-increasing positive sequence ε̃ converging to 0 such that

1. (qτ (νeε
γ,σ),Hτ (νeε

γ,σ)) = (qτ (νγ,σ),Hτ (νγ,σ)).

2. For every 0 ≤ h ≤ Hτ (νγ,σ), dν eε
γ,σ

(h) = dνγ,σ
(h) and νeε

γ,σ obeys the
multifractal formalism at h.

3. If γ = 0 and σ = 1, then Theorem 1.2 applies.

When qτ (ν) < 1, the Hausdorff spectrum of νeε
γ,σ may differ from dνγ,σ

on (Hτ (νγ,σ),∞). To see this heuristically, notice that the total mass con-
served at each scale in νeε

γ,σ is negligible with respect to the total mass of νγ,σ,
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since approximatively there are at most 2jqτ Hτ (ν) terms weighted by 2−jHτ (ν).
Hence the amount of lost ”information” is large. Nevertheless, it is remark-
able that the Dirac masses we keep are enough to recover the spectrum on
[0,Hτ (νγ,σ)].

Sections 3 gives some background necessary to establish Theorem 2.2, while
Sections 4 is devoted to the proof of Theorem 2.2.

3 Scaling properties of Gibbs measures

If x ∈ (0, 1), Ij(x) is the unique b-adic interval of scale j ≥ 1, semi-open to
the right, containing x, and for every ε ∈ {−1, 0, 1}, I

(ε)
j (x) = Ij(x)+ εb−j . In

the following, |B| always denotes the diameter of the set B. Eventually, for
the rest of the paper, the convention log(0) = −∞ is adopted.

3.1 Some dimension and large deviations bounds

Definition 3.1 Let µ be a positive Borel measure on [0, 1]. For x ∈ (0, 1),
recall the definition (4) of the Hölder exponent of µ at x and of the level sets
Eµ

α defined for every α ≥ 0 by Eµ
α = {x : hµ(x) = α}.

For ξ̃ = (ξj)j≥1 a positive non-increasing sequence converging to zero, one sets

Ẽµ

α,eξ =

{
x :

{
there is a scale Jx such that for every j ≥ Jx,
∀ε ∈ {−1, 0, 1}, b−j(α+ξj) ≤ µ(I(ε)

j (x)) ≤ b−j(α−ξj)

}
. (13)

For any ξ̃, It is obvious that Ẽµ

α,eξ ⊂ Eµ
α. The level sets Ẽµ

α,eξ contain points
around which the local µ-behavior can be very precisely controlled.

As a simple consequence of [8, 17], one gets

Proposition 3.2 Let µ be a positive Borel measure on [0, 1], and let (hmin, hmax)
be the maximal open interval on which τ∗µ > 0.

1. For every α ≥ 0 such that τ∗µ(α) ≥ 0 and for any non-increasing sequence
ξ̃ converging to zero, dim Ẽµ

α,eξ ≤ dµ(α) ≤ fµ(α) ≤ τ∗µ(α).

2. If µ obeys the multifractal formalism at every α ∈ (hmin, τ ′µ(0+)], then
for every α ≤ (hmin, τ ′µ(0+)], dim

( ⋃
α′≤α Eµ

α′

)
= dim Eµ

α.

3. If µ obeys the multifractal formalism at every α ∈ [τ ′µ(0+), hmax), then
for every α ∈ [τ ′µ(0+), hmax), dim

( ⋃
α′≥α Eµ

α′

)
= dim Eµ

α.

A last quantity will be needed.
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Definition 3.3 Let λ be a positive Borel measure on R. Let us define, ∀α ≥ 0,
J ≥ 0 and K ∈ {0, ..., bJ − 1}, η > 0, j ≥ J + 1,

NJ,K(λ, j, η, α)=#

{
k 6≡ 0 mod b :

{
Ij,k ⊂ IJ,K ,

b−(j−J)(α+η) ≤ λ(Ij,k)
λ(IJ,K) ≤ b−(j−J)(α−η)

}
.

Heuristically, NJ,K(λ, j, η, α) is the number of intervals Ij,k ⊂ IJ,K such
that, when forgetting what happens before j, the rescaled µ-measure of Ij,k,
λ(Ij,k)
λ(IJ,K) , is approximately equal to b−(j−J)α =

(
|Ij,k|
|IJ,K |

)α

.

3.2 Gibbs measures and their multifractal properties

Here are defined the Gibbs measures used in Theorems 2.1 and 2.2. We sum-
marize some of their scaling and multifractal properties. We consider deter-
ministic Gibbs measures, the same properties hold for random Gibbs measures.

3.3 Definition

Let c an integer ≥ 2 and let ` stand for the Lebesgue measure on [0, 1].
Let φ be a 1-periodic Hölder continuous function on R and ω = (ωn)n≥0

be a sequence of independent random phases uniformly distributed in [0, 1].
Let T be the shift transformation on [0, 1): T (t) = ct mod 1.
For n ≥ 1 and t ∈ [0, 1) let us consider the Birkhoff sums

Sn(φ)(t) =
n−1∑
k=0

φ(T kt) and Sn(φ, ω)(t) =
n−1∑
k=0

φ(T kt + ωk).

Let also

Qn(t) =
exp

(
Sj(φ)(t)

)∫
[0,1]

exp
(
Sj(φ)(u)

)
du

and Qn(t, ω) =
exp

(
Sj(φ, ω)(t)

)∫
[0,1]

exp
(
Sj(φ, ω)(u)

)
du

.

It follows from the thermodynamic formalism [19, 13] that µn = Qn(·) · `
(resp. µω

n = Qn(·, ω) · `) converges (resp. almost surely), as n → ∞, to a
deterministic Gibbs (resp. random Gibbs) measure denoted µ (resp. µω).

The multifractal analysis of µ and µω is performed for instance in [8, 20,
10, 13]. With φ and ω are associated the analytic functions

P : q 7→ log(c) + lim
n→∞

j−1 log
∫

[0,1)

exp(qSn(φ(t)) du

and P̃ : q 7→ log(c) + lim
n→∞

j−1E log
∫

[0,1)

exp(qSn(φ(t, ω)) du,
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which respectively are the topological pressures of φ relative to T and T̃ :
(t, ω) 7→

(
T (t), θ(ω), where θ(ω) = (ωn+1)n≥0

)
. One has τµ(q) = qP (1)−P (q)

log(c) ,

and a.s. τµω (q) = q eP (1)− eP (q)
log(c) .

Gibbs measures considered here obey the multifractal formalism. In par-
ticular, for every h ≥ 0, dµ(h) = τ∗µ(h) as soon as τ∗µ(h) > 0.

Actually, Theorems 1.1, 1.2, 2.1 and 2.2 hold for the elements of a larger
class of measures described in [3], which also contains the multinomial mea-
sures their random counterpart.

3.4 Properties of Gibbs measures

In this section, we fix a Gibbs measure µ as defined above. In the random
case, µ is a realization of µω, that is to say the following results hold almost
surely. We fix another integer b ≥ 2 in order to consider the b-adic grid defined
in Section 1.

Fine properties on the measure µ are required to prove Theorem 2.2. Let
(hmin, hmax) as in Proposition 3.2.

• Property P1 (lower and upper bound for the scaling properties):
One has hmin > 0 and hmax < +∞. The measure µ obeys the multifractal
formalism at any h ∈ (hmin, hmax). For j large enough, for every 0 ≤ k ≤ bj−1,
b−2hmaxj ≤ µ(Ij,k) ≤ b−hminj/2.

• Property P2 (Gibbs states as analyzing measures):
Let L be a compact subset of (hmin, hmax). There is a sequence ξ̃ = (ξj)j

such that for every α ∈ L, one can find a Borel measure mα on [0, 1] such
that mα(Ẽµ

α,eξ) > 0 and mα(E) = 0 for every Borel set E ⊂ [0, 1] such that

dim E < τ∗µ(α) (this yields dim Ẽα,eξ = dim Eµ
α = τ∗µ(α)). Let qα be the unique

q ∈ R such that α = τ ′µ(q). A possible choice for mα is the Gibbs measure µqα

constructed as µ with the potential qαφ. One has τ∗µ(α) = τ ′µqα
(1).

• Property P3 (Heterogeneous ubiquity): It follows from [2].
For ρ ≥ 1, α > 0 and for a positive sequence ξ̃ = (ξ̃j)j≥1 define the limsup set

Sµ(ρ, α, ξ̃) =
⋂
J≥0

⋃
j≥J

⋃
k∈{0,...,bj−1}: k 6≡0 mod b

b−j(α+ξj)≤µ(Ij,k)≤b−j(α−ξj)

[kb−j , kb−j + b−jρ]. (14)

Let L be a compact subset of (hmin, hmax). There exists a positive sequence
ξ̃ converging to 0 such that for every ρ ≥ 1 and α ∈ L one can find a positive
Borel measure mα,ρ such that:
- mα,ρ(E) = 0 for every Borel set E such that dim E < τ∗µ(α)/ρ ,
- mα,ρ

(
Sµ(ρ, α, ξ̃)

)
> 0.
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In particular, dim Sµ(ρ, α, ξ̃) ≥ τ∗µ(α)/ρ.
• Property P4 (Uniform renewal speed of large deviations spec-

trum): This property is proved in [3].
Let L be a compact subinterval of (hmin, hmax). Let η > 0, and let us

consider the sequence γj :=

√
log(j)1+η

j1/4
, for j ≥ 1. There exists a constant

M > 0 and a scale J0 ≥ 1 such that for every J ≥ J0 and K ∈ {0, ..., bJ − 1},
for every j ≥ J + exp(

√
(1 + η) log(J)) and α ∈ L

b(j−J)(τ∗µ(α)−Mγj−J ) ≤ NJ,K(µ, j, γj−J , α) ≤ b(j−J)(τ∗µ(α)+Mγj−J ). (15)

Remark 3.4 Properties P1 and P2 are well known for Gibbs measures asso-
ciated with a smooth enough potential [8, 10, 20]. Properties P3 and P4 rely
on finer properties without the restriction k 6≡ 0 mod b, but simple verifica-
tions show that the results also hold with this restriction.

It is important for the sequel to precise that in Property P2 and P3, one
can take ξ̃ equal to the sequence (γj)j≥1 of P4.

4 Proof of Theorem 2.2

4.1 Proof of Theorem 2.2(3)

We begin by the last assertion. In this section, γ = 0 and σ = 1, thus ν0,1 is
simply denoed ν. A b-adic number kb−j is said to be irreducible if the fraction
k/bj is irreducible.

Let γ̃ = (γj)j≥1 be the sequence defined in Section 3.4. For j ≥ 1 define

εj = 2γ j
log j

+ 6
hmax

log j
. (16)

Due to the last remark of Section 3.4, Property P2 and P3 hold with ξ̃ := ε̃/2.
For simplicity of notations, we consider the measure νt := νeε = νeε

0,1 (7)
associated with this sequence ε̃ = (εj)j . We also denote tj,kνj,k by νt

j,k.
By Theorem 2.1, one has Hτ := Hτ (ν) = τ ′µ(1) and thus by construction

τ∗µ(Hτ ) = Hτ . We are going to show that dνt(h) = dν(h)(= τ∗ν (h)) for all
h ∈ [0, hmax). Since τν ≤ τνt , this yields τ∗ν = τ∗νt on R+ and thus τν = τνt

(remember that τν and τνt are non-decreasing).

4.1.1 First results on the local regularity of νt

It is easy to verify that for every x ∈ [0, 1],

hν(x) ≤ hνt(x) and hν(x) ≤ hµ(x). (17)
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The first inequality is due to the fact that by construction, for any Borel set
B ⊂ [0, 1], νt(B) ≤ ν(B). The second one follows from the fact that for any
b-adic interval Ij,k, ν(Ij,k) ≥ j−2µ(Ij,k).

Proposition 4.1 For every ε > 0, there is an integer Jε such that for any β ∈
[hmin/2, 2hmax], ∀ j ≥ Jε, for every integer K such that Kb−J is irreducible,

µ(IJ,K) = b−Jβ ⇒ b−J(β+ε) ≤ νt(IJ,K) ≤ b−J(β−ε).

Proof: Let ε > 0. Let J1 be large enough so that j ≥ J1 implies 0 <
max(γj , εj) ≤ ε/2 and b−2jhmax ≤ µ(Ij,k) ≤ b−jhmin/2 for all 0 ≤ k ≤ bj − 1.
Let Kb−J be an irreducible b-adic number such that J ≥ J1, and let β be
defined by µ(IJ,K) = b−Jβ .

• Let us first notice that (recall the definition of the measure ν (6))

ν(IJ,K) =
1
J2

µ(IJ,K) +
∑

j≥J+1

1
j2

∑
k=0,...,bj−1:

k 6≡0 mod b, kb−j∈IJ,K

µ([kb−j , (k + 1)b−j))

≤ 1
J2

µ(IJ,K) +
∑

j≥J+1

1
j2

µ(IJ,K).

If J is greater than some fixed integer J2 ≥ 1 large enough, then ν(IJ,K) ≤
µ(IJ,K)bJε/2 ≤ b−J(β−ε/2). Now it is obvious that by construction, for any
subset B of [0, 1], νt(B) ≤ ν(B), hence we get the first inequality µ(IJ,K) =
b−Jβ ⇒ νt(IJ,K) ≤ b−J(β−ε) for any J ≥ max(J1, J2).

• The converse inequality is more difficult to obtain. Let us show that
νt(IJ,K) ≥ b−J(β+ε). One has by definition

νt(IJ,K) = νt
J,K +

∑
j≥J+1

∑
k=0,...,bj−1:

k 6≡0 mod b, kb−j∈IJ,K

νt
j,kδkb−j (18)

1. If β = Hτ : By construction, for J large enough one has νt
J,K =

J−2µ(IJ,K), and νt(IJ,K) ≥ νt
J,K) ≥ b−J(β+ε).

2. If β > Hτ : Let us recall (18). To find a lower bound for νt(IJ,K), one
has to look for non-zero Dirac masses (after threshold) in the sum (18).

Let us use Property P4 applied with α = Hτ . Let η > 0. There exists
a constant M > 0 and a scale J0 ≥ 1 such that with probability one, for ev-
ery J ≥ J0 and K ∈ {0, ..., bJ−1}, for every j ≥ J+exp(

√
(1 + η) log(J)), (15)

holds with α = Hτ . In particular, one has for every j ≥ J+exp(
√

(1 + η) log(J))

NJ,K(µ, j, γj−J ,Hτ ) ≥ b(j−J)(Hτ−Mγj−J ). (19)
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Let Ij,k be any of the intervals such that Ij,k ⊂ IJ,K , k 6≡ 0 mod b, and

µ(IJ,K)b−(j−J)(Hτ+γj−J ) ≤ µ(Ij,k) ≤ µ(IJ,K)b−(j−J)(Hτ−γj−J ).

One has b−jα1
j,J ≤ µ(Ij,k) ≤ b−jα2

j,J with

α1
j,J = Hτ + γj−J −

J

j
(Hτ − β + γj−J), α2

j,J = Hτ − γj−J −
J

j
(Hτ − β + γj−J).

In order to have νt
j,k 6= 0, one must have [α2

j,J , α1
j,J ] ⊂ [Hτ−εj+logb(j−2)/j, Hτ+

εj + logb(j−2)/j]. This is achieved as follows.
Let θ > 0. There exists a scale J3 such that for every J ≥ J3 , for every

j ≥ J + J1+θ, one has

j

log j
≤ j − J and

6hmax

log j
≥ J

j
(2hmax + Hτ + γj−J) +

logb(j2)
j

Let J4 = max(J1, J2, J3) (J4 is independent of β). Then remembering (16),
for every J ≥ J4, as soon as j ≥ J + J1+θ one has

Hτ − εj − logb(j
2)/j ≤ α2

j,J ≤ α1
j,J ≤ Hτ + εj − logb(j

2)/j.

Hence those intervals Ij,k ⊂ IJ,K (with j ≥ J + J1+θ) such that k 6≡ 0 mod b

and b−jα1
j,J ≤ µ(Ij,k) ≤ b−jα2

j,J give rise to non-zero masses in the sum (18).
Using (18) and (19), one obtains that for every J ≥ J4, for every K such

that Kb−J is irreducible, for every j0 = J + J1+θ,

νt(IJ,K) ≥
∑

k=0,...,bj0−1:
k 6≡0 mod b, kb−j0∈IJ,K

νt
j0,k ≥

1
j2
0

NJ,K(µ, j0, γj0−J ,Hτ )b−j0α1
j0,J

≥ 1
j2
0

b(j0−J)(Hτ−Mγj0−J )b−j0(Hτ+γj0−J− J
j0

(Hτ−β+γj0−J ))

Hence νt(IJ,K) ≥ b−Jβ b
(j0−J)(M+1)γj0−J

j2
0

. Since γj =
√

log(j)1+η

j1/4 , one gets

(j0 − J)(M + 1)γj0−J = J1+θ(M + 1)γJ1+θ = (M + 1)J1+θ

√
log(J1+θ)1+η

J (1+θ)/4

= (M + 1)(1 + θ)(1+η)/2J7(1+θ)/8 log(J)(1+η)/2.

Choosing θ ∈ (0, 1/7), there is a scale J5 (independent of β) such that for
every J ≥ J5, one has (j0 − J)(M + 1)γj0−J ≤ εJ . It is also obvious that
1
j2
0
≥ b−εJ for J large enough. Finally, for J large enough, one obtains

νt(IJ,K) ≥ b−J(β+2ε).
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3. If β < Hτ : The same arguments as above yield the same result.
We emphasize that the order of magnitude of the sequence γj plays a

crucial role in the previous computation.

Proposition 4.2 For every ε > 0, there is an integer Jε such that for any
β ∈ [hmin/2, 2hmax], for every j ≥ Jε, for every integer K such that Kb−J is
reducible,

µ(IJ,K) = b−Jβ ⇒ b−J(β+ε) ≤ νt(IJ,K) ≤ ν(IJ,K).

Proof: The right inequality is immediate, and the left one is a consequence
of Proposition 4.1.

Using Propositions 4.1 and 4.2, one can specify (17) and assert that,

for every x ∈ (0, 1), hν(x) ≤ hνt(x) ≤ hµ(x). (20)

Proposition 4.3 Let ρ ≥ 1. Consider the limsup set Sµ(ρ,Hτ , ε̃/2) defined
in (14). For every x ∈ Sµ(ρ,Hτ , ε̃/2), hνt(x) ≤ Hτ/ρ.

Proof: By definition of Sµ(ρ,Hτ , ε̃/2), for every x ∈ Sµ(ρ,Hτ , ε̃/2), there is
an infinite number of scales jn such that for some kn ∈ {0, ..., bjn − 1} with
knb−jn irreducible, |x−knb−jn | ≤ b−jnρjn and simultaneously b−jn(Hτ+εjn /2) ≤
µ(Ijn,kn)) ≤ b−jn(Hτ−εjn/2). This implies that

νt(B(x, b−jnρjn )) ≥ 1
j2
n

µ(Ijn,kn
)) ≥ b−jn(Hτ+εjn ) = b

−jnρjn (
Hτ +εjn

ρjn
)
.

Hence log νt(B(x,b−jnρjn ))

log b−jnρjn
≤ Hτ+εjn

ρjn
. Since εj → 0 and ρj → ρ, by letting jn

go to +∞, one obtains that hνt(x) ≤ Hτ/ρ.

4.1.2 Upper bound for the multifractal spectrum of dνt

Proposition 4.4 For every h ∈ [0, τ ′µ(0)], dνt(h) ≤ dν(h) = τ∗µ(h).

Proof: Let us use (20): For every x ∈ [0, 1], hνt(x) ≥ hν(x). This implies
that for every h ∈ [0, τ ′µ(0)], Eνt

h ⊂
⋃

h′≤h Eν
h′ .

By Proposition 3.2 and Theorem 2.1, for every h ∈ [0, τ ′µ(0)], one has
dim

⋃
h′≤h Eν

h′ ≤ dim Eν
h = dν(h), hence the result.

Proposition 4.5 For every h ∈ (τ ′µ(0), hmax], dνt(h) ≤ dν(h) = τ∗µ(h).

Proof: Let h ∈ (τ ′µ(0), hmax]. By (20), Eνt

h ⊂
⋃

h′≥h Eµ
h . By Proposition 3.2,

dνt(h) = dim Eνt

h ≤ dim
⋃

h′≥h Eµ
h ≤ τ∗µ(h).
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4.1.3 Lower bound for the multifractal spectrum of dνt

Proposition 4.6 For every h ∈ [0,Hτ ], dνt(h) ≥ dν(h) = h.

Proof: We first apply property P3. Let h ∈ (0,Hτ ], and let us consider
ρ = Hτ/h. Consider the measure mρ of P3. Let S = Sµ(ρ,Hτ , ε̃/2)).

By Proposition 4.3, every x ∈ S verifies hνt(x) ≤ Hτ/ρ = h. Hence S ⊂⋃
h′≤h Eνt

h′ . By Proposition 3.2, for all i ≥ 1, dim
⋃

h′≤h−1/i Eνt

h′ ≤ τ∗νt(h−1/i).
Moreover, τνt ≥ τν so τ∗νt(h − 1/i) ≤ τ∗ν (h − 1/i) < τ∗ν (h) = Hτ/ρ. Hence
mρ(

⋃
i≥1

⋃
h′≤h−1/i Eνt

h′ ) = 0.

One has S\
⋃

i≥1

⋃
h′≤h−1/i Eνt

h′ ⊂ Eνt

h . Since εj ≥ ξj , by construction

mρ(S) > 0, and mρ(S\
⋃

i≥1

⋃
h′≤h−1/i Eνt

h′ ) > 0. Hence dimEνt

h ≥ h.

Proposition 4.7 For every h ∈ (Hτ , hmax), dνt(h) ≥ dν(h).

Proof: We need a lemma extracted from the proof of Proposition 8 in [2].

Lemma 4.8 Let h ∈ [Hτ , hmax). Let mh be a measure as in P2. Then there
exists a subset S of Ẽµ

h,eξ such that mh(S) > 0 and S ⊂ Eν
h.

Let h ∈ (Hτ , hmax). Consider a set S and a measure mh as in Lemma 4.8.
Let x ∈ S ⊂ Ẽµ

h,eξ ∩Eν
h . Remark that at every scale j, at least one of I

(−1)
j (x),

I0
j (x), I

(+1)
j (x), is irreducible. Hence, for this irreducible b-adic interval I, by

Proposition 4.1 one has νt(I) ≥ µ(I)b−jε ≥ b−j(h+ξj+ε). This holds for every
j large enough, and then for every ε small enough. Hence hνt(x) ≤ h.

But hνt(x) is always larger than hν(x), which equals h since S ⊂ Eν
h .

Hence hνt(x) = h, and S ⊂ Eνt

h .
As a consequence, mh(Eνt

h ) ≥ mh(S) > 0, and dim Eνt

h ≥ dν(h).

4.2 Proof of Theorem 2.2(2)

We come back to the general measures νγ,σ and to the general form of its
thresholded version νeε

γ,σ. Let ξ̃ be a sequence such that P3 holds with α =
τ ′µ(σqτ (ν)), and let ε̃ = (εj)j≥1 be defined by εj = σξ̃j + 2 logb(j)/j.

Let µσqτ
be the Gibbs measure constructed as µ, but with the potential

σqτ (ν)φ. One deduces from Theorem 2.1 that qτ (νγ,σ)Hτ (νγ,σ) = τ∗µ(σqτ (νγ,σ)).
Then, the same arguments as those used in the proof of Proposition 4.3 show
that for ρ ≥ 1, if x ∈ Sµ(ρ, τ ′µ(σqτ (νγ,σ)), ξ̃), then hν eε

γ,σ
(x) ≤ Hτ (νγ,σ)/ρ.

Since by construction τν eε
γ,σ

≥ τνγ,σ
, for every h ∈ [0,Hτ (νγ,σ)] one has

dim
⋃

h′≤h E
ν eε

γ,σ

h′ ≤ τ∗νγ,σ
(h) = qτ (νγ,σ)h. This is enough to conclude as in the

proof of Proposition 4.6.
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4.3 Proof of Theorem 2.2(1)

It follows from (2) that dν eε
γ,σ

(Hτ (νγ,σ)) = qτ (νγ,σ)Hτ (νγ,σ). Moreover, due
to the threshold operation ona has τν eε

γ,σ
≥ τν on R+, so that has qτ (νeε

γ,σ) ≤
qτ (νγ,σ). On the other hand, dν eε

γ,σ
(Hτ (νγ,σ)) ≤ τ∗

ν eε
γ,σ

(Hτ (νγ,σ)) ≤ qτ (νeε
γ,σ)Hτ (νγ,σ).

This yields qτ (νHτ (ν),eε) = qτ (ν) and then Hτ (νeε
γ,σ) ≤ Hτ (νγ,σ) again because

τν eε
γ,σ

≥ τνγ,σ
and these functions are concave. Coming back to dν eε

γ,σ
(Hτ (νγ,σ)) =

qτ (νγ,σ)Hτ (νγ,σ) and the fact that for any positive Borel measure on [0, 1] one
has dχ(h) ≤ τ∗χ(h) < qτ (χ)h if h > Hτ (χ), one gets Hτ (νeε

γ,σ) = Hτ (νγ,σ).
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